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Abstract: Twelve-lead Electrocardiograph (ECG) signals fusion is crucial for further ECG signal
processing. In this paper, based on the idea of the local weighted linear prediction algorithm,
a novel fusion data algorithm is proposed, which was applied in data fusion of the 12-lead ECG
signals. In order to analyze the signal quality comprehensively, the quality characteristics should be
adequately retained in the final fused result. In our algorithm, the values for the weighted coefficient
of state points were closely related to the final fused result. Thus, two fuzzy inference systems
were designed to calculate the weighted coefficients. For the sake of assessing the performance
of our method, synthetic ECG signals and realistic ECG signals were applied in the experiments.
Experimental results indicate that our method can fuse the 12-lead ECG signals effectively with the
quality characteristics of original ECG signals inherited properly.

Keywords: ECG signal; quality assessment; state space reconstruction; local linear prediction;
data fusion

1. Introduction

ECG records the physiological information of cardiac activity by deploying electrodes placed at
different positions of the body, which is widely applied in clinical diagnosis and monitoring. However,
ECG recordings gathered in clinical settings are often contaminated by noise and artifacts. Due to the
overlapping frequency bands and similar morphologies in noise and ECG signal [1,2], the distorted
characteristics of ECG signal result in false alarms (FA) in intensive care unit (ICU), and imprecise
measurement of ECG signals [2]. Thus, ECG signal quality assessment is necessary for further ECG
signal processing.

The aim of ECG quality assessment algorithm is to extract the characteristics of the ECG signal
appropriately [3–16]. Time-domain characteristics or frequency-domain characteristics are used,
among the majority of the proposed algorithms. For the time-domain instance, Moody et al. adopted
the Karhumen–Loeve basis functions to represent the QRS complex and employed the residual error
of the reconstructed QRS complex to estimate the instantaneous noise of the original signal [3]. In the
frequency-domain instance, via a long-term ECG recording from the coronary care unit, the frequency
content and the number of times ECG exceeds a preset limit were used to analyze the ECG quality [4].
Kalkstein et al. employed machine learning methods to identify data collection problems at 12-leads
ECG [5]. In [6], Chudacek et al. devised five simple rules to detect the most common distortions of the
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ECG signal. In [7], an ensemble of decision trees was used to assess the usability of ECG signals. In [8],
Jekova et al. presented a method for scoring the noise level via the ECG amplitude, powerline noise,
baseline wander, electromyography (EMG), and peak artifacts.

Clifford et al. proposed some signal quality indices (SQIs), which involve both time-domain
and frequency-domain characteristics, and can partly reflect the state of the ECG quality [9]. In [10],
Li et al. developed four novel signal quality indices and enriched SQIs in some way. In [11], Li et al.
studied a multi-level ECG quality assessment method based on a support vector machine. In this paper,
thirteen signal quality indices were derived from the ECG signals, which were used for multi-level
ECG quality classification. In [12], a naive Bayes classifier, a novel set of signal quality indices
(SQIs), and an existing adaptive Kalman filter were used for noninvasive fetal ECG signal quality
assessment. In [13], multiple signal quality indices and machine learning were used to divide the
acceptable and unacceptable ECG segments. Satija et al. presented an overview of ECG signal quality
assessment methods and highlighted the limitations of these algorithms [14]. Chen et al. introduced
Dower transformation to convert 12-lead ECG signals to 3-lead vectorcardiogram (VCG), which are
properly decomposited by multiscale recurrence analysis in each scale [15]. Wavelet analysis is also
an effective algorithm for handling nonlinear and nonstationary signals. However, VCG signals are
decomposed into a series of multiple wavelet scales and this increases the amount of pending data
observably. In other words, in [15], the application of multiscale recurrence analysis virtually weakens
the original intention of the Dower transformation. Shahriari et al. employed a structural similarity
measure to compare images of two ECG signals and the representative ECG images were chosen as
templates for the ECG signal quality assessment [16]. In [17], via the features of 12-lead ECG signals,
Agrafioti et al. addressed the identification of different human individuals, where the autocorrelation
method and linear discriminant analysis were used to extract the features of the ECG segments from
different leads. These features were combined further at the decision level by various voting principles.
Yu et al. developed a specific fusion method to detect multi-channel maternal ECG R-wave peak
locations by a single-lead ECG R-peak detection algorithm [18]. For human activity recognition,
feature fusion is commonly employed to measure the features of each lead of the multi-lead ECG
signals [19]. However, the aforementioned methods can only be performed on a single-lead ECG
signal. Once facing multi-lead ECG signals, the signal of each lead must be analyzed individually;
thereby the computational efficiency is reduced.

