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Abstract: With the rapid growth of Internet-of-things (IoT) devices, IoT communication has become
an increasingly crucial part of 5G wireless communication systems. The large-scale IoT devices
access results in system overload and low utilization of energy efficiency under the existing network
framework. In this paper, the cluster head uses the LTE-M protocol, and the intra-cluster uses the
low-power wide-area network (LPWAN) self-networking protocol in the wireless sensor network.
By a detailed analysis of the messages exchanged between the device and the base station, we
describe the causes of overload and the steps of data aggregate combined with the physical channel.
Then, we explore the cluster head quantity and the optimal scale in the intra-cluster under the
traditional K-mean algorithm. When K is 30 under specific resources, the simulation results show
that the system’s access success probability and resource utilization are optimal. Also, we propose a
distributed dynamic cluster-head selection and clustering scheme based on an improved K-means
algorithm. Simulation results show that the proposed scheme can reach 88.07% on the access
success probability. The throughput and resource utilization are 3.5 times high than that of the
optimal K-means.
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1. Introduction

Massive machine type communication is one of the main scenes of 5G wireless communication.
Cisco estimates that 70% of IoT device connections will serve by the 3rd Generation Partner Project
(3GPP) developed networks [1] because the existing cellular network has broad coverage, a large
amount of deployed infrastructure, a complete user service management system, and so on. In order
to adapt to the IoT device service well, in the future wireless network, the primary solution is to
optimize the existing cellular network for service characteristics. Therefore, the 3GPP organization
has been working on the standardization of IoT networks since Release-8, which is more inclined to
choose optimization schemes that have less impact on existing networks to enable cellular networks to
support massive IoT device communication [2].

With a large number of IoT devices application service centered on the uplink, the transmission
data is small, the transmission is frequent, and the battery is difficult to replace. When large-scale
devices request to access the network, the collision caused by random access is the main reason for low
resource utilization of small data IoT devices. There are two main problems in the existing network for
the future massive IoT access.

• Massive IoT devices access will generate a large number of collisions and especially the congestion
of random access, which will seriously reduce the access success probability and result in a
system overload.
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• IoT devices transmit small amounts of data requiring more than 20 handshakes to establish a data
connection with the base station (BS) in LTE-M [3], which leads to high signaling overhead and
results in low Resource Utilization.

The solutions are optimized for these problems as follows: on the one hand, the research mainly
considers the high-efficiency random access process of the Media Access Control (MAC) layer. It is
primarily to improve the random access process to alleviate the problem of high collision probability,
thereby reducing waste and achieving energy efficiency optimization. Also, it mainly divides into two
research ideas. One is a dynamic allocation of random access process resources including preamble,
time, and frequency-domain. The other is access control including dynamic control methods [4,5] and
multiple back-off methods [5,6].

On the other hand, based on the idea of cooperative relaying, it can be combined with other
lower-power technologies [7] for intra-cluster communication. In the relay-based transmission
mechanism, device clustering algorithm and the selection of cluster head are the critical factors
affecting energy efficiency. Specific rules group all devices, one of which acts as a coordinator. The
Conventional clustering method is based on the fixed geographical position of the device before the
network starts to operate. The cluster head is stationary regardless of whether the device is in an active
state or a dormant state. This approach improves the performance of the system, but it requires the
cluster head to have an unlimited energy supply. Literatures [8–14] propose a low-energy adaptive
clustering hierarchy (LEACH) algorithm and related improvements. LEACH is a self-organizing,
adaptive clustering protocol that uses randomization to distribute the energy load evenly among the
sensors in the network. Sensors elect themselves to be local cluster-heads at any given time with a
certain probability. A series of K-means selection algorithms based on grouping and coordinator are
introduced in ref. [15]. Researches [16,17] discuss within their clustering mechanism some criteria,
such as the communication interest among the devices. Ref. [18] explains in detail the exploitation of
the device-to-device communication scenario; it can support efficient resource management, especially
in the considered Orthogonal Frequency-Division Multiple Access (OFDMA) setup.

