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Abstract: In recent years, healthcare has attracted much attention, which is looking for more and
more data analytics in healthcare to relieve medical problems in medical staff shortage, ageing
population, people living alone, and quality of life. Data mining, analysis, and forecasting play
a vital role in modern social and medical fields. However, how to select a proper model to mine
and analyze the relevant medical information in the data is not only an extremely challenging
problem, but also a concerning problem. Tuberculosis remains a major global health problem despite
recent and continued progress in prevention and treatment. There is no doubt that the effective
analysis and accurate forecasting of global tuberculosis prevalence rates lay a solid foundation for
the construction of an epidemic disease warning and monitoring system from a global perspective.
In this paper, the tuberculosis prevalence rate time series for four World Bank income groups
are targeted. Kruskal–Wallis analysis of variance and multiple comparison tests are conducted to
determine whether the differences of tuberculosis prevalence rates for different income groups are
statistically significant or not, and a novel combined forecasting model with its weights optimized
by a recently developed artificial intelligence algorithm—cuckoo search—is proposed to forecast
the hierarchical tuberculosis prevalence rates from 2013 to 2016. Numerical results show that the
developed combination model is not only simple, but is also able to satisfactorily approximate the
actual tuberculosis prevalence rate, and can be an effective tool in mining and analyzing big data in
the medical field.

Keywords: tuberculosis prevalence rate; World Bank income group; combination forecasting;
nonparametric analysis of variance; cuckoo search algorithm

1. Introduction

Currently, the world faces a considerable health burden related to tuberculosis (TB), which is an
infectious bacterial disease caused by Mycobacterium tuberculosis, typically exerting adverse effects not
only on the lungs, but also on other bodily organs. TB is transmitted from person to person via small
droplets of sputum and saliva expelled when an infectious patient coughs or sneezes [1]. Declared
a major worldwide health problem by the World Health Organization (WHO), TB induces ill-health
among millions of people each year, and ranks as the second leading cause of death from infectious
disease after human immunodeficiency virus (HIV) [2]. Nonetheless, TB is the most prevalent airborne
infectious cause of death, inducing approximately three million deaths each year, principally among
young adults in the globally poorest nations [3–9].
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Smart cities have been paid attention, and its status consolidates as one of the fanciest areas of
research today. Hence, [10] makes a case for a cautious rethink of the very rationale and relevance of
the debate, and in the paper [11], the origins of what is termed normative bias in smart cities research
are identified and a case is made for a holistic, scalable, and human-centered smart cities research
agenda. Smart healthcare applications are one part of a smart city, which involve domain and data
understanding for physician- and patient-centric healthcare, data preprocessing, and modeling using
natural language processing and (big) data analytic techniques, and model evaluation and knowledge
deployment through information infrastructures [12].

TB is often associated with behavioral factors and demographics, including occupation, age,
tobacco and alcohol consumption, poor nutrition, and household crowding [13–18]. Recently, WHO
has begun to promote efforts to address social determinants as an important component of global
tuberculosis control [19]. Recently, the improvement of medical conditions [20], the improvement of
optimal control strategy [21], classification algorithm, and signal processing algorithm [22,23], have
been widely used in the medical field, meanwhile, big data and data analysis techniques are applied to
disease diagnosis [24], such that the accuracy of diagnosis results has been significantly improved, and
have contributed to preventing the incidence of tuberculosis diseases. Much of the epidemiological TB
literature relies on notified cases, and relatively few involve measurements and trend predictions of
TB prevalence [25]. However, the approaches related to the prediction of TB prevalence rates are less
than ideal, and these possible tools deserve further exploration. Accurate tuberculosis prevalence rate
forecasting is of vital importance to global tuberculosis prevention and control. Advances made in
predicting tuberculosis events may be used to anticipate high and low risk years or future tuberculosis
epidemics. In recent-year forecasts, future disease trends or comparisons of competing disease
control policies commonly estimate results using dynamic transmission models, which represent the
mechanisms of transmission, natural history, and health system interactions that generate tuberculosis
outcomes. The studies shown in Table 1 described standard tuberculosis modeling approaches and
examined specific modeling approaches. However, little systematic investigation has been done on the
assumptions made by published tuberculosis models. If these assumptions are not valid, the results of
these studies could be biased [26].

According to the above discussion, this paper seeks to use a combined model to estimate and
forecast the prevalence of TB. We mainly focus on hierarchical tuberculosis prevalence rate data
according to four World Bank income groups. The association between tuberculosis prevalence rates
and income levels is examined by means of nonparametric analysis of variance (ANOVA). In addition,
nonlinear regression analysis is first applied to hierarchically forecast tuberculosis prevalence rates;
then, a combination forecasting strategy, whose weights are further optimized by the cuckoo search
algorithm, based on machine learning, is proposed. Cuckoo search-based combined models are
constructed in this paper to improve forecasting accuracy as much as possible and, thus, provide
meaningful evidence and information about the potential trends and future evaluation of the burden
of tuberculosis, i.e., incidence, prevalence, and mortality. In conclusion, the major distinction of
this study is that hierarchical tuberculosis prevalence rates are innovatively analyzed and forecasted.
Furthermore, an innovative combination forecasting model based on regression analysis and an
artificial intelligence optimization method is proposed.

In the future, big data and data analysis technology will be widely used in disease surveillance,
decision-making, health management, and other fields, which is the focus of current intelligent medical
care. In this paper, data analysis is used to analyze and forecast the tuberculosis prevalence rates.
Through repeated analysis of tuberculosis data, combined with the data of tuberculosis prevalence
rates and professional literature, a hybrid combined forecasting model is proposed, verified repeatedly
and, finally, the CS-combined model is used to forecasting the trend of prevalence rates of intelligent
medical products.
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Table 1. The different forecasting approaches of tuberculosis (TB).