The motivation for this work originates from a purpose to comprehensively assess the quality
of 12-lead ECG signals and effectively reduce the computational complexity. The key solution
lies in converting the 12-lead ECG signals into a single-lead physiological signal with the quality
characteristics of original signals being inherited in the single-lead signal as much as possible.

Few papers in the literature have discussed the data fusion of multi-lead ECG signals.
Analogously, in [20], Cong et al. presented the multivariate data fusion algorithm (MDF), which was
applied to in multivariate phase space reconstruction of oil film whirling in the rotor system.
The features of the system in the fused results can be used in fault diagnosis. For the fusion of
multi-lead ECG signals, we carried out some preliminary theoretical and experimental research [21,22].
In these studies, the multi-lead ECG signals were converted into a single-lead signal via the local
weighted zero-order model. The weighted coefficients of the model were further estimated by the
information of the Euclidean distance between two adjacent state points and the angle between
two neighboring vectors, respectively. Previous studies implied that ECG signals are chaotic [23].
For chaotic signals, the local weighted linear prediction algorithm (LWLPA) has been widely used
in the prediction of chaotic time series. Inspired by LWLPA, in this paper, we propose a novel data
fusion algorithm (NDFA) for 12-lead ECG signals, which can integrate the qualitative characteristics of
12-lead ECG signals into a single-lead signal adequately.

The main contributions of the paper are threefold: (1) In this paper, how to compress the number
of the leads for 12-lead ECG signals is addressed firstly; (2) as the ECG signals possess chaotic
characteristics, based on the idea of LWLPA, NDFA is applied to fuse 12-lead ECG signals; and (3) To
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reserve the quality characteristics of ECG signals as much as possible, in NDFA, two fuzzy inference
systems are designed to calculate the weighted coefficient of each lead ECG signal properly.

The outline of the rest of this paper is as follows: In Section 2, LWLPA is briefly discussed as
preliminary; Section 3 introduces NDFA, based on LWLPA; the performance of NDFA is evaluated
by synthetic ECG signals and realistic ECG signals in Section 4; and finally, Section 5 contains
the conclusion.

2. The Local Weighted Linear Prediction Algorithm

In the course of signal quality assessment of 12-lead ECG signals, compressing the pending ECG
data is effective for further improving the efficiency of the assessment algorithms. Since cardiac signals
reveal the possibility of deterministic chaos, here LWLPA—an important prediction method of chaotic
time series—was used to fuse 12-lead ECG signals. In this section, as a preliminary, we briefly review
the algorithm, which is closely related to NDFA.

For the chaotic time series {x(i), i = 1, 2, · · · , N}, the dynamics characteristics of the chaotic time
series can be well reflected in m-dimensional space through vectors Xt = (x(t), x(t + τ), · · · , x(t +
(m− 1)τ)) ∈ Rm, t = 1, 2, · · · , N − (m− 1)τ, where m is the embedding dimension and τ the delay
time. Takens F. [24] proved that if the embedding dimension m and delay time τ can be chosen
appropriately, the regular evolutionary trajectory of chaotic systems could be completely reconstructed
and revealed in an m-dimensional space. Suppose that Xk is the current state point of the chaotic
system, and the future state Xk+1 of the system needs to be predicted. In LWLPA, the neighboring states
{Xki, i = 1, 2, · · · , n} of the current state point Xk need to be chosen from the reconstructed trajectories.
With the neighborhood Xki and the linear prediction model Xk+1 = ae + bXk, where e = [1, · · · , 1]Tm,
the future state Xk+1 can be approximately estimated.

In LWLPA, the neighboring vectors are effectively used to predict the future state of the chaotic
time series via the linear prediction model. From the data compression perspective, neighboring
points in the reconstructed space are converted to an estimated state point. Inspired by the method,
NDFA will be devised in the next section.

