
applied  
sciences

Article

Memory-Enhanced Dynamic Multi-Objective
Evolutionary Algorithm Based on Lp Decomposition

Xinxin Xu 1, Yanyan Tan 1,2,* , Wei Zheng 3 and Shengtao Li 1,2

1 School of Information Science and Engineering, Shandong Normal University, Jinan 250358, China;
2016020920@stu.sdnu.edu.cn (X.X.); shengtaoli1985@163.com (S.L.)

2 Institute of Data Science and Technology, Shandong Normal University, Jinan 250358, China
3 School of Mathematics and Statistics, Xi’an JiaoTong University, Xi’an 710049, China; zhengshu56@126.com
* Correspondence: yytan928@sdnu.edu.cn; Tel.: +86-0531-8961-0750

Received: 17 August 2018; Accepted: 4 September 2018; Published: 15 September 2018
����������
�������

Abstract: Decomposition-based multi-objective evolutionary algorithms provide a good framework
for static multi-objective optimization. Nevertheless, there are few studies on their use in dynamic
optimization. To solve dynamic multi-objective optimization problems, this paper integrates the
framework into dynamic multi-objective optimization and proposes a memory-enhanced dynamic
multi-objective evolutionary algorithm based on Lp decomposition (denoted by dMOEA/D-Lp).
Specifically, dMOEA/D-Lp decomposes a dynamic multi-objective optimization problem into
a number of dynamic scalar optimization subproblems and coevolves them simultaneously,
where the Lp decomposition method is adopted for decomposition. Meanwhile, a subproblem-based
bunchy memory scheme that stores good solutions from old environments and reuses them
as necessary is designed to respond to environmental change. Experimental results verify the
effectiveness of the Lp decomposition method in dynamic multi-objective optimization. Moreover,
the proposed dMOEA/D-Lp achieves better performance than other popular memory-enhanced
dynamic multi-objective optimization algorithms.

Keywords: multi-objective evolutionary optimization; memory enhancement; dynamic environment;
decomposition method

1. Introduction

In the real world, many problems can be described as multi-objective optimization problems
(MOPs), where multiple objectives often conflict with each other. Each objective has to compromise in
optimization, and finally generate a set of balanced solutions, called the Pareto optimal set (POS) [1],
which is provided to decision makers. Evolutionary multi-objective optimization, referred to EMO,
focuses on using evolutionary algorithms for MOPs [2]. Its research has become a hot topic in the field
of evolutionary computation. MOPs can be further divided into static and dynamic multi-objective
problems (DMOPs). In the dynamic environment, the objective function, constraint function,
and the related parameters of DMOPs can change with time [3]. Therefore, a dynamic evolutionary
multi-objective optimization algorithm (DEMOA) must be able to automatically detect and respond to
new changes with fast convergence, and track the time-varying POS in a timely fashion. As a result,
this study brings new challenges to EMO [4]. In the past ten years, some researchers have had
strong interest in dynamic EMO (DEMO) [5,6]. Based on genetic algorithms, artificial immune
algorithms [7,8], particle swarm optimization algorithms [9,10], co-evolutionary algorithms [11],
membrane computing [12,13], and other natural computing methods, they designed the corresponding
DEMOAs [14]. DEMOAs have been preliminarily used in intelligent service [15], industrial design [16],

Appl. Sci. 2018, 8, 1673; doi:10.3390/app8091673 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-5056-6019
https://orcid.org/0000-0002-5471-7328
http://dx.doi.org/10.3390/app8091673
http://www.mdpi.com/journal/applsci
http://www.mdpi.com/2076-3417/8/9/1673?type=check_update&version=2


Appl. Sci. 2018, 8, 1673 2 of 22

engineering management [17], scheduling control and optimization [18], and other fields. For their
further researches have important theoretical significance and practical applied value.