Reference Description Model

Exogenous re-infection and the dynamics of
tuberculosis epidemics: local effects in a network
model of transmission

A network model of TB transmission to evaluate the impact of non-homogeneous
mixing on the relative contribution of re-infection over realistic epidemic
trajectories [27]

Mathematical models

The impact of realistic age structure in simple
models of tuberculosis transmission

A simple model of TB transmission, with alternative assumptions about survivorship,
is used to explore the effect of age structure on the prevalence of infection, disease,
basic reproductive ratio, and the projected impact of control interventions [28]

Mathematical models

Appropriate models for the management of
infectious diseases. The model intrinsic assumptions embedded within classical frameworks [29] Mathematical models

Forecast analysis of the incidence of tuberculosis in
the province of Quebec

A compartmental differential equation based on a susceptible exposed latent
infectious recovered (SELIR) model was simulated using the Euler method [30] Mathematical models

On the role of variable latent periods in
mathematical models for tuberculosis

The model that combine with arbitrarily distributed latent stage are similar to those
given by the TB model with an exponentially distributed period of latency [31] mathematical models

Emergent heterogeneity in declining tuberculosis
epidemics

Using two mathematical models to explore the role of the contact structure of the
population, and find that in declining epidemics, localized outbreaks may occur as a
result of contact heterogeneity, even in the absence of host or strain variability [32]

mathematical models

Epidemiological models of Mycobacterium
tuberculosis complex infections

Epidemiological models consist of compartments which represent sets of individuals
grouped by disease status [33] Epidemiological models

Mathematical modeling of the epidemiology of
tuberculosis

This is reflected in differences in the structures of mathematical models of TB which,
in turn, produce differences in the predicted impacts of interventions. Gaining a
greater understanding of TB transmission dynamics requires further empirical
laboratory and field work, mathematical modeling, and interaction between them [34]

Mathematical Modeling
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The remainder of this paper is organized as follows: Section 2 introduces related methodologies,
including the Kruskal–Wallis test, regression analysis, combination forecasting strategy, and the cuckoo
search algorithm. In Section 3, we present numerical examples and forecasting results. Section 4 reports
the related conclusions of this study.

2. Related Methodology

Curve fitting is the process of constructing a curve, or mathematical function, which has the best
fit to a series of data points, possibly subject to constraints. This section introduces different methods
of curve fitting.

2.1. Kruskal–Wallis (KW) Test

The Kruskal–Wallis (KW) method is presented as a nonparametric technique to detect whether
different samples originate from the same probability distribution [35–38]. Since no normality
assumption is made, the KW test is based on an analysis of medians instead of means.

Assume a set of p random variables, Xk (1 ≤ k ≤ p), are selected from different populations.
Define ηk as the median of Xk. The null hypothesis H0 and the alternative hypothesis H1 of the KW
test can be expressed as follows [35]:{

H0: η1= η2 = · · ·= ηn
H1: ηki

6= ηkj
f or at least one ki 6= k j

. (1)

If the null hypothesis is rejected, then the p random variables are assumed to be drawn from more
than a single population. For detailed information on the KW test, please refer to Reference [38].

2.2. Regression Analysis

Regression analysis is a statistical tool used to investigate relationships between variables with
the procedure of model construction, coefficient estimation, and statistical inference [35]. The method
of least squares estimation aims to minimize the summed squares of the residuals, defined via

SSE = ∑n
i=1(yi − ŷi)

2, (2)

where yi is observed response value, ŷi is the fitted response value, and n is the number of data points
included in the fit process.

The R-square statistic is a measure to indicate the extent to which the total variation of the
dependent variable is explained by the regression model. It is defined as the ratio of the sum of squares
of regression and the total sum of squares, which can be expressed as [39]:

R− square = ∑n
i=1(ŷi −

_
y)/ ∑n

i=1(yi −
_
y) = 1− SSE/SST. (3)

Since it takes into consideration the degrees of freedom, the adjusted R-square statistic is more
reasonable for indicating regression performance, which is defined as

Adjusted R− square = 1− SSEE× (n− 1)/SST × (n−m), (4)

where n denotes the number of response values and m is the number of fitted coefficients. An adjusted
R-square value closer to one indicates that a greater proportion of variance is accounted for by the
regression model.

In addition, two error evaluation criteria are calculated to assess forecasting accuracy—namely,
mean absolute percentage error (MAPE) indicator receives one value for a specific forecasting accuracy
and the root mean square error (RMSE) is used to measure the deviation between the forecasting value
and the actual value—calculated as follows
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MAPE =
1
N ∑N

i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣, (5)

RMSE =

√
1
N ∑N

i=1(yi − ŷi)
2, (6)

where N is the number of forecasting periods, yi is the actual value at time i, and ŷi denotes the
corresponding forecasted value.

2.3. Cuckoo Search (CS) Optimization

Cuckoo search is a novel metaheuristic optimization algorithm based on the obligate
brood parasitic behavior of some cuckoo species in combination with Lévy flight behavior [40].
Three idealized rules are applied by Yang and Deb [40,41], and the aim is to use the new and potentially
better solutions (cuckoos) to replace the not-so-good solution in the nests. The interested readers can
refer to References [40,41] for details of the cuckoo search algorithm. A shortened description of the
process of the cuckoo search algorithm is provided in Appendix A.

2.4. Combined Forecasting Method

The combined forecasting method, which assigns a weighted coefficient to each individual method
proportional to its past forecasting performance, can improve the final forecasting performance by
taking advantage of individual forecasting methods that perform differently depending on the datasets,
the forecast horizons, and their capability of capturing nonlinearity. The combined forecast model can
be represented as

F̂t = ∑n+1
i=1 wi f̂t|i, (7)

where F̂t is the final forecast at time t, f̂t|i is the forecast value of ith model at time t, wi is the corresponding
weight assigned to the ith model, and m is the number of the individual models utilized. The formulation
of the combined forecast model can be realized in various ways. In this study, the weights are determined
based on an artificial intelligence method. Figure 1 depicts the flowchart of the proposed combined
forecasting model based on the cuckoo search algorithm to optimize the weights.

2.5. Radial Basis Function Neural Networks

The RBF neural network is a forward network model with good performance [42], global
approximation, and is free from the local minima problems. In this paper, the RBF neural work
is used to estimate the parameter of polynomial regression.

It has three layers: an input layer, a hidden layer with a non-linear RBF activation function, and a
linear output layer, which is a two-layer feed-forward neural network.

The network output y is a vector with m components, determined in terms of the n components
of the input vector x by the following formula:

yi = ∑Nh
i=1 wij ϕj(x)+θwi, I = 1, 2, . . . , m; (8)

where ϕj are the radial-basis functions, and Nh is the number of hidden-layer neurons.
The hidden-layer-to-outputs interconnection weights are given by wij. The threshold offset is denoted
by θwi.