3. The Novel Data Fusion Algorithm

As the most important section of this paper, the basic idea of the NDFA algorithm will be briefly
introduced in Section 3.1. Both the significance of weighted coefficients in NDFA and how to obtain
these appropriate parameters will be discussed in Section 3.2. NDFA is summarized in Section 3.3.

3.1. Basic Idea of Novel Data Fusion Algorithm

How to significantly improve the efficiency of ECG quality assessment algorithm is a realistic issue.
It will facilitate solving this problem if the pending 12-lead ECG signals are compressed effectively.
Evidently the LWLPA algorithm can successfully meet the requirement of the problem above.

To illustrate the basic idea of our algorithm, an example will be given. According to the phase
space reconstruction theorem, consider the two reconstructed phase trajectories L1 and L2, shown in
Figure 1. In this example, suppose that the trajectory LF is the fused result of the trajectories L1 and
L2. Furthermore, the state point XF on the trajectory LF should satisfy the linear prediction model
XF(p + 1) = ae + bXF(p), where e = [1, · · · , 1]Tm. Here, how to obtain the parameters a and b in the
linear prediction model is a critical problem.
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Figure 1. The reconstructed phase trajectory L1 and L2, and the fused trajectory LF to illustrate the 
basic idea of the novel data fusion algorithm (NDFA). 
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Figure 1. The reconstructed phase trajectory L1 and L2, and the fused trajectory LF to illustrate the
basic idea of the novel data fusion algorithm (NDFA).

From the point of LWLPA, in Figure 1, the vectors X1(p) and X2(p) can be regarded as the
neighboring vectors of the current state XF(p). With the two vectors being employed, we can calculate
the parameters a and b by (5). The equation is as follows:

g(a, b) = min
a,b∈R

{
∑2

l=1 ωl [Xl(p + 1)− ae− bXl(p)]2
}

, (1)

where ωl is the weighted coefficient, which reflects the degree of impact from the state point to the
fusion result. Then the fused state can be calculated as:

XF(p + 1) = ae + bXF(p) (2)

The fused trajectory LF will be employed for the original signal quality assessment. It implies that
to some extent, the characteristic information of original signal ought to be fused in the trajectory LF.
Here, how to effectively inherit the characteristic information by fused result is a key for NDFA.

In Figure 1, there is an evident amplitude of the point X1(p − 1) on the trajectory L1 and the
time-domain characteristic should be well inherited in the fused trajectory LF. Thus, based on
Equation (1), a greater value for weighted coefficient ω1 of the state X1(p − 1) should be chosen,
which will further enhance the impact on the final result. Here, the Euclidean distance of two
neighboring points and the angle between two neighboring vectors on evolutionary trajectory L are
used to estimate the weighted coefficients. In Figure 1, X1(p) and X2(p) are the p-step state points on
the evolutionary trajectories L1 and L2, respectively. The vector can be easily calculated through two

adjacent state points, e.g., for the evolutionary trajectories L1,
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values of the trajectory L2 at the same step. Characteristics of evolutionary trajectory can be described
objectively by them. According to the idea, the change of evolutionary trajectory is positively related
to the values of the two parameters. Based on the relationship, the weighted coefficient of the data
point can be approximately estimated.
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3.2. Fuzzy Inference System Design for NDFA

As an important application of fuzzy logic and fuzzy sets theory [25], the fuzzy inference system
(FIS) has been successfully applied in decision support and other subjects. FIS is useful for dealing with
linguistic concepts, via achieving nonlinear mappings between inputs and outputs. In this subsection,
two simple FISs; FISd and FISα, will be devised, which can be used to estimate the weighted coefficients
of LWLPA by the modulus of vector and the angle, respectively.

Here, FISd is applied to estimate the evolutionary trend of the reconstruction trajectory by the
modulus D of the vector and the change rate Dr of the modulus of adjacent vectors. Thus, in FISd,
there are two input variables D, Dr and one output variable Od.