He and Huang [19] proposed a two-stage mechanism to minimize the energy consumption
of all Machine-Type Communications (MTC) devices. The first phase consists of MTC device
grouping and coordinator selection, and the criteria for grouping and coordinator selection is the
minimization of energy consumption for each group. The second phase is that the base station
allocates the power for each coordinator to reduce energy consumption further. However, it is
difficult to obtain a final solution for the goal, so then the author uses the Step-by-step calculation
to achieve sub-optimal results. The literature [20] proposes a scheme using clustering and relaying
ideas: intra-cluster communication relies on a multiphase Carrier Sense Multiple Access/Collision
Avoidance (CSMA/CA) protocol, and resource reservation protocols use for communication between
the cluster head and the base station. Ref. [21] proposes a dynamic clustering and user association
scheme in the small wireless networks. In their work, the authors decompose the user association
into a dynamic clustering problem and put forward a user association method based on cultural
similarity to solve the problem. Literatures [22–24] use cloud-based solutions for energy efficiency
optimization. In ref. [25], a user-centric clustering and scheduling scheme based on service perception
is given to improve the delay and throughput performance [26] of the cloud Radio Access Network
(RAN) through coordinated multipoint transmission. However, there is still an unsolved problem that
cooperative relays make cluster heads consume more energy than other devices.

In this paper, we consider the scenario of large-scale IoT device access. A large number of
collisions result in lower energy efficiency. Then, we present a detailed analysis of the random access
process and data transmission process combined with the physical channel. We give the main reason
for the collision and finally, we propose a distributed dynamic cluster-head selection and clustering
scheme based on an improved K-means algorithm. The solution draws on distributed ideas, which
allow high-energy behavior to distribute across all devices. More specifically, this work provides two
significant contributions.
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• We analyze the communication process combined with the channel resources including random
access and data transmission under the existing network system structure developed by 3GPP.
The energy efficiency of the system is then modeled based on the analysis.

• We use a noise-based density-based method to pre-separate clusters, obtain the required number
of cluster heads and initial positions according to the distribution of devices in the region, and
solve the actual process access problem of excessive energy consumption in the cluster head. In
the optimization of system energy efficiency, an adaptive energy efficiency optimization algorithm
based on the distributed idea is proposed. Compared with the existing K-means algorithm, the
simulation results show that the proposed algorithm can significantly improve the system energy
efficiency and throughput.

The rest of the paper is organized as follows. Section 2 describes the random access procedure
and data aggregation procedure in this paper. The system model considered in this paper is defined in
Section 3. The numerical results are given in Section 4. Section 5 summarizes the conclusions.

2. Description of Random Access and Data Aggregation

Figure 1 shows the signaling interaction and data transmission between the device and the base
station. The device is in a Radio Resource Control (RRC) idle state before starting the data reporting
process. The following three processes are required to complete the data transfer:

• Establishing an RRC-connected contention-based random access procedure
• Establishing an RRC-connected data transmission
• Releasing an RRC connection

Appl. Sci. 2018, 8, x FOR PEER REVIEW  3 of 16 

• We analyze the communication process combined with the channel resources including random 
access and data transmission under the existing network system structure developed by 3GPP. 
The energy efficiency of the system is then modeled based on the analysis. 

• We use a noise-based density-based method to pre-separate clusters, obtain the required number 
of cluster heads and initial positions according to the distribution of devices in the region, and 
solve the actual process access problem of excessive energy consumption in the cluster head. In 
the optimization of system energy efficiency, an adaptive energy efficiency optimization 
algorithm based on the distributed idea is proposed. Compared with the existing K-means 
algorithm, the simulation results show that the proposed algorithm can significantly improve 
the system energy efficiency and throughput. 

The rest of the paper is organized as follows. Section 2 describes the random access procedure 
and data aggregation procedure in this paper. The system model considered in this paper is defined 
in Section 3. The numerical results are given in Section 4. Section 5 summarizes the conclusions. 

2. Description of Random Access and Data Aggregation  

 
Figure 1. Signaling interaction and data transmission between device and base station. 