Generally, the hidden neuron of an RBF network employs a Gaussian form for the activation
function, which is given as:

Φj(x) = exp

(
−||x− Ci||

2σ2
i

)
, (9)
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where Ci are centers, and the σi are widths or variances. For simplicity, the centers and variances are
pre-defined and fixed. The above equation can be transformed to the matrix form below:

Y = WTΨ(x), (10)

where Ψ(x) =
[
φ1, ϕ2 . . . , ϕNh

]T and W is the weights matrix.
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Figure 1. Flowchart of the proposed combined forecasting model based on the cuckoo search algorithm.

2.6. Data Analysis

The hierarchical tuberculosis prevalence rate dataset, applied in the simulation, was downloaded
from the website of the World Health Organization (WHO) [43]. As described in Section 1, prevalence
is one of main indicators used to assess the burden of tuberculosis. When survey data are not available,
estimates of prevalence are derived from estimates of incidence and the duration of disease.

The tuberculosis prevalence rate refers to the number of cases of tuberculosis (all forms) in
a population at a given point in time (the middle of the calendar year), expressed as the rate per
100,000 people, including cases of tuberculosis in people with HIV. In this study, we pay close attention
to tuberculosis prevalence rates at the global level with respect to the World Bank income groups.

According to the information on its official website, the World Bank classifies economies as low
income, middle income (subdivided into lower-middle and upper-middle), or high income, based on
gross national income (GNI) per capita. Low income and middle income economies are sometimes
referred to as developing economies. Each year, on 1 July, the World Bank revises the classification of
world economies. As of 1 July 2013, the World Bank income classifications by gross national income
(GNI) per capita are as shown in Table 2.
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Table 2. Income classifications by gross national income (GNI) per capita according to the World Bank.

Income Classifications Gross National Income (GNI) Per Capita

low income $1035 or less
lower-middle income $1036–$4085
upper-middle income $4086–$12,615

high income $12,616 or more

For nearly 17 years since WHO’s declaration of tuberculosis as a global public health emergency,
major progress has been made towards 2017 global targets set within the context of the millennium
development goals (MDGs). Table 3 presents a time series of tuberculosis prevalence rates (incidence
of tuberculosis and incidence of tuberculosis by HIV-positive cases) at the global level for the four
different World Bank income groups—namely, high income, upper-middle income, lower-middle
income, and low income—from 2000 to 2016.

Table 3. Tuberculosis prevalence rates for the four income groups from 2000 to 2016.

Year
World Bank Income Groups

High Income
Group

Upper-Middle
Income Group

Lower-Middle
Income Group

Low Income
Group

2000 19 115 306 423
2001 19.9 115 306 416
2002 18.9 116 305 408
2003 18.9 116 305 401
2004 16.7 116 303 394
2005 17.8 114 300 386
2006 16.6 113 297 377
2007 16.6 111 292 368
2008 15.5 110 286 360
2009 15.6 108 281 351
2010 15.5 103 275 340
2011 15.6 102 270 325
2012 14.5 99 264 313
2013 13.4 95 258 297
2014 13.4 92 253 288
2015 12.4 89 247 276
2016 12.5 87 241 266

As we can see from Table 2, generally speaking, lower income status is accompanied with higher
tuberculosis prevalence rates. For the high income group, tuberculosis prevalence rates from 2000
to 2016 decreased rapidly. Additionally, the tuberculosis prevalence rate in 2000 was 52% less than
the 2000 rate. The tuberculosis prevalence rates for upper-middle income group gradually descended
across the seventeen years from 2000 to 2016. The prevalence rate reached 87 cases per 100,000
population in 2016, representing a decrease of 24.35% since 2000. For lower-middle income and low
income groups, the tuberculosis prevalence rates exhibited similar patterns of decline: first slow and
then quickly falling, with decreases of 21.24% and 37.12%, respectively, compared to the rates in 2000.
The reduced prevalence rates for all income groups demonstrate continuous progress being made in
the global fight against tuberculosis.

For better modeling, this paper uses the KW test to verify whether tuberculosis prevalence rates
are different among the four different income groups. Table 4 displays the pairwise comparison results.
Each row of the table represents one test, and there is one row for each pair of groups. In total, there are
six pairs of groups. The entries in each row indicate the mean ranks being compared, the estimated
difference in mean ranks, and a confidence interval for the difference with 95% confidence. For example,
the first row shows that the mean rank tuberculosis prevalence rate for the high income group minus the
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mean rank tuberculosis prevalence rate for the upper-middle income group is estimated to be−17, with
a 95% confidence interval for the true difference of the mean ranks of [−34.4219, 0.4219]. The confidence
interval does not contain zero, so the difference is significant at the 0.05 level. Consequently, we can
draw the conclusion that the mean rank tuberculosis prevalence rate for the high income group is
significantly different from those megabank rates for all other income groups, as measured by all
the 95% confidence intervals listed from the second row to the fourth row (i.e., none contains zero).
Similarly, the mean tuberculosis prevalence rate for the upper-middle income group is also significantly
different from those for the lower-middle, as well as the low income groups.

Table 4. Results of multiple comparison test.

Pairwise Income Group Lower Bound of a 95%
Confidence Interval

Estimated Difference in
Mean Ranks

Upper Bound of a 95%
Confidence Interval

High vs upper-middle −34.4219 −17.0000 0.4219
High vs lower-middle −53.5689 −36.1471 −18.7252

High vs low −66.2748 −48.8529 −31.4311
Upper-middle vs

lower-middle −36.5689 −19.1471 −1.7252

Upper-middle vs low −49.2748 −31.8529 −14.4311
Lower-middle vs low −30.1277 −12.7059 4.7160

All in all, through the multiple comparison test yielding the results shown in Table 3, we collect
further detailed information about the pairwise difference of tuberculosis prevalence rates among
the four World Bank income groups. Pairwise analyses conclude that significant differences in mean
tuberculosis prevalence rates among income groups exist, except between the mean tuberculosis
prevalence rates of the lower-middle income and the low income groups.