The two variables D and Dr can be calculated as:

D(p) = ‖X(p)− X(p− 1)‖2, (3)

Dr(p) = |D(p)− D(p− 1)|, (4)

where D(p) and Dr(p) are the Euclidean distance and the change rate of X(p) at p-step, respectively.
In the further design of FISd, the universe of the three variables D, Dr and Od are set within the

interval [0,1] uniformly. The universe of the variables D, Dr and Od are divided into several fuzzy
sets and the numbers of the fuzzy sets are 3, 3 and 5, respectively, shown in Figure 2a–c. According
to the aforementioned relationship, the inference rules of FISd can be designed properly, which are
summarized in Table 1. Based on FISd, the evolutionary trend of trajectory is estimated quantitatively
and the parameter ωd can be calculated as:

ωd =
∑hd

q=1 βd(q)yd(q)

∑hd
q=1 βd(q)

(5)

where hd is the number of rules of FISd, yd(q) is the output of the qth rule and βd(q) the rule activation
for the qth rule.

Similarly, the change of the reconstruction trajectory can also be reflected by the angle of the
adjacent vectors. Thus, according to the aforementioned relationship, the fuzzy inference system FISα

can be similarly designed. FISα consists of two inputs variables α, αr and one output variable Oα.
The two input variables are the arc-cosine angle of α and the change rate αr of the cosine function,
which can be obtained as:

α(p) =
V(p) ·V(p− 1)
|V(p)||V(p− 1)| , (6)

αr(p) = |α(p)− α(p− 1)|, (7)

where α(p) is the angle between two neighboring vectors V(p) and V(p − 1); and αr(p) the change rate
of the cosine function at p-step.

In the design of FISα, the universe of the input variable α is set within the interval [−1,1] and the
other two variables, αr and Oα, are set within [0,1]. The universe of the variables α is divided into
five fuzzy sets and the number of the fuzzy sets of the other two variables, αr and Oα, are 3 and 7,
respectively, shown in Figure 2d–f. Based on the aforementioned analysis, the inference rules of FISα is
devised to describe the relationship between the change of trajectory and the angle of neighboring
vectors felicitously, which are summarized in Table 2. With FISα being employed, we can obtain the
quantitative parameter ωα, which is computed as:

ωα =
∑hα

q=1 βα(q)yα(q)

∑hα
q=1 βα(q)

(8)
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where hα is the number of rules of FISα, yα(q) is the output of the qth rule and βα(q) the rule activation
for the qth rule.
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The two parameters ωd and ωα can describe the change of the reconstruction trajectory from the
modulus of the vector and the angle between neighboring vectors perspectives, respectively. Thus,
the parameters ωd and ωα should be comprehensively calculated as:

ω̃(p) = ωd(p) + ωα(p) (9)

where ωd(p) and ωα(p) are the values of the data point at p-step.
For the lth evolutionary trajectory Ll, the weighted coefficient ωl in the Equation (1) can be

computed as:

ωl(p) =
exp{γ[ω̃l(p)−ωmin(p)]}

∑Ln
s=1 exp{γ[ω̃s(p)−ωmin(p)]}

(10)

where the Ln is the number of the phase trajectories and the parameter γ is set to 1 [26]. Here,
the minimum value ωmin(p) = min{ω̃s(p), s = 1, 2, · · · , Ln} needs to be selected.

3.3. NDFA Algorithm

Now the weighted coefficient of point on evolutionary trajectory can be calculated. By utilizing
the weighted coefficients, the NDFA algorithm can successfully accomplish the task of data reduction.
The steps of the approach are listed as follows:

(1) Choose the proper embedding dimension mmax, delay time τmin, initial condition XF(0), and for
each lead of 12-lead ECG signals, construct the vector Xl as:

Xl = (x(T), x(T + τmin), · · · , x(T + (mmax − 1)τmin)) ∈ Rm, (11)

where T = 1, 2, · · · , N − (mmax − 1)τ and Xl is the evolutionary trajectory of the lth lead ECG signal
on reconstructed trajectory. XF(0) is chosen as centroid of all the neighbor neighboring vectors
Xs(0) = (x(0), x(0 + τmin), · · · , x(0 + (mmax − 1)τmin)), which is the point of the reconstruction
trajectory of the sth lead ECG signal at p = 0.

Here the embedding dimension and delay time should be selected as:

mmax = max{ms, s = 1, 2, · · · , Ln}, (12)

τmin = min{τs, s = 1, 2, · · · , Ln}, (13)

(2) For the lth evolutionary trajectory Xl, calculate the parameters D(p), Dr(p), α(p) and αr(p) by
Equations (3), (4), (6), and (7), respectively. With the two FISs, ωd(p) and ωα(p) being properly estimated,
the weighted coefficient ωl(p) of the state Xl(p) at the p-step can be computed by Equation (10).