How to make a rapid response to a new environment using an obtained optimal solution is very
important in the design of a DEMOA. Memory methods can reuse the previous optimal solutions
by remembering to help the algorithm make a good response to the new changes. There are some
dynamic single objective evolutionary algorithms with memory methods to enhance the dynamic
tracking performance [19,20]. So far, however, few memory methods are used in DEMOAs. In 2007,
the famous dynamic non-dominated sorting genetic algorithm II (DNSGA-II) [16] was proposed
by Deb et al., which was based on NSGA-II [21]. In 2009, Goh et al. proposed a collaborative
multi-objective evolutionary algorithm for dynamic competition cooperation, named the dynamic
competition-cooperation co-evolutionary algorithm (dCOEA) [12]. Koo and Goh et al. proposed
a dynamic multi-objective evolutionary gradient search algorithm (dMO-EGS) [22] in 2010. Shang et al.
proposed an immune clonal coevolutionary algorithm for dynamic multi-objective optimization
(QICCA) [7] in 2014. All these DEMOAs have tried to use memory methods to quickly respond
to new changes, but the actual effects are not ideal.

In addition to rapid response and dynamic tracking, another difficulty in designing a DEMOA is
that the Pareto solutions set obtained by the algorithm should has good convergence and distribution
in each process of environment change. At present, most DEMOAs follow the traditional approaches
of static evolutionary multi-objective optimization and use the Pareto domination and elite reserved
strategies to ensure the convergence. They also use the operators of diversity maintaining to ensure
the diversity of the Pareto solutions. Zhang et al. proposed a new framework called the multi-objective
evolutionary algorithm based on decomposition (MOEA/D) for solving static MOPs in 2007 [23].
MOEA/D decomposes a multi-objective problem into a number of single-objective sub-problems and
solves these subproblems in parallel. MOEA/D has become very popular in solving static MOPs,
but fewer decomposition-based DMOEAs are researched for DMOPs. In this paper, we introduce
this framework and propose a memory-enhanced dynamic multi-objective algorithm based on Lp

decomposition for solving DMOPs, where the Lp decomposition method is presented. The proposed
algorithm is abbreviated as dMOEA/D-Lp.

The rest of this paper is organized as follows. Section 2 introduces some related works, including
the basic definitions of dynamic optimization. Section 3 introduces the background knowledge
on decomposition approaches and memory methods. Section 3.4 describes the framework of
our proposed algorithm: dMOEA/D-Lp (memory-enhanced dynamic multi-objective algorithm
based on Lp decomposition). Section 4 presents experimental studies on dMOEA/D-Lp. Finally,
Section 5 concludes.

2. Related works

2.1. Problem Description and Basic Definitions

Without loss of generality, an MOP with n decision variables and m objective functions can be
described as: {

min
x∈Ω

F(x) = ( f1(x), f2(x), ..., fm(x))>,

s. t. gi(x) ≤ 0, i = 1, 2, ..., s; hj(x) = 0, j = 1, 2, ..., q,
(1)

where x = (x1, x2, ..., xn)T ∈ Ω ⊂ Rn is a vector of decision variables, Ω is the n-dimensional decision
space, and F(x) = ( f1, f2,, ..., fm)T ∈ Λ ⊂ Rm is an m-dimensional vector of m objective functions.
Rm is called the objective space. The evaluation function F(x) : Ω → Λ defines m mapping from
the decision space to the objective space. gi(x) ≤ 0(i = 1, 2, ..., s) are some inequality constraints,
and hj(x) = 0(j = 1, 2, ..., q) are some q equality constraints [24].



Appl. Sci. 2018, 8, 1673 3 of 22

The time variable of t is included in DMOP. Based on a static multi-objective problem, we can
make an extension naturally. It involves an n-dimensional decision variable x, m-objective functions,
and the constraint conditions. The objective functions and the constraint conditions are functions of
the decision variable x. The mathematical model of a DMOP is expressed as:{

min
x∈Ω

F(x, t) = ( f1(x, t), f2(x, t), ..., fm(x, t))>,

s. t. gi(x, t) ≤ 0, i = 1, 2, ..., s; hj(x, t) = 0, j = 1, 2, ..., q,
(2)

where the evaluation function F(x, t), the inequality constraint function gi(x, t), and the equality
constraint function hj(x, t) may change with time t.

Definition 1 (The relation of Pareto dominance). For any two decision vectors u and v, the vector
u = (u1, u2,..., um)T dominates vector v = (v1, v2,..., vm)T , denoted by u ≺ v, only if : ∀k ∈ {1, 2, ..., m},
uk ≤ vk and ∃l ∈ {1, 2, ..., m}, ul < vl .

Definition 2 (Pareto optimal solution). The decision vector x ∈ Ω is the Pareto optimal solution, if and
only if ¬∃x′ ∈ Ω satisfying F(x′, t) ≺ F(x, t).