2.7. Structure of the Proposed Integrated Forecasting Framework

Mathematical models (in Table 1) consist of compartments which represent sets of individuals
grouped by disease status. The links between compartments represent transitions from one state
of disease to another state and different compartments can be included or excluded according to
the assumptions of the mathematical models. However, the combined model based on polynomial
regression proposed in this paper aims at the incidence of TB; no other assumptions are needed in the
modeling process. In the process of forecasting, it avoids the deviation of forecasting results caused by
the invalid assumptions of the mathematical model. This is different from the mathematical models
whose goal of a combined model is to model a non-linear relationship between the independent and
dependent variables (technically, between the independent variable (year) and the conditional mean of
the dependent variable (tuberculosis rates), and the combined forecasting model is the same as other
common forecasting models, which mainly reflects the statistical regularity of diseases from data.

Hierarchical tuberculosis prevalence rate data were collected from the World Health Organization
(WHO) and the data were collected into four economic groups: high income, upper-middle income,
lower-middle income, and low income groups. Given these data, we first employ the KW test to check
whether tuberculosis prevalence rates are significantly different among the four income groups.

After the hierarchical tuberculosis prevalence rate data analysis, the TB time series data is input
into the five different regression models. The overall flowchart of the proposed integrated model is
depicted in Figure 1.

The parameters of the different regression models are determined by employing an RBF neural
network; the RBF neural network is used to fit unknown function. Given a nonlinear function, such as
y = aebx, the parameters of the function a and b are not known. To determine them, first randomly
generate two trial parameters of a and b. With these two parameters, y is calculated by y = aebx,
and is used as the output data of the RBF neural network. Thus, the RBF neural network establishes
approximate and exact regression analysis.
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With the different regressions determined, a combined forecasting model is employed.
The combined forecasting model is based on multiple different forecasting models for the same problem.
It can be a combination of several quantitative methods or a combination of several qualitative methods.
In this paper, a quantitative method is used to combine six regression models. The main purpose of
combination is to make full use of the information provided by various forecasting models. To improve
the forecasting accuracy as much as possible, this paper uses the cuckoo search algorithm to optimize
and determine the combination weights in the combined model.

It is worth noting that there are four steps of future forecasting, h = 4, for the different income
groups studied in this paper, with the forecasting values from 2013 to 2016.

3. The Model Processing and Analysis Forecasting Result

Original yearly records of tuberculosis prevalence rate are measured and published by the World
Health Organization [43], which is our main data resource. In this section, the tuberculosis prevalence
rates from four different income groups are used to estimate the performance of the proposed novel
combined model. The proposed novel combined model is compared with other forecasting models,
namely, Poly, Sin, Reci-Poly, Reci-Exp, Power2-Poly2, and Power2-Exp2.

3.1. The Data Description and the Forecasting Modeling for Each Income Group

Considering that tuberculosis prevalence rates are associated with income groups, we seek to make
full use of the hierarchical tuberculosis prevalence rates. Thus, for each income group, we construct six
different types of regression models with good adjusted R-square values. The tuberculosis prevalence
rates from 2000 to 2012 are used for model construction and coefficient estimation. Linear and
nonlinear regression models, such as the quadratic polynomial model, the two-term exponential
model, the sum-of-sines model, and the Gaussian model, are repeatedly used for the different income
groups. It is worth noting that the adjusted R-square value is regarded as the appropriate metric to
evaluate the model’s goodness-of-fit. That is to say, we prefer to select regression models with adjusted
R-square values as large as possible. Tuberculosis prevalence rates from 2013 to 2016 are forecasted for
each income group, respectively.

In addition, for each income group, a total of six individual regression models are combined
to forecast tuberculosis prevalence rates from 2013 to 2016, and the weights of the combination
forecasting model are optimized by the cuckoo search algorithm. Below, the results of the individual
and combination forecasting models are presented in great detail.

(1) With respect to tuberculosis prevalence rates for the high income group, we first construct two
regression models based on the original dataset using the quadratic polynomial model (Poly2) as
well as the sum-of-two-sines model (Sin2). In addition, the original tuberculosis prevalence rates
are transformed by taking reciprocals and then the quadratic polynomial model (Reci-Poly2) and
the two-term exponential model (Reci-Exp2) are applied to characterize the data using a global fit.
Finally, the original time series is transformed by taking base-2 logarithms and then the quadratic
polynomial model (Power2-Poly2), as well as the one-term Gaussian model (Power2-Gauss1),
are built.

(2) In regard to tuberculosis prevalence rates for upper-middle income group, the seven types
of forecasting models are the quadratic polynomial model (Poly2), the single sine model
(Sin1), the reciprocal transformation plus quadratic polynomial model (Reci-Poly2) or the
two-term exponential model (Reci-Exp2), the base-2 logarithm transformation with the quadratic
polynomial model (Power2-Poly2), or the two-term exponential model (Power2-Exp2), and the
combination model (CS-Combined).

(3) Taking the tuberculosis prevalence rates for the lower-middle income group into account, the
quadratic polynomial model (Poly2), the single sine model (Sin1), reciprocal transformation plus
the quadratic polynomial model (Reci-Poly2), or the two-term exponential model (Reci-Exp2),
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the base-2 logarithm transformation with the quadratic polynomial model (Power2-Poly2), or the
two-term exponential model (Power2-Exp2), as well as the combination model (CS-Combined)
sequentially comprise a total of seven types of forecasting models.

(4) With regard to the tuberculosis prevalence rates for the low income group, as described above,
the cubic polynomial model (Poly2), the single sine model (Sin1), the reciprocal transformation
plus the quadratic polynomial model (Reci-Poly2), or the two-term exponential model (Reci-Exp2),
the base-2 logarithm transformation with the quadratic polynomial model (Power2-Poly2), or the
two-term exponential model (Power2-Exp2), as well as the combination model (CS-Combined),
are constructed sequentially.

3.2. Analysis of the Modeling Result for Tuberculosis Prevalence Rate in Each Income Group

According to the above analysis, in this part, we further analyze the tuberculosis prevalence
rate forecasting results of four different income groups. Note that the corresponding inverse
transformations are implemented to obtain final forecasting values. The coefficients of each regression
model are estimated by the least-squares method, and the adjusted R-square (A-R2) of each
regression model is calculated. Finally, the combination model is formed based on the six individual
regression models, whose weights are optimized by the cuckoo search algorithm, which is denoted
as “CS-Combined”. The reason why the aforementioned six regression models are chosen in our
combined approach, is that these models have higher adjusted R-square values than other competing
models. Appendix C plots the fit curves of all seven types of forecasting models while including details
of the regression equations and adjusted R-squares.