(3) Compute linear fitting parameters a and b by the least square equation:

g(a, b) = min
a,b∈R
{∑Ln

l=1 ωl(p)[Xl(p + 1)− ae− bXl(p)]2}, (14)

where e = [1, · · · , 1]Tmmax
.

(4) Through the linear prediction equation, the final fused state XF(p + 1) is calculated as:

XF(p + 1) = ae + bXF(p). (15)

In this section, NDFA for 12-lead ECG signals is introduced. In the algorithm, the linear prediction
equation is used to compute the fused state. With the qualitative characteristics of original signal
preserved, the weighted coefficient of each reconstructed trajectory is estimated through FIS properly.
In the next section, the algorithm will be applied to 12-lead ECG signals and the performance of this
algorithm will be further illustrated.
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4. Application of NDFA in 12-Lead ECG Signals

In this section, for the sake of assessing the performance of NDFA, synthetic ECG signals and
realistic ECG signals are applied in the experiments. In Section 4.1, we evaluate the validity of NDFA
by synthetic ECG signals. Then based on three types of noises from the MIT-BIH Noise Stress Test
Database (NSTDB) [27,28], the noise tolerance of the algorithm will be analyzed in detail. In Section 4.2,
NDFA is executed on the database of PhysioNet/Computing in Cardiology Challenge 2011 [29], and the
MIT-BIH database to further illustrate the performance of the algorithm. It is worth mentioning that,
in this study, the False Nearest Neighbors (FNN)and the Average Displacement (AD) algorithms were
adopted to determine the optimal embedding dimension ms and delay time τs.

4.1. Synthetic Signals Experiments

4.1.1. Ideal Synthetic Signals Experiments

As realistic ECG signals are recorded in clinical environment, the signals would be contaminated
inevitably by the noise and artifacts with different magnitudes. To solve this problem, synthetic ECG
signals were widely applied in estimating the performance of the algorithm. In [30], McSharry et al.
proposed a dynamical model for generating synthetic ECG signals. Based on the idea of systems
dynamics, Sameni et al. [31] and Clifford et al. [32] developed an improved dynamical model, which
can generate 12-lead synthetic ECG signals. In the experiment, ideal VCG signals were obtained via
the model, as shown in Figure 3 and it will be employed for testing the performance of NDFA.
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Figure 3. Synthetic ECG signals.

Figure 4a–c represent the reconstructed trajectories of Vx, Vy and Vz, respectively. Figure 4d
represents the fused signal of VCG signals s. From the morphology of reconstructed trajectory
perspective, it is clear that there are needle-like features (Feature 1) on the three trajectories. Meanwhile,
the longer closed trajectory (Feature 3) and disordered feature of the closed trajectory within a small
space (Feature 2) are shown distinctly in Figure 4a–c. In Figure 4a, the local trajectories of Features 2
and 3 essentially reflect the P wave and QRS complexes in ECG signal, respectively. Evidently, the three
features of original VCG signals are well described by the fused trajectory s.
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Correlation Coefficient and Procrustes distance [33–35] are widely used in similarity measure.
Although ECG signals possess the non-stationary characteristic, the signals within a short time span
are stationary and predictable relatively. Therefore, in order to manifest the advantage of NDFA more
objectively, Correlation Coefficient (Cor) is introduced to assess the performance of our algorithm.
Cor is defined as:

Cor(a, b) =
C(a, b)√

C(a, a)C(b, b)
(16)

where the similarity of two reconstructed trajectories can be described quantitatively by parameter Cor.
Here, to illustrate the similarity of these signals integrally, the mean values of the VCG signals

and the fused signal s need to be calculated. Via Equation (16), the mean value Corxyz of correlation
coefficients Cor(Vx, Vy), Cor(Vx, Vz) and Cor(Vy, Vz) is 0.3540. Analogously, the mean value Cors of
correlation coefficients Cor(s, Vx), Cor(s, Vy) and Cor(s, Vy) is 0.5517. The results illustrate that the
three features of original signals Vx, Vy, and Vz are well preserved in the fused signal.