Definition 3 (Pareto optimal set (POS(t))). The Pareto optimal set (POS) is the set that consists of all Pareto
optimal solutions. The POS of a DMOP is defined as POS(t) : {x ∈ Ω |¬∃x′ ∈ Ω, F(x′, t) ≺ F(x, t)}.

Definition 4 (Pareto optimal front (POF(t))). The Pareto optimal front (POF) of a DMOP is defined
as POF(t) := {F(x, t) |x ∈ POS(t) . The Pareto optimal front (POF) is the set of all the Pareto optimal
objective vectors.

From the proposal of Farina et al. [3], there are four different types of DMOPs according to the
changes affecting the Pareto optimal front and the Pareto optimal set.

• Type I: where POS(t) changes while POF(t) remains invariant.
• Type II: where both POS(t) and POF(t) change.
• Type III: where POF(t) changes while POS(t) remains invariant.
• Type IV: where both POS(t) and POF(t) remain invariant.

This classification shows the difficulty of solving DMOPs by describing the combination of
changes in the Pareto set and front.

2.2. Decomposition Methods

Decomposition-based multi-objective evolutionary algorithms have become an extremely
prevailing framework for multi-objective optimization. Their main idea is to decompose an MOP into
a number of scalaring sub-problems and solve them in parallel, where the decomposition method
plays an extremely important role. There are three commonly used decomposition methods [23]:
weighted sum approach (WS) [25], Tchebycheff approach (TCH) [25] and the penalty-based boundary
intersection approach (PBI) [23,26], described as follows.

• Weighted Sum (WS) approach

The DMOPs of Formula (2) are decomposed into N dynamic scalar optimization subproblems by
using N different uniformly distributed weight vectors λi = (λi

1, λi
2, ..., λi

m)(i = 1, 2, ..., N), where for

all i = 1, 2, .., N, λi
j ≥ 0 and

m
∑

j=1
λi

j = 1.

With this approach, the decomposed scalar subproblem can be described as follows:



Appl. Sci. 2018, 8, 1673 4 of 22

 min
x∈Ω

gws(x, t |λ ) =
m
∑

i=1
λi fi(x, t),

s. t. gi(x, t) ≤ 0, i = 1, 2, ..., s; hj(x, t) = 0, j = 1, 2, ..., q.
(3)

x = (x1, x2, ..., xn)T are n variables to be optimized. We can use different weight vectors to generate
a set of different scalar optimization problems. gi(x, t) and hj(x, t) are s inequality and q equality
constraint functions, respectively.

• Tchebycheff (TCH) approach

Referring to the standard Tchebycheff formula in the static multi-objective problem, under the
condition of adding time, a dynamic Tchebycheff scalar optimization problem can be described as:{

min
x∈Ω

gtch(F(x, t) |λ, z∗(t) ) = max
1≤i≤m

{λi | fi(x, t)− z∗(t)|},

s. t. gi(x, t) ≤ 0, i = 1, 2, ..., s; hj(x, t) = 0, j = 1, 2, ..., q,
(4)

where λ = (λ1, λ2, ..., λm)T is the same as the WS approach, t is a time variable,
and z∗(t) = (z∗1(t), ..., z∗m(t))T is a reference point. That is, for each i = 1, ..., m,
z∗i (t) = min{ fi(x, t) |g(x, t) ≤ 0; h(x, t) = 0; x ∈ Ω}. For each Pareto optimal solution x∗ of MOPs
in Formula (2), there is a corresponding weight vector λ, so that x∗ is the optimal solution of
Formula (4). Each optimal solution of Formula (4) is also the Pareto optimal solution [23] of MOPs
in Formula (2). Therefore, different Pareto optimal solutions can be obtained by changing the
weight vectors. Thus, MOPs can be decomposed and transformed into multiple Tchebycheff scalar
optimization subproblems with different weight vectors.