Combined models which integrate the results of six individual regression models are often utilized
in the forecasting field. In order to obtain the optimal weight coefficients of the individual models,
a novel deciding weight method based on the cuckoo search is developed to determine the optimal
combination weights. The optimization is as follows.

According to the cuckoo’s process of hatching bird eggs, the CS algorithm is described as follows:
Step 1 Defines the objective function ŷ = ω1y1 + ω2y2 + . . . + ω6y6, initializes the function,

and randomly generates the initial position of n nests ω = [ω1i, ω2i, · · · , ω6i] (i = 1, 2, . . . , n) to set
parameters such as population size, problem dimension, maximum discovery probability P, and
maximum iterative times;

Step 2 Chooses the fitness function and calculates the objective function value of each bird’s nest
position, and obtains the current optimal function value;

Step 3 Records the optimal function value of the previous generation, and uses the formula (5.10)
to update the position and state of the other nests;

Step 4 The existing position function value is compared with the previous generation optimal
function value and, if it is better, the current optimal value is changed;

Step 5 After the location update, compare the random number γ ∈ [0, 1] with P. If γ > P,
randomly change x(t+1)

i , otherwise, it will not change. Finally, keep the best of a group of nest

positions y(t+1)
i ;

Step 6 If the maximum number of iterations or the minimum error requirement is not reached,
return to step 2, otherwise, continue to the next step;

Step 7 Output the global optimal combination weight.
As demonstrated in Appendix C (Figure A1), all six individual regression models provide

remarkable goodness-of-fit, with adjusted R-squares all above 0.93. Thus, the selection of regression
models is proper and effective. From Appendix C (Figure A1), there are clearly significant
improvements for combined model forecasts compared with the results of other forecasting models for
high income group. The annual high income group tuberculosis prevalence rate from 2013 to 2016
years was forecasted by CS-combined model. The forecasting results show that the SSE (sum square
error), RMSE (root mean square error) are 3.38 and 0.9587, respectively. The forecasting values are close
to the actual value. It is indicated that the CS-combined model has better forecasting performance,
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which has high popularization and application in forecasting the tuberculosis prevalence rate. It can
provide a reference basis for the prevention and control measures of TB in the world.

Appendix C (Figure A2) plots the fitting and forecasting curves and presents related regression
equations and goodness-of-fit for the upper-middle income group. From Appendix C (Figure A2),
it can be concluded that the estimated fitting equations are able to fit the dataset quite well; the adjusted
R-squares of the six regression models all being above 0.99. Appendix C (Figure A2) demonstrated
that the sum square error, root mean square error, R-square, and adj R-square of the CS-combined
forecasting model established by the upper-middle income group tuberculosis prevalence rate from
2000 to 2012 were 5.35, 0.5972, 0.9968, and 0.9966, respectively. This indicates that the forecasting
efficiency of the combined model is better than the other model, which can achieve higher forecasting
requirements and be used for extrapolation forecasting. The forecasting can help provide reference for
the formulation of tuberculosis prevalence rate control measures in upper-middle income group.

The related fitting and forecasting curves for the lower-middle income group are drawn in
Appendix C (Figure A3), which demonstrates that all six regression models fit the dataset very
well, with adjusted R-square values greater than 0.99. As indicated in Appendix C (Figure A3),
the forecasting results of tuberculosis prevalence rate for lower-middle income group from 2013 to
2016 was 258.3/100,000; 252.6/100,000; 246.9/100,000; and 241.2/100,000, showing a downward trend
year by year. The forecasting results of CS-combined showed that sum square error is 1.957, and root
mean square error is 0.6651. The CS-combined model fitting accuracy criteria (R-square) indicated that
the fitting accuracy of CS-combined model is 0.9998, and the fitting curve almost coincides with the
actual tuberculosis prevalence rate curve. The fitting effect is better than the other models and can be
used for forecasting the lower-middle income group tuberculosis prevalence rate.

The low income group with fitting and forecasting curves is plotted in Appendix C (Figure A4).
According to Appendix C (Figure A4), the individual regression models all have remarkable
goodness-of-fit with adjusted R-square values greater than 0.99. Appendix C (Figure A4) shows
that the CS-combined model is used to fit tuberculosis prevalence rate time series for low income
group during 2000–2012. The data of tuberculosis prevalence rate from 2013 to 2016 are forecasted by
CS-combined model. The fitting value and forecasting value of the CS-combined model for 2000–2016
are basically the same as the actual tuberculosis prevalence rate, which is very similar to the actual
value, and shows that the fitting and forecasting results are better than individual regression models.

3.3. Forecasting Results of Individual and Combined Models

In this section, forecasting results of both individual and combined methods are presented.
The real values and forecasting values for the four different income groups from 2013 to 2016, generated
by all seven forecasting models, are listed in Appendix B.

From Table 5, it can be concluded that the absolute values of the differences between the real
values and the forecasting values, by means of the combined forecasting model, are no greater than
four. Moreover, one-third of the twelve forecasting values derived from the proposed combination
forecasting model are exactly equal to their real values. Thus, related analysis sufficiently reflects the
superiority of the proposed combination forecasting model based on artificial intelligence optimization.

Figure 2 presents the stack bars of forecast errors, including MAPE and RMSE, of the seven
forecasting models for the four income groups. Note that, in Figure 2, the MAPE value is represented
as a percentage.