4.1.2. Noise Contaminated Synthetic Signals Experiments

In this subsection, the trajectory fusion problem of the noisy VCG signals will be discussed.
To ensure the objectivity of experiment in this study, realistic noises were adopted from NSTDB and
the three types of realistic noise, baseline wander (BW), electrode movement (EM), and muscle artifact
(MA) are shown in Figure 5, respectively.
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Figure 5. Realistic noise signals.

To further illustrate the validity of NDFA, the three types of noise, BW, EM and MA, were added
to clean synthetic VCG signals with different magnitudes of signal noise ratio (SNR). Twelve-lead ECG
signals were transformed to 3-lead VCG signals by linear transformation. It means that the signal
quality of 12-lead ECG was inherited to some degree. In other words, if one lead signal in 12-lead ECG
signals is contaminated by noise, the quality characteristics of the lead signal will also be reflected
in the VCG signals. In the experiment, the lead Vx of VCG signals is randomly chosen, which is
contaminated by the noise. The parameters of the SNR levels are summarized in Table 3 [11].

Table 3. SNR magnitudes for noise, baseline wander (BW), electrode movement (EM) and muscle
artifact (MA).

SNR Levels (dB)

BW 12 6 0 −6

EM 6 0 −6 −12

MA 12 6 0 −6

Here the lead Vx is polluted by BW and the magnitudes of SNR are 12 dB, 6 dB, 0 dB, and −6 dB,
respectively. In Table 4, correlation coefficient Corx is the mean value of Cor(Vx,Vy) and Cor(Vx,Vz).
The parameter Cors is the mean value of Cor(s,Vx), Cor(s,Vy), and Cor(s,Vz). The values of parameters
Corx and Cors reflect the degree of correlations between the original and fused signals. From Table 4,
we can find that, under the different SNR levels, the correlation coefficient Cors is greater than Corx
consistently, thereby designating the effectiveness of NDFA.

Table 4. Cor for BW with different signal noise ratio (SNR) levels.

SNR (dB) 12 6 0 −6

Corx 0.3449 0.3103 0.2340 0.1368

Cors 0.5369 0.5329 0.5177 0.4566
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Analogously, here the clean Vx signal is polluted by the noise of EM and MA with different
magnitudes of SNR and the correlations coefficients are calculated in Tables 5 and 6. In the two tables,
the relations between noisy signals and fused results are highly consistent with the relation reflected in
Table 4.

Table 5. Cor for EM under different SNR levels.

SNR (dB) 6 0 −6 −12

Corx 0.3281 0.2598 0.1665 0.0944

Cors 0.5347 0.5156 0.4728 0.4080

Table 6. Cor for MA under different SNR levels.

SNR (dB) 12 6 0 −6

Corx 0.3498 0.3192 0.2476 0.1539

Cors 0.5439 0.5221 0.4970 0.4379

With the experimental results being comprehensively analyzed under different conditions,
it suggests that with NDFA being employed, the reconstructed trajectories of fused results can
effectively describe the quality characteristics of noisy synthetic ECG signals. In order to test the
performance of our method adequately, some realistic ECG signals will be applied in Section 4.2.

4.2. Realistic Signals Experiments

As an important database, PhysioNet/Computing in Cardiology Challenge 2011 has been widely
used for testing the ECG quality assessment algorithms. In the database, standard 12-lead ECG signal
is sampled at 500 Hz and recorded for 10 s. There are 1000 12-lead ECG records to be employed as the
train set (Set A), with the signal quality being quantified by a group of annotators being professional
in ECG analysis. In Set A, 773 ECG records were acceptable, 225 signals were unacceptable, and the
remaining were indeterminate. In this subsection, four sets of realistic 12-lead ECG signals were
randomly selected from set A for assessing the performance of NDFA. The quality of No. 1027085 and
No. 1075113 was acceptable, and the quality of No. 1063069 and No. 1003574 was unacceptable.