Error! Reference source not found. shows the signaling interaction and data transmission 
between the device and the base station. The device is in a Radio Resource Control (RRC) idle state 
before starting the data reporting process. The following three processes are required to complete the 
data transfer: 

• Establishing an RRC-connected contention-based random access procedure 
• Establishing an RRC-connected data transmission 
• Releasing an RRC connection 

The active User (UE) 1, 2, and 3 send data1, 2, and 3 to the base station respectively at different 
times. Collisions mainly occur during the random access process. The random access procedure 
includes four steps MSG1 to MSG4. The device first selects a limited preamble resource to send 
request access to the base station on the Physical Random Access Channel (PRACH) in MSG1. 
Collisions occur when two or more devices select the same preamble. The device can transmit 
multiple times, and the base station settings determine the maximum number of transmissions. Upon 
receiving the preamble, the base station applies for a Cell Radio Network Temporary ID (C-RNTI) 
and applies for uplink and downlink resources for scheduling. Then, the base station sends a random 
access response over the Physical Downlink Shared Channel (PDSCH) for each UE. The response 
contains the Random Access (RA)-preamble identifier, timing alignment information, initial uplink 
grant, and temporary C-RNTI. One PDSCH can carry random access responses to multiple UEs. 

After the UE sends the preamble, it monitors the Physical Downlink Control Channel (PDCCH) 
and waits for a random access response within a random access response window: 

• If the UE receives a response containing an RA-preamble identifier which is the same as the 
identifier contained in the transmitted random access preamble, the response is successful, and 
the RA-preamble identifier is used for uplink transmission. 

Figure 1. Signaling interaction and data transmission between device and base station.

The active User (UE) 1, 2, and 3 send data1, 2, and 3 to the base station respectively at different
times. Collisions mainly occur during the random access process. The random access procedure
includes four steps MSG1 to MSG4. The device first selects a limited preamble resource to send request
access to the base station on the Physical Random Access Channel (PRACH) in MSG1. Collisions occur
when two or more devices select the same preamble. The device can transmit multiple times, and the
base station settings determine the maximum number of transmissions. Upon receiving the preamble,
the base station applies for a Cell Radio Network Temporary ID (C-RNTI) and applies for uplink and
downlink resources for scheduling. Then, the base station sends a random access response over the
Physical Downlink Shared Channel (PDSCH) for each UE. The response contains the Random Access
(RA)-preamble identifier, timing alignment information, initial uplink grant, and temporary C-RNTI.
One PDSCH can carry random access responses to multiple UEs.

After the UE sends the preamble, it monitors the Physical Downlink Control Channel (PDCCH)
and waits for a random access response within a random access response window:

• If the UE receives a response containing an RA-preamble identifier which is the same as the
identifier contained in the transmitted random access preamble, the response is successful, and
the RA-preamble identifier is used for uplink transmission.
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• If the UE does not receive a response within the random access window or fails to verify the
response, the response fails.

In this case, if the number of random access attempts is smaller than the upper limit, the UE
retries random access. Otherwise, random access fails.

The UE sends Msg3 using the resources contained in the random access response. The UE
transmits uplink scheduled data over the Physical Uplink Shared Channel (PUSCH). The size of the
transport block is specified in the random access response. The information in the transport block
sent by the UE varies in different random access scenarios: The RRC Connection Request message
is sent by the UE over the Common Control Channel (CCCH) and contains the cause of the Radio
Resource Control connection setup. This message also contains the Media Access Control (MAC)
control element for requesting uplink transmission resources. Other scenarios at least the C-RNTI of
the UE are transmitted.

After the UE sends Msg3, a contention resolution timer starts. Within the timer length, the base
station performs contention resolution at the MAC layer and informs the UE of the resolution through
the C-RNTI on the PDCCH or through the UE Contention Resolution Identity on the PDSCH. The
UE monitors the PDCCH before the timer expires. The UE considers the contention resolution as
successful, notifies upper layers, and stops the timer if both of the following conditions are met: the
UE obtains the temporary C-RNTI over the PDCCH, the MAC packet data unit (PDU) is successfully
decoded, and the MAC PDU contains information matching the CCCH equipment data unit (SDU)
transmitted in Msg3. If the contention resolution is successful, the contention-based random access
procedure is complete. If the contention resolution timer expires, the UE considers the contention
resolution as failed. Then, the UE performs random access again if the number of random access
attempts has not reached its upper limit. If the number of random access attempts has reached its
upper limit, the random access procedure fails.