From Figure 2 and Table 5 we can see that the combined forecasting model can further improve
forecast accuracy compared with individual regression models as evidenced by it always achieving
the lowest forecast error. Based on the fitting results of six polynomial regression models from 2000
to 2012, the combined weight of each model is calculated according to the combined model theory.
In order to get the optimal combined weight, cuckoo algorithm is used to optimize the combination
weight and the forecasting results (2013–2016) of CS-combined model is calculated by the optimal
combination weight.
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The CS-combined model was established for the tuberculosis prevalence rate in high income
population, which fitted the trend of the original tuberculosis prevalence rate. The forecasting accuracy
of CS-combined model is higher than the other model and could be used for the forecasting tuberculosis
epidemic trend in high income group. The forecasting results show that the incidence of tuberculosis
in the high income group has been declining year by year since 2013 and the decline in 2013–2016
fluctuated between 2% and 4%. The tuberculosis prevalence rate in upper-middle income group in
2013–2016 showed a decreasing trend. For the forecasting results of upper-middle income group
from 2013 to 2016, the RMSE and MAPE of CS-combined forecasting model were 0.6307 and 0.4883%
respectively, which indicated that the CS-combined model has better forecasting performance and
can meet higher forecasting requirements. From another point of view, the CS-combined model can
be used for other diseases forecasting. For the lower-middle income group, the RMSE and MAPE of
CS-combined model are 0.2113% and 0.2270%, respectively. The forecasting result of CS-combined
model indicates that the tuberculosis prevalence rate from 2013 to 2016 is also declining. The forecasting
results of tuberculosis prevalence rate for low income group from 2013 to 2016 showed that RMSE and
MAPE were 0.3556% and 0.1028%, respectively, and the forecasting values were close to the actual
values, which indicate that the CS-combined model has good forecasting performance and application
in the tuberculosis prevalence rate forecasting. The forecasting results of the combined model could
be used for the prevention and control of tuberculosis in low income group, and provide reference
for formulating measures. The above analysis shows that global tuberculosis control strategies and
measures have obtained significant achievements, which effectively curb the trend of tuberculosis
prevalence rate.

Remark: The CS-combined model proposed in this paper can improve the forecasting accuracy,
which combines the advantages of a variety of models and overcomes the influence of the characteristics
of the tuberculosis prevalence rate time series on the forecasting results, such as fluctuating trend,
small sample, randomness, and non-linearity. Therefore, the combination model in the forecasting
and analysis of tuberculosis prevalence rate trend shows good forecasting performance. Therefore,
infectious disease control has great significance.
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Table 5. Root mean square error (RMSE) and mean absolute percentage error (MAPE) values of forecasting models.

Testing Processing

Low Income Group Lower-Middle Income Group Upper-Middle Income Group High Income Group

Model RMSE MAPE Model RMSE MAPE Model RMSE MAPE Model RMSE MAPE

Ploy2 3.1923 0.9025% Poly2 1.5813 0.5273% Poly2 1.1996 1.0956% Poly2 0.3085 2.0628%
Sin2 2.6980 0.7571% Sin1 1.4919 0.4954% Sin1 1.1222 1.0376% Sin2 0.2800 2.0474%

Reci-ploy2 2.3285 0.7158% Reci-ploy2 1.0076 0.3792% Reci-ploy2 0.6435 0.6489% Reci-ploy2 0.3099 1.8779%
Reci-exp2 2.7271 0.7642% Reci-exp2 0.4466 0.1171% Reci-exp2 0.6559 0.7147% Reci-exp2 0.3438 2.3453%

Power2-ploy2 2.3781 0.6724% Power2-ploy2 1.2326 0.4219% Power2-ploy2 0.9197 0.8701% Power2-ploy2 0.3062 1.9825%
Power2-exp2 2.8064 0.8106% Power2-exp2 0.3445 0.1268% Power2-exp2 0.5781 0.6270% Power2-exp2 0.3324 2.2989%
CS-combined 1.3301 0.3155% CS-combined 0.2758 0.1007% CS-combined 0.2113 0.2270% CS-combined 0.2702 1.9000%

Training processing

Low Income Group Lower-Middle Income Group Upper-Middle Income Group High Income Group

Model RMSE MAPE Model RMSE MAPE Model RMSE MAPE Model RMSE MAPE

Ploy2 1.3914 0.2877% Poly2 1.7279 0.5545% Poly2 0.8165 0.6009% Poly2 0.5685 2.7638%
Sin2 1.5892 0.3397% Sin1 1.6366 0.5284% Sin1 0.7662 0.5456% Sin2 0.4895 2.2767%

Reci-ploy2 2.6287 0.6067% Reci-ploy2 1.0795 0.3539% Reci-ploy2 0.6106 0.4378% Reci-ploy2 0.5749 2.7788%
Reci-exp2 1.4348 0.3239% Reci-exp2 0.8591 0.2454% Reci-exp2 0.6374 0.4783% Reci-exp2 0.5570 2.7130%

Power2-ploy2 1.7908 0.3871% Power2-ploy2 1.4358 0.4657% Power2-ploy2 0.6763 0.4440% Power2-ploy2 0.5713 2.7738%
Power2-exp2 1.7535 0.4302% Power2-exp2 0.6922 0.1823% Power2-exp2 0.6323 0.4855% Power2-exp2 0.5595 2.7401%
CS-combined 1.0503 0.2186% CS-combined 0.3556 0.1028% CS-combined 0.6307 0.4883% CS-combined 0.4875 2.1993%
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3.4. Analysis of the Performance of Each Model

To further estimate and analyze the performance of the proposed combined tuberculosis
prevalence rate forecasting model, the forecasting availability [40] and the DM (Diebold–Mariano)
test [44], which evaluate the forecasting performance, are discussed in this part.

(1) Table 6 shows the results of the DM test. We can reject the null hypothesis and it is deemed that the
difference between the prediction abilities of two models is significant. The significance level for a
study is chosen before data collection, and typically set to 1%, 5%, 10% [45,46]. The corresponding
significance level is as follows:

(a) If |DM| > 1.65 the null hypothesis is rejected at a 10% level, otherwise, if |DM| ≤ 1.65
we accept the null hypothesis.

(b) If |DM| > 1.96 the null hypothesis is rejected at a 5% level, otherwise, if |DM| ≤ 1.96 we
accept the null hypothesis.

(c) If |DM| > 2.58 the null hypothesis is rejected at a 1% level, otherwise, if |DM| ≤ 2.58 we
accept the null hypothesis.

For example, the results of low income group indicate that the combined model is different
than Reci-ploy2 at the 10% significance level for training process, for the testing process, the |DM|
value of Reci-ploy2 is 2.146856 at the 5% significance level, and the |DM| value of Ploy2, Sin2,
Reci-exp2, Power2-ploy2, and Power2-Exp2 are 1.809601, 1.695902, 1.642031, 1.487737, and 1.524198 at
the 10% significance level in tuberculosis prevalence rate forecasting. The upper limits at the different
significance levels are smaller than the DM statistics in four income groups in tuberculosis prevalence
rates. The combined model successfully overcomes some limitations of the individual forecasting
models and effectively improves the forecasting accuracy. These results indicate that the proposed
combined model is more valid and significantly superior to the other models. Thus, it is obvious that
the proposed combined model is superior to the other six individual regression models. Accordingly,
the proposed combined forecasting model can satisfactorily approximate the observed tuberculosis
prevalence rate.