• Penalty-based boundary intersection (PBI) approach

A dynamic PBI scalar optimization problem can be described as:
min
x∈Ω

gpbi(x, t |λ, z∗(t) ) = d1 + θd2,

d1 =

∥∥∥(z∗(t)−F(x,t))Tλ
∥∥∥

‖λ‖ , d2 = ‖F(x, t)− (z∗(t)− d1λ)‖,
s. t. gi(x, t) ≤ 0, i = 1, 2, ..., s; hj(x, t) = 0, j = 1, 2, ..., q,

(5)

where gpbi(x, t |λ, z∗(t) ) is dynamic scalar objective function. z∗ is the ideal reference point as defined
in (4), and θ is the default penalty parameter. F(x, t) is the evaluation function in Formula (2), d1 and d2

are two distance values [23], t is a time variable. According to previous experience [23], when using the
same distributed weighted vectors, the PBI approach has a slight advantage over the TCH approach
when solving MOPs with more than two objectives. However, the benefits come with the price that the
penalty parameter θ needs to be adjusted properly.

2.3. Memory-Enhanced Algorithm for Environmental Change

Many practical optimization problems show periodic change approximation, such as city traffic
changes [20], where the optimal solution in the new environment may return to the previously
searched locations. Then, with a memory method reusing the previously searched solutions, a dynamic
evolutionary algorithm will have a better tracking performance. According to how much information
needs to be stored, memory methods can commonly be divided into short-term memory and
medium-term memory (given the limited computing resources, long-term memory methods are
rarely used). Short-term memory methods only need to remember the optimal solutions of the last
changed environment. On the contrary, in medium-term memory methods, the optimal solutions of
several previous environmental changes need to be remembered.



Appl. Sci. 2018, 8, 1673 5 of 22

2.3.1. DEMO Algorithm with Short-Term Memory

(1) The immune clonal coevolutionary algorithm for dynamic multi-objective optimization (QICCA)
algorithm is a short-term memory approach [7].

To ensure a good convergence rate, the QICCA algorithm makes the final antibody population
as the initial population of the next moment. The algorithm preserves all the best solutions in the
previous change environment and has an effect of short-term memory.

(2) DNSGA-II algorithm with short-term memory and diversity [23]

The DNSGA-II algorithm (this paper named it short-term memory and diversity introduction,
or SMDI) responds to new environmental change through a short-term memory and diversity
introduction operation. SMDI first retains most of the individuals in the previous generation of
environmental change. It has a short-term memory effect. Then, in order to respond to new changes,
it randomly initializes some other individuals in the current population to introduce a small amount
of diversity to the population.

The memory methods in the above two DEMOAs are simple and easy to use, but they can
only remember the optimal solutions of the last previous environmental change, and thus their
memory capacity is limited. Especially when the environments change sharply, the memory effect is
basically lost.

2.3.2. DEMO Algorithm with Medium-Term Memory

If an evolutionary algorithm is added to such a medium-term memory method (memory
pool + store procedure + retrieve process), among them the memory pool holds the best solutions
of the past. The store procedure is responsible for storing the optimal solutions in the memory pool,
and the retrieval process is responsible for retrieving the optimal solutions from the memory pool and
inserting them into the population of the new environment. Then, the evolutionary algorithm can reuse
the optimal solutions of several previous environmental changes and have a better response to the
new change. According to Branke [27], there are three important issues in the design of medium-term
memory methods.

(1) When should put the individuals deposited into the memory pool in the population?
(2) How many individuals should be stored in the memory pool, and which individuals should be

replaced to make room for the memory pool to accommodate new individuals?
(3) Which individuals are retrieved from the memory pool and reinserted into the population?

3. Memory-Enhanced Dynamic Multi-Objective Evolutionary Algorithm Based on
Lp Decomposition

A memory-enhanced dynamic multi-objective evolutionary algorithm based on Lp decomposition
(dMOEA/D-Lp) is proposed in this paper. Specifically, dMOEA/D-Lp decomposes a dynamic
multi-objective optimization problem into a number of dynamic scalar optimization subproblems
and optimizes them simultaneously, where the Lp decomposition method is presented and used.
Meanwhile, an improved environment detection operator is presented for dynamic environments.
Additionally, a subproblem-based memory scheme that allows the evolutionary algorithm to store
good solutions from old environments and reuse them as necessary is designed to respond to the
environmental change. The overall framework of dMOEA/D-Lp can be seen at the end of this
subsection. We present the Lp decomposition method in step 2 of the dMOEA/D-Lp. An improved
environmental change detection operator and a subproblem-based bunchy memory scheme are
presented in step 3 of the dMOEA/D-Lp. In step 4, we use differential evolutionary methods [28,29]
to optimize the decomposed subproblems.