In order to analyze the ECG signal quality, the realistic ECG signals needed to be pre-processed
before quality assessment. Firstly, each lead of the 12-lead ECG signals was examined for the constant
signal detection. If some constant signals were contained in the ECG signals, then the realistic signal
needed further processing and it was identified as being unacceptable. Otherwise, the 12-lead ECG
signals were transformed into VCG signals by the inverse Dower transformation matrix [36] under the
following equation:

VCG = Dinv × ECG, (17)

where Dinv is given by

Dinv =

 −0.172 −0.074 0.122 0.231 0.239 0.194 0.156 −0.010
0.057 −0.019 −0.106 −0.022 0.041 0.048 −0.227 0.887
−0.229 −0.310 −0.246 −0.063 0.055 0.108 0.022 0.102

 (18)

Based on the transformation, the quality characteristics of original signals can be completely
inherited by VCG signals.

Via NDFA, the VCG signals and reconstructed trajectory of fused result for the signals of
No. 1027085 and No. 1075113 are shown in Figure 6a,b. As the qualities of the two signals were
acceptable, the VCG signals demonstrated periodic changes and significant physiological meaning.
Furthermore, the reconstructed trajectories of the fused results implied the regular evolutionary
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characteristics. On the contrary, the other two realistic signals were unacceptable. From Figure 6c,d,
the VCG signals and fused results indicated discursive and unsystematic evolutionary characteristics.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  12 of 16 

Via NDFA, the VCG signals and reconstructed trajectory of fused result for the signals of No. 
1027085 and No. 1075113 are shown in Figure 6a,b. As the qualities of the two signals were 
acceptable, the VCG signals demonstrated periodic changes and significant physiological meaning. 
Furthermore, the reconstructed trajectories of the fused results implied the regular evolutionary 
characteristics. On the contrary, the other two realistic signals were unacceptable. From Figure 6c,d, 
the VCG signals and fused results indicated discursive and unsystematic evolutionary 
characteristics. 

 

 

0 2 4 6 8 10
-0.5

0

0.5
V

x

0 2 4 6 8 10
-0.5

0

0.5

V
y

0 2 4 6 8 10
-0.2

0

0.2

t (sec)

V
z

-0.2

0

0.2

-0.2-0.100.10.2
-0.2

-0.1

0

0.1

0.2

s(t)

s(t+τ)

s(
t+

2τ
)

a

0 2 4 6 8 10
-0.2

0

0.2

V
x

0 2 4 6 8 10
-1

0

1

V
y

0 2 4 6 8 10
-0.1

0

0.1

t (sec)

V
z

-0.5

0

0.5

-0.100.10.20.30.4
-0.1

0

0.1

0.2

0.3

0.4

s(t)

s(t+τ)

s(
t+

2τ
)

b

0 2 4 6 8 10
-0.2

0

0.2

V
x

0 2 4 6 8 10
-2

0

2

V
y

0 2 4 6 8 10
-0.2

0

0.2

t (sec)

V
z

-0.5
0

0.5
1

-0.500.51
-1

-0.5

0

0.5

1

s(t)
s(t+τ)

s(
t+

2τ
)

c

0 2 4 6 8 10
-5

0

5

V
x

0 2 4 6 8 10
-5

0

5

V
y

0 2 4 6 8 10
-2

0

2

t (sec)

V
z

-1
0

1
2

-1-0.500.511.5
-1

-0.5

0

0.5

1

1.5

s(t)

s(t+τ)

s(
t+

2τ
)

d

Figure 6. Three-lead VCG signals by realistic 12-lead ECG signals transformation and reconstructed
trajectories of fused results. (a–d) are results of the signal of No.1027085, No.1075113, No.1027085,
and No.1075113, respectively.
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In order to intuitively estimate the performance of NDFA further, the ECG segment of No. 106
from MIT-BIH database was extracted. The duration of the ECG segment was 1.11 s, which was
sufficient for all features of the ECG signal to be contained. Via NDFA, two lead ECG signals of
the signal segment were fused and the results are shown in Figure 7. Figure 7a is the reconstructed
trajectory of the lead MLII, and two characteristics of the trajectory morphology can be well reflected.
In the figure, there is a longer closed trajectory (Feature 2), which is the reconstructed trajectory of
the QRS complex. Furthermore, the reconstructed trajectory of the P wave appears as the unordered
characteristic of the closed trajectory (Feature 1). Figure 7b is the reconstructed trajectory of the lead V5,
which similarly contains two features, Feature 1 and Feature 2. As the key features, the two features
need to be well reserved in the fused trajectory. The fused result of the ECG segment is shown in
Figure 7c. We can find that the two features were contained in the fused trajectory evidently.
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4.3. Performance Comparison of Data Fusion Algorithms

The MIT-BIH database is a source for standard ECG test available, and the database has been
applied in the fundamental research. Each ECG recording in the database contains two leads, MLII and
V5, which are sampled at 360 Hz and recorded for 10 s.