Figure 1 shows an example of data aggregation in the cluster header devices. In the LTE-M
wireless network system, 12 subcarriers in frequency or one slot in the time domain are called a
resource block (RB). It can be used to carry data. As shown in Figure 1, data1, data2, and data3 will be
placed in the buffer before a new cluster header device is to upload data. Before the cluster header
device transmits data, it will upload other data in the previous buffer. The data of the devices in the
cluster transmit to the cluster head device through an intra-cluster network such as Lora, SigFox, or
other typical local area networks (LAN) protocol (orthogonal to cellular networks). The cluster head
device then forwards the data to the base station using the LTE-M uplink channel. It can see from
the above-detailed process that the cluster head device needs to perform a random access process
before performing data transmission. At the same time, it is necessary to establish a connection with
additional signaling to acquire the RB of the PUSCH for transmitting data. After the random access
connection establishes, the cluster head device uploads the device data of the other clusters together in
the previous buffer. In the transmission process, this is a new way to reduce the collision caused by the
random access of a large number of devices in the cluster. This solution improves the overall energy
efficiency utilization and reduces energy consumption with less signaling overhead. The solution is
efficient for small data IoT devices.

3. System Model

Using collaborative relay can significantly improve system energy efficiency. In the traditional
clustering method, the cluster head is already divided according to the fixed geographical position of
the device before the network starts to operate, regardless of whether the device is in an active state or
the sleep state. However, it is an unavoidable problem that cooperative relaying makes the cluster
head consume more energy than other devices. In order to get rid of high energy consumption in
a single cluster head, this paper draws on the idea of “distributed” and uses spatial and temporal
methods for data aggregation to distribute high energy consumption behavior to all devices. As shown
in Figure 2, the solid red circle represents the device that is activated and is the cluster head, the solid
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black circle represents the activated device, and the open circle represents the inactive device. During
the Nth frame to the N +1th frame, combined with different device activation or silence, the grouping
and cluster head selection dynamically perform according to the number of activated devices and the
distance between the devices. The number of devices activated at different points in time is less than
the total number of devices. The density of devices that need to be clustered is relatively small, which
reduce the complexity of the clustering algorithm.
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Based on the group and relay mechanism, research [19,27] usually adopts the K-means algorithm
to optimize the criterion function for evaluating clustering performance. In the adoption of this
algorithm, it is necessary to specify the number of clusters and consider the optimal number of cluster
heads [28,29]. Also, it generally assumes that the algorithm will be used to perform the clustering step
before the device starts to access. However, in practice, the access process of the device is a dynamic
process including new device registration and device failure, which requires dynamic clustering.
This paper proposes an adaptive cluster head selection method to solve this problem. This method
reduces the collisions generated by the equipment from the access, thereby improving the energy
efficiency and capacity of the system further.

3.1. Energy Consumption Analysis

This paper considers the uniform distribution of N devices in a single base station. The base
station uses a clustering algorithm to cluster each device Dn(n = 1, . . . N) in the cell according to
the transmission environment including the channel quality and the device location. Then, the Base
station divides the device into M(M ≤ N) clusters. The number and set of devices belonging to the
mth group can be expressed as Nm and Gm. Each group will select a cluster head as the device for data
aggregation, which the devices in the cell can represent as C = {cm|m = 1, 2, . . . , M}, where the cluster
head of the mth cluster is cm. The devices in the cluster can transmit data through the cluster header
device. The system consists of two links: one is between the device and the cluster header device, and
the other is between the cluster header device and the base station. The corresponding link data rates
are expressed as rcm

Dn
and rcm ,l . According to Shannon’s theorem:

rcm
Dn

= BD log2(1 +
pDn

∣∣∣hcm
Dn

∣∣∣2
N0BD

), Dn ∈ Gm (1)

rcm ,l = B log2(1 +
pcm ,l |hcm |

2

N0B
) (2)
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BD and hcm
Dn

represent the bandwidth and channel gain of the link from device Dn to cluster header
device cm belonging to the cluster Gm, respectively. We assume that link one is flat fading because the
intra-cluster distance is short and transmitted in narrowband. pDn is the transmission power of the
MTC device Dn. pcm ,l is the transmission power of the cluster header device cm on the lth RB (l ∈ Lcm).