Table 6. Diebold–Mariano (DM) test of five different models for four different income groups.

Low Income Group Lower-Middle Income Group

Model
CS-Combined

Model
CS-Combined

Training Testing Training Testing

Ploy2 1.169509 * 1.809601 * Poly2 5.267367 *** 1.7801 *
Sin2 1.601233 * 1.695902 * Sin1 5.386427 *** 1.8042 **

Reci-ploy2 3.67126 *** 2.146856 ** Reci-ploy2 4.876673 *** 2.0909 **
Reci-exp2 1.399597 * 1.642031 * Reci-exp2 2.287399 ** 0.70121 *

Power2-ploy2 2.113385 ** 1.487737 * Power2-ploy2 5.292205 *** 1.8995 *
Power2-exp2 2.78006 ** 1.524198 * Power2-exp2 2.223426 ** 1.9920 **

Upper-Middle Income Group High Income Group

Model
CS-combined

Model
CS-combined

Training Testing Training Testing

Poly2 1.92596 * 1.711787 * Poly2 1.476395 * 0.52254 *
Sin1 1.500561 * 1.744547 * Sin2 0.124479 * 0.62806 *

Reci-ploy2 0.6028 * 1.873882 * Reci-ploy2 1.494776 * 0.4238 *
Reci-exp2 0.148387 * 5.378944 *** Reci-exp2 1.285115 * 1.06562 *

Power2-ploy2 0.693713 * 1.74556 * Power2-ploy2 1.492353 * 0.44561 *
Power2-exp2 0.024528 * 3.932425 *** Power2-exp2 1.302547 * 0.94512 *

* is the 10% significance level; ** is the 5% significance level. *** is the 1% significance level.
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(2) Table 7 indicates that the first-order and second-order forecasting availabilities offered by the
proposed combined model outperform six individual regression models for the four income
groups in tuberculosis prevalence rate forecasting. For example, for the low income group,
the first-order forecasting availabilities offered by each forecasting model are 0.998405, 0.998663,
0.99874, 0.998651, 0.998815, 0.998572, and 0.999445, respectively, while their second-order values
are 0.998403, 0.998662, 0.99874, 0.99865, 0.998814, 0.998571, and 0.999445, respectively.

Remark: The results indicate that the proposed combined model is more valid and significantly
superior to the other models. Accordingly, the proposed combined forecasting model can satisfactorily
approximate the observed tuberculosis prevalence rate.

Table 7. Forecasting availability of five different forecasting models for four different income group.

Low Income Group

Model Forecasting
Availability Ploy2 Sin2 Reci-ploy2 Reci-exp2 Power2-ploy2 Power2-Exp2 CS-Combined

Training 1-order 0.999509 0.999423 0.998975 0.99945 0.999345 0.999273 0.999628
Testing 1-order 0.998405 0.998663 0.99874 0.998651 0.998815 0.998572 0.999445

Training 2-order 0.999509 0.999423 0.998975 0.999449 0.999344 0.999272 0.999628
Testing 2-order 0.998403 0.998662 0.99874 0.99865 0.998814 0.998571 0.999445

Lower-Middle Income Group

Model Forecasting
Availability Poly2 Sin1 Reci-ploy2 Reci-exp2 Power2-ploy2 Power2-Exp2 CS-combined

Training 1-order 0.999022 0.999068 0.999376 0.999568 0.999179 0.999679 0.999819
Testing 1-order 0.999041 0.999099 0.999311 0.999789 0.999234 0.999771 0.999818

Training 2-order 0.999022 0.999068 0.999376 0.999568 0.999178 0.999679 0.999819
Testing 2-order 0.999041 0.999099 0.999311 0.999789 0.999233 0.999771 0.999818

Upper-Middle Income Group

Model Forecasting
Availability Poly2 Sin1 Reci-ploy2 Reci-exp2 Power2-ploy2 Power2-Exp2 CS-combined

Training 1-order 0.998723 0.99884 0.999066 0.998983 0.999056 0.998964 0.998958
Testing 1-order 0.997559 0.997689 0.998557 0.998418 0.998063 0.998609 0.999496

Training 2-order 0.998722 0.998839 0.999066 0.998982 0.999055 0.998963 0.998957
Testing 2-order 0.997555 0.997686 0.998556 0.998418 0.998061 0.998609 0.999496

High Income Group

Model Forecasting
Availability Poly2 Sin2 Reci-ploy2 Reci-exp2 Power2-ploy2 Power2-Exp2 CS-combined

Training 1-order 0.990242 0.992007 0.990165 0.990444 0.990197 0.99034 0.992278
Testing 1-order 0.992011 0.992049 0.99275 0.99089 0.992332 0.991068 0.992635

Training 2-order 0.990194 0.991969 0.990113 0.990401 0.990148 0.990298 0.992235
Testing 2-order 0.991981 0.992043 0.992703 0.990858 0.992296 0.991041 0.992623

4. Conclusions

Concerning the association of income status and prevalence rate, a non-parametric Kruskal–Wallis
test is performed, and the matrix derived from the test demonstrates that there are significant
differences in tuberculosis prevalence rates among pairwise income groups, except between the
lower-middle income and the low income group.

In addition, individual regression models are constructed to fit the tuberculosis prevalence
rates from 1999 to 2012 for the four income groups. The quadratic polynomial model, the two-term
exponential model, the sum-of-sines model, and the Gaussian model, are repeatedly used to forecast
the tuberculosis prevalence rates from 2013 to 2016, with two types of variable transformations:
taking reciprocals and base-2 logarithms. All selected individual regression models have satisfactory
goodness-of-fit with adjusted R-squares all greater than 0.96. Combined forecasting models are
proposed based on six individual regression models, and the weights are optimized by the cuckoo
search algorithm, which is based on machine learning. From the extensive simulation results,
it can be concluded that for each of the four income groups, the proposed combination forecasting
models based on artificial intelligence optimization always provide better forecast accuracy than
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the individual regression models. As a result, these findings provide substantial information about
the effectiveness and stability of the proposed combination forecasting model in the forecasting of
hierarchical tuberculosis prevalence rates.