Here, the four data fusion algorithms, NDFA, MDF, the algorithm 1 [21], and the algorithm 2 [22],
were applied in the MIT-BIH database. With the experimental results of the four data fusion algorithms
compared, the advantages of NDFA were well manifeste. In the experiment, two lead ECG signals;
MLII and V5, were fused by the four algorithms, respectively. To show the advantage of NDFA,
the similarity of the fused signals and the original ECG signals were calculated by the Dynamic Time
Warping Algorithm (DTW), objectively. DTW is a well-known technique to describe the level of the
similarity of the two warped time sequences. The algorithm has been successfully applied in automatic
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speech recognition [37]. Here, the similarities of two lead ECG signals and the fused signals were
calculated by DTW. Then the numerical values of the results were normalized further. The degree of
the similarity between the original and fused signals were reflected by the normalized results, DDTW,
and the smaller value of DDTW implies that the morphology features of two signals were somewhat
similar. Figure 8a shows the similarity between the fused signals by four algorithms and the lead MLII.
The means and variances of the parameter DDTW derived by NDFA, MDF, algorithm 1, and algorithm
2 were 0.0616, 0.0011; 0.8474, 0.0110; 0.2257, 0.0645; 0.2256, and 0.0644, respectively. Analogously,
for fused signals and the lead V5, the means and variances of the parameter DDTW based on NDFA
and MDF were 0.0921, 0.0017; 0.8768, 0.0102; 0.1959, 0.0426; 0.1958, and 0.0425 in Figure 8b. As can be
seen, via NDFA, the means and the variances of the parameter DDTW were smaller, compared with the
experiment results under the others. Figure 8 demonstrates that the characteristics of two leads ECG
signals, MLII and V5, can be well reserved on the fused signal yielded from NDFA, and reflects that
the performance of our algorithm exceeds MDF, algorithms 1 and 2.
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Figure 8. Performance comparison of NDFA, MDF, Algorithms 1 and 2 by DTW. (a) Is the comparison
for the fused signals by four algorithms and the lead MLII. (b) Is the comparison for the fused signals
by four algorithms and the lead V5.

In this section, NDFA is evaluated by the two databases of PhysioNet/Computing in Cardiology
Challenge 2011 and MIT-BIH, respectively. Experimental results indicate that the fused trajectory can
effectively inherit the quality characteristics of the realistic ECG signals.

5. Conclusions

In this paper, NDFA was proposed, which utilizes the idea of LWLPA to fuse 12-lead ECG signals.
Meanwhile, two fuzzy inference systems were designed for effectively inheriting the characteristics of
original signals. In this study, Synthetic ECG signals, noisy synthetic ECG signals, and realistic ECG
signals were employed to test the validity of the algorithm. Due to the limitation of papers length,
two 12-lead ECG signals were adopted randomly from Set A of PhysioNet/Computing in Cardiology
Challenge 2011, which contains 773 acceptable qualities of ECG records. Analogously, two 12-lead ECG
signals were adopted randomly from the data set, which was tagged as unacceptable quality. By the
analysis of the remaining data in Set A, the quality characteristics of ECG signals can be exhibited
by the reconstructed trajectories of the fused signals clearly. The experimental results indicate that
NDFA can effectively compress the 12-lead ECG signals, and well fuse the quality characteristics of the
original signal.

There are still many problems that require solutions. If the fused signal needs to be analyzed
further, how to obtain the quantified characteristic parameters is still a crucial problem in the quality
estimation of ECG signals, although the quality characteristics of the fused signal can be observed
easily. The recurrence quantification analysis (RQA) method particularly suits for handling biological
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signals. Hence, RQA should be used to extract the quality characteristics of the fused signal in the
further research. Additionally, how to design the optimized FISs is also to be dealt with in future work.
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