The purpose of optimization is to maximize the overall energy efficiency of the system, that is, to
minimize energy consumption. In this paper, pDn Sn/rcm

Dn
represents the data packet transmitted by the

device Dn in the cluster m, where Sn refers to the number of bits of the device Dn data packet. The link
energy consumption of all devices is:

ecD =
M

∑
m=1

∑
Dn∈Gm

pDn · Sn

rcm
Dn

(3)

ecC =
L

∑
l=1

M

∑
m=1

pcm ,l · Dcm ,l

rcm,l
(4)

Dcm ,l =
Nm
∑

n=1
Sn,l is the total amount of data received by the cluster header device cm in the cluster

and transmitted by the lth RB. In the model, we ignore the receiving energy consumption of the
cluster header equipment, because when the distance between the device and the base station is much
larger than 10 meters, the energy consumption is mainly based on the total energy consumption [20].
Therefore, the total energy consumption of the system is ECsys:

ECsys = ecD + ecC (5)

Since the LPWAN network is used within the cluster, we assume that K has been determined. We
can simplify the problem to minimize the energy consumption of the convergence device. Minimizing
energy consumption is equivalent to maximizing the number of bits transmitted per unit of energy
consumption [20]. At the same time, we assume that each RB allocates equal power, the problem can
be considered as maximizing the number of bits transmitted per unit RB consumption. Therefore, the
issue of minimizing energy consumption can be described as (6) within T time.

min
{M,Gm ,cm ,L}

ECsys

s.t. (a) pDi = pt, Dn /∈ C
(b) pcm ,l = pt

(c) Bt ≤ Bmax, ∀t ∈ T
(d) Lp ∩ Lq = ϕ , ∀p 6= q
(e)

{
min(Lp), min(Lp) + 1, . . . , max(Lp)

}
∩{

L1 ∪ L2 ∪ . . . Lp−1 ∪ Lp+1 ∪ . . . LDN

}
= ϕ, ∀p ∈ Di

(6)

In the above formula, (a) (b) indicates that their transmission powers are set the same whether
they are regular devices or cluster header devices;(c) indicates that the bandwidth resources of each
subframe are limited, and M is the bandwidth of the cellular system; (d) (e) indicate that there are
exclusivity and adjacency in the RB resources [29]. Table 1 shows the notations introduced in the
system model.
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Table 1. Notations introduced in system model.

Parameter Notation

Bandwidth BD
Channel gain hcm

Dn
Normal Device Dn(n = 1, . . . N)
The cluster set Gm

The cluster head of the mth cluster cm
Number of devices in the cell C = {cm|m = 1, 2, . . . , M}

The transmission power of the Machine Type Communications (MTC) device Dn pDn

The transmission power of the cluster header device cm on lth Resource Block (RB) pcm ,l
The number of bits of the device Dn data packet Sn

The total amount of data received by the cluster header device cm in the cluster and
transmitted by the lth RB Dcm ,l

The link data rates of the device and the cluster header device rcm
Dn

The link data rates of the cluster header device and the base station rcm ,l
The total energy consumption ECsys

3.2. Algorithm Design

Perhaps, using different methods of selecting a cluster header device differs the energy
consumption in the intra-cluster communication. Additionally, different cluster heads and state
of the channel of base stations will exert an impact on the amount of data carried by each unit RB in
the communication between them. Therefore, the choice of the cluster head will be closely related to
the two links. We regard the selection of the sink node device as a function:

ym = maxxDk
{ 1

Nm − 1 ∑
xDn ,xDk

∈Gm ,n 6=k

∥∥xDn − xDk

∥∥+ w · hBS
xDk
} (7)

Taking into account the state of the channel between the cluster header device and the base station,
we apply the adaptive K-means algorithm to the cluster set. It is also required to select the cluster
head for each cluster so that we can obtain the final location of them. In the equation, the constant w
considers as the weight factor which affects the channel gains. In addition, it will consume the least
energy when constant w equals 1 [19].