Future healthcare is research on the interaction between patient-centered healthcare and all pillar
industries, which uses data science to store, capture, and mine the relationship between medical data
and patients. This is, in fact, a new era of radical innovation based on big data and data analysis
applications, capable of exploiting leading-edge approaches in data analysis and data mining, which
include the idea that the analysis of big data is conducted and designed to better understand healthcare,
analyses on healthcare data, and deal with various social issues in the adoption of telematics in
medicine and healthcare. In this paper, we mainly focus on analysis and forecasting data of tuberculosis
prevalence rate. Through repeated analysis of tuberculosis data, combined with the data of tuberculosis
prevalence rates and professional literature, a hybrid combined forecasting model is proposed, verified
repeatedly and, finally, the trend of prevalence rates of intelligent medical products.

Based on these developments, this paper contributes significantly in the body of data of
tuberculosis prevalence rates, and publishes a combined forecasting model and data analysis
methodologies in the field of tuberculosis prevalence rates.

The following points are a summary of the main contents of this paper:

(1) the KW test is used to validate the different among four kinds of income group;
(2) different forecasting models are set up for each income group;
(3) a CS-combined model is proposed in this paper, which incorporates the advantages of each

forecasting model.

The numerical results show that the CS-combined model is effective in forecasting the tuberculosis
prevalence rate, and the forecasting results have important guiding significance for tuberculosis
prevention and control.
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Abbreviations

ANOVA analysis of variance
A-R2 adjusted R-square value
CDF cumulative distribution function
CS cuckoo search
CS-Combined combination model with cuckoo search algorithm
DM Diebold–Mariano
DOTS directly observed treatment, short-course
GNI gross national income
HIV human immunodeficiency virus
KW method Kruskal–Wallis method
MAPE mean absolute percentage error
MDGs millennium development goals
Poly2 quadratic polynomial model
Poly3 cubic polynomial model
Power2-exp2 base-2 logarithm transformation and two-term exponential model
Power2-gauss1 base-2 logarithm transformation and one-term Gaussian model
Power2-ploy2 base-2 logarithm transformation and quadratic polynomial model
RBFNN radical basis function neural network
Reci-exp2 reciprocal transformation and two-term exponential model
Reci-poly2 reciprocal transformation and quadratic polynomial model
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RMSE root mean square error
SCDF empirical cumulative distribution function
Sin1 single sine model
Sin2 sum of two-sines model
TB tuberculosis
WHO World Health Organization

Appendix A

Algorithm A1 The shortened process of the cuckoo search algorithm.

Algorithm: CS.
Input:
x = (x1, . . . , xd)

T—A sequence of training data.
Output:
xbest—The returned value with the best fitness in the search domain.
Parameters:
n—Number of nests.
pa—Discovery rate of alien eggs/solutions.
Ub—Upper bounds of the search domain.
Lb—Lower bounds of the search domain.
F(x)—Objective function.
MaxGeneration—Maximum number of generations.
1: /* Generate an initial population of n host nests xi(i = 1, . . . , n)*/
*/2: FOR EACHi: 1 ≤ i ≤ n DO
3: xi = Lb + (Ub− Lb) ∗ rand();
4: END FOR
5: iter = 1;
6: WHILE (iter<MaxGeneration) DO
7: /* Get a cuckoo randomly (sayi) by Lévy flights. */
8: /* Evaluate its quality/fitness Fi. */
9: /* Choose a nest among n (say j) randomly. */
10: IF (Fi > Fj) THEN1
11: /* Replace j by the new solution. */
12: END IF
13: /* Abandon a fraction (pa) of the worse nests. */
14: /* Build new ones at new locations via Lévy flights. */
15: /* Keep the best solutions. */
16: /* Rank the solutions and find the current best. */
17: iter = iter + 1;
18: END WHILE
19: RETURN xbest
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Appendix B

Table A1. Real values and forecasting values of the seven models for the four income groups.

high income
group

Year Real Value Ploy3 Sin2 Reci-ploy2 Reci-exp2 Power2-ploy2 Power2-Exp2 CS-Combined

2013 13.4 13.7982 13.7975 13.7675 13.8679 13.7832 13.8473 13.7744
2014 13.4 13.3229 13.1230 13.3254 13.3623 13.3213 13.3441 13.1150
2015 12.4 12.8430 12.6257 12.8926 12.8163 12.8616 12.8080 12.6540
2016 12.5 12.3586 12.3331 12.4701 12.2187 12.4049 12.2313 12.4212

upper-middle
income group

Year Real value Poly2 Sin1 Reci-ploy2 Reci-exp2 Power2-ploy2 Power2-Exp2 CS-combined

2013 95 96.2026 96.1404 95.6352 95.7721 95.9307 95.6058 95.2133
2014 92 92.7685 92.7337 92.4706 92.6712 92.6135 92.5328 92.1231
2015 89 89.0584 89.0884 89.2538 89.5291 89.1424 89.4174 89.2615
2016 87 85.0723 85.2137 86.0167 86.3721 85.5437 86.2845 86.7775

lower-middle
income group

Year Real value Poly2 Sin1 Reci-ploy2 Reci-exp2 Power2-ploy2 Power2-Exp2 CS-combined

2013 258 259.6904 259.6018 258.8620 258.8623 259.3924 258.4081 258.3227
2014 253 253.0490 252.9959 252.5304 252.9670 252.9045 252.5490 252.6082
2015 247 245.9936 246.0191 246.0649 247.0764 246.1485 246.6981 246.8826
2016 241 238.5242 238.6817 239.5091 241.2176 239.1550 240.8832 241.1815

low income group

Year Real value Poly2 Sin2 Reci-ploy2 Reci-exp2 Power2-ploy2 Power2-Exp2 CS-combined

2013 297 302.1288 301.5349 300.8472 301.6497 301.2547 301.9486 299.5565
2014 288 289.4075 289.0711 289.3481 289.1197 289.0349 289.4911 287.4155
2015 276 276.1888 276.3133 278.0348 276.3462 276.6887 276.8117 276.0947
2016 266 262.4727 263.2969 266.9637 263.4011 264.2757 263.9669 265.5636
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