The device Dn belongs to the cluster m, the value of rDnm equals 1, that is, Dn ∈ Gm, otherwise
equals 0. The variation xDn represents the position of the device Dn and ym represents the cluster head
position of the mth cluster.

According to the above analysis, the objective algorithm function is described as:

U =
N

∑
Dn=1

M

∑
m=1

rDnm‖xDn − ym‖2 (8)

In the same random access time slot, according to their density, the activated devices are clustered
in a way such that the adjacent allocates in one cluster. When multiple active devices are included in a
different cluster, the center coordinates are taken as the result of clustering, and the number of clusters
is the required value. After that, to get clustered sets, we bring the values into the K-means algorithm.

Table 2 shows the pseudo-code. The clustering preprocessing is mainly to obtain
the two parameters required for the K-means algorithm k and the initial clustering center
C = {cm|m = 1, 2, . . . , M}. Here we use the simplified Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) algorithm for clustering preprocessing. To get the parameters
k and the initial clustering center C = {cm|m = 1, 2, . . . , M} of the K-means algorithm. We process
the small-area selection part by referring to the basic idea of the DBSCAN clustering algorithm, and
the BSs according to its density clustering, the adjacent distance is divided into a cluster, the cluster
contains multiple BSs, taking the center coordinates as the result of clustering, the number of groups is
the desired value. Steps 1–16 of the Table 2 algorithm are the detailed procedures of DBSCAN. MinPts
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represents the minimum number of points in the adjacent domain of the core object, and Eps represents
the radius of the field. We explored the value of MinPts and found that network performance was the
best when MinPts = 2. Due to the randomness of the distribution density, the capacity of the cluster
may be too large. So the radius of the cluster and the number of devices in the cluster must be limited.
To simplify the process, when the cluster radius exceeds the distance R0, or the number of cluster
members exceeds Z, the left devices directly connect to the base station as a separate device.

Table 2. The pseudo-code of adaptive K-means algorithm.

Algorithm 1. Adaptive K-means Algorithm

1: Input: MinPts = 2 Eps X M = 1 rnm = 0 ε (ε is arbitrarily small)
2: Mark all objects in data set X as unprocessed
3: for (each object p in data set X) do
4: if (p is clustered or marked as noise)
5: continue;
6: else if (NEps(p) < MinPts)
7: Mark object p as the border point;
8: else
9: Mark object p as the core point, Create a cluster Cm, Add all the object s in the NEps(p) to C, M ++;
10: for (Unprocessed object q in the NEps(p))
11: if (NEps(q) < MinPts)
12: Add all the Objects in the NEps(p) which do not belong to any cluster to C;
13: end for
14: end if
15: end if
16: end for
17: Get the position of the center of the initial cluster C = {cm|m = 1, 2, . . . , M};
18: Calculate ym by the formula (7);
19: Calculate U by the formula (8), U mark as Uold ∀m, n, g, 1 ≤ m ≤ M, 1 ≤ n ≤ N, 1 ≤ g ≤ M;
20: if (‖xn − ym‖ ≤ ‖xn − yg‖)
21: rnm = 1, the new value U mark as Unew;
22: if (|Unew −Uold| ≤ ε)
23: return step 26;
24: else
25: return step 18;
26: if (‖xn − ym‖ > R0)
27: move the object n out of the cluster m, M ++, cM = Dn;
28: else
29: end the algorithm;
30: end if
31: end if
32: end if
33: Output B = {Bm|m = 1, 2, . . . , M}, C = {cm|m = 1, 2, . . . , M}

4. Numerical Results

4.1. Platform Analysis

In order to reflect the effect of the improved k-means algorithm of the proposed adaptive clustering
on the energy efficiency, we first built an access simulation platform based on Matlab. The platform
adopts the event-driven mechanism and object-oriented programming method, which makes the
system structure clear, easy to organize and understand, maintainable, and can easily add new
function modules and algorithms.

The access simulation platform is mainly divided into the initialization module, a simulation
module, and an output module. The initialization module mainly includes the initialization of
some simulation architecture such as scheduler, calendar table, and some real simulation entity.
The simulation module is primarily based on the channel access and the packet transmission process
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of the LTE standard. The output module mainly includes the preservation, analysis and drawing
operation of each simulation data.

As mentioned above, the simulation is based on event-driven and each event corresponds to the
transmission of a message, which can be a signaling transmission or data transfer process during a
random access process. All data are listed in the virtual queue and sorted according to the transmission
time. In each emulation step, we remove the next message from the virtual line and handle the
appropriate event. Events fall into two main categories. One category is the event that the device that
does not connect to the base station initiates the access, then carries on the signaling transmission
simulation action of the random access process. The other category is the device that has been
connected to the base station. Then the event will upload data. This type of device performs data
transmission simulation actions.

4.2. Parameters

The simulation scenario is a circular area with a radius of 1000 meter. The IoT devices are
distributed evenly in the network. The data size of each device is generated according to the periodic
escalation model in the GERAN business. Random access parameters are derived from literature [30,31].
The path loss model mainly considers the large-scale fading and uses the Friis propagation loss
model [32]. Table 3 shows other simulation parameters [33–36].

Table 3. List of main simulation parameters.

Parameter Value

Traffic distribution parameter

Cell radius 1000 m
Number of devices Variation (5000–30000)

Number of aggregation devices Variation (depends on the algorithm)
Group arrival rate of the device 1/10

Grouping model Periodic reporting of business models

PHY parameter

Working frequency 900 MHz
Transmit power of the base station 30 dBm

Transmit power of the device 23 dBm
The power density of thermal noise −121.45 dBm/Hz

Target bit error rate of AMC 5× 10−4

MAC parameter

Number of preambles 54
Backoff time 20 subframe

Maximum number of retransmissions 10

System parameter

System bandwidth 1.4 MHz
Simulation time 10× 103 subframe (10 s)

Algorithm parameter

The maximum number of devices that trigger
the algorithm 27

Maximum cluster radius 300 m

In addition to the proposed algorithm, this paper also contrasts the simulation performance
between the direct transmission scheme without algorithm and the K-means algorithm scheme with
different proportion of cluster. At the same time, five performance metrics [37–40] of the system
consider the collision probability of random access; the average transmitted data amount per unit
RB, the average number of RBs transmitted per unit time, the access success probability and system
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throughput. Average transmitted data amount per unit RB is the pivotal performance metric of energy
efficiency, and the average number of RBs transmitted per unit time indicates the utilization of the
system wireless resource. From Figures 3–7 we can observe:
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As for the direct transmission scheme, the collision probability increases with the increase in the
number of IoT devices. Especially when the number of devices is between 10,000 and 14,000, the
probability of collision and the average number of using RB per unit time increase exponentially, and
the average number of using RB per unit time saturate when the number of devices reaches 14000. This
results in a sharp decrease in the access success probability and the average amount of data carried by
unit RB. After that, with the increase of device number, the increasing trend of collision probability
tends to be smooth, the average number of RBs used per unit of time decreases, so that the access
success probability decreases and the average number of carrying data of unit RB tends to flatten.

Consequently, this shows that the energy efficiency of the system decreases with the increase of
device number. In Figure 7, as the number of devices increases, the throughput of the system is first
increased and then reduced when the number of devices is 12,000. This is because it was the optimal
number of devices in the phase when the average number of RBs used per unit of time was sharply
increased, and the average amount of data carried by unit RB was significantly reduced.

For the general K-means algorithm scheme [20,27], different proportion cluster header devices
show different performance. From Figure 3, we can see that when the number of devices does not
exceed 10,000, the collision probability of the K-means algorithm clustered by any proportion is higher
than that of the direct transmission scheme. However, from Figure 5, the average number of using
RB is more significant in unit time, which results in a relatively low amount of the access success
probability and the average number of carrying data of unit RB.

In Figure 7, there is no significant reduction in the throughput of the K-means algorithm. With
the increase in the number of devices greater than 10000, the superiority of the scheme emerges
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gradually. As shown in Figure 3, under the condition of same IoT device number, with a decrease of
the proportion, the less the number of groups, the smaller the collision probability and the lower the
average number of using RB in unit time. So, the access success probability and average transmitted
data amount per unit RB are optimal at a ratio of 1:30 and the throughput performance is further
optimized. The simulation results show that the K-means algorithm can indeed improve the efficiency
and throughput performance of the system.

Compared with the optimal scale K-means algorithm, in our scheme, when the number of devices
is between 10,000 and 22,000, we can observe that the collision probability tends to be stable and the
average number of RBs used per unit of time increases gradually with the rise in device number. Also,
it indicates that the system access capacity and resource utilization are not saturated. Therefore, the
system can keep access success probability close to 100% and the average volume of data transmitted
per unit increases steadily. As a result, the throughput increases linearly, which is different from the
way that the K-means algorithm uses to alleviate the throughput decline. With the further increase in
the number of devices greater than 22,000, the collision probability begins to increase and the average
number of using RB per unit time is still growing. So the access success probability begins to decline,
and the increase in throughput also tends to stabilize. When the number of devices achieves 30,000,
the access success probability is still close to 90%, and the performance of the base station is up to
345 kbits. Besides, the average amount of data carried by unit RB tends to stabilize at 70 bits/RB. The
two metrics for the K-means algorithm improved by adaptive clustering is 3.5 times that of the optimal
K-means algorithm. Also, the energy efficiency of the system has grown significantly. With the increase
in the number of devices, the performance degradation of random access and data transmission leads
to deterioration of system performance.

5. Conclusions

We discussed the research direction of energy efficiency in cellular communication and
summarized a concrete method for each direction. Then, Section 2 established a system model
based on the random access process combined with the wireless resource block. Based on this model,
with the cooperative relaying idea as the foundation, this paper proposed a distributed dynamic
cluster-head selection and clustering scheme based on an improved K-means algorithm, and built a
system simulation platform to simulate and analyze the proposed algorithm. The simulation results
show that the proposed algorithm can significantly improve the efficiency of the system. At present, we
have mainly considered the impact of the LTE-M cellular network used in out-of-cluster communication
on system energy efficiency. In the next phase, we will determine the impact of the technology used in
intra-cluster communication on system energy efficiency. Also, the clustering preprocessing algorithm
used in the adaptive clustering algorithm is a DBSCAN algorithm used for the non-uniformity of
device distribution density. However, as the number of devices further increases, the number of
devices activated each time gradually increases, and the density tends to be uniform. At this point,
the advantages of the algorithm are no longer reflected. Therefore, it is necessary to explore new
algorithms to cope with the challenge of a larger number of devices in the future.
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Abbreviations

The following abbreviations are used in this manuscript:

IoT Internet of thing
MAC Media Access Control
OFDMA Orthogonal Frequency-Division Multiple Access
LPWAN Low-Power Wide-Area Network
3GPP 3rd Generation Partner Project
BS Base Station
LEACH Low-Energy Adaptive Clustering Hierarchy
D2D Device-to-Device
MTC Machine-Type Communications
RAN Radio Access Network
CSMA/CA Carrier Sense Multiple Access/Collision Avoidance
RRC Radio Resource Control
PRACH Physical Random Access Channel
C-RNTI Cell Radio Network Temporary ID
PDSCH Physical Downlink Shared Channel
PDCCH Physical Downlink Control Channel
PHICH Physical HARQ Indication Channel
RA Random Access
PUSCH Physical Uplink Shared Channel)
CCCH Common Control Channel
PDU Packet Data Unit
LAN Local Area Networks
RB Resource Block
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