Appl. Sci. 2018, 8, 1673 6 of 22

3.1. Lp Decomposition Used in dMOEA/D-Lp

In this paper, the Lp decomposition method is introduced and used in dMOEA/D-Lp. Its detailed
description can be presented as follows:{

min
x∈Ω

gLp(x, t |λ, z∗(t) ) = ∑m
i=1{λi(| fi(x, t)− z∗i (t)|p)}1/p,

s. t. gi(x, t) ≤ 0, i = 1, 2, ..., s; hj(x, t) = 0, j = 1, 2, ..., q,
(6)

where gLp(x, t |λ, z∗(t) ) is the scalar objective function. m is the number of objectives, λ = (λ1, ..., λm)T ,
for all i = 1, ..., m, λi ≥ 0 and ∑m

i=1 λi = 1. p ∈ (0, ∞], when p = 1, gLp becomes the weighted sum
method, and when p = ∞, gLp becomes the standard Tchebycheff function. The purpose of formula∣∣ fi(x, t)− z∗i (t)

∣∣ is to minimize the maximum deviation. We have drawn the contour lines of the
improved function with different values in Figure 1, showing that with the increase of p, the search
ability of Lp function decreases. All the gLp functions suffer from the geometry issue except for the
Tchebycheff function. Especially, a gLp function cannot identify the whole Pareto optimal front of
an MOP when the curvature of the Pareto optimal front is larger than the curvature of the contour line
of the chosen gLp function. Since the curvature of the Tchebycheff function is ∞, it is able to identify
Pareto optimal solutions for any type of geometry.

Overall, for a gLp scalar function, its search ability and its robustness on problem geometries is
a trade-off. The higher the search ability, the lower the robustness. If we can estimate the curvature of
the Pareto optimal front in advance, then we can easily select a suitable gLp function based on its search
ability. For example, if the curvature of the Pareto optimal front is quadratic, the most suitable gLp

function should be one using p = 2. Alternatively, for a new problem or a problem having a complex
geometry, the use of the Tchebycheff function is a good choice.

Figure 1. Contour lines of the gLp function.

3.2. Environmental Change Detection Operator

Many researchers have studied environmental change detection operators. However, the current
detection operators either ignore the detection of the constraint functions or mistake the small noise
generated by the objectives or constraint functions in the evaluation process for environmental
changes [23]. A new and improved environment change detection operator [30] is introduced and
adopted in our proposed dMOEA/D-Lp. It can detect the changes of objective functions and constraint
functions at the same time, and set a threshold to eliminate the negative effects of noise as much as
possible. The newly introduced operator is shown in Equation (7):



Appl. Sci. 2018, 8, 1673 7 of 22

δ(t) =
∑K

i

(
‖F(xi ,t)−F(xi ,t−1)‖
‖F(xi ,t−1)‖+ε

+
‖g(xi ,t)−g(xi ,t−1)‖
‖g(xi ,t−1)‖+ε

+
‖h(xi ,t)−h(xi ,t−1)‖
‖h(xi ,t−1)‖+ε

)
K

> δ̃,
(7)

where F(xi, t) is an evaluation function, g(xi, t) is an inequality constraint function, and h(xi, t) is
an equality constraint function. Since they all may change with time t, we use the averaging method
to detect three functions at the same time. ε is an arbitrary small positive number, ‖.‖ represents
Euclidean distance, K represents the number of individuals randomly selected from the population
(generally available as 1 ≤ K ≤ 5). According to [31], the Euclidean distance of the intergenerational
target generally does not exceed 10−2 in the case of no change for environment. Therefore, we set
a pre-threshold δ̃ (10−3 ≤ δ̃ ≤ 10−2). When δ(t) > δ̃, it means the environment has changed.

3.3. Subproblem-Based Bunchy Memory (SBM) Method to Respond to Environmental Change

A subproblem-based bunchy memory (SBM) method [30] is revised and applied in dMOEA/D-Lp

for responding to environment change. The SBM method can be summarized as follows: whenever
a change in the environment is detected, a series of representative solutions are first extracted from
some subproblems to the memory pool. Then, it retrieves memory information and reuses the best
solutions of previous environmental changes to respond to new changes. The memory pool has the
same size as the population. Each string saved in the memory pool is considered as an organic whole,
and the memory pool is made up of a series queue (string as the basic element of the queue). In keep
with the three questions discussed in subsection, SBM includes three processes: extraction (sample),
deposit, and retrieve. Figure 2 illustrates the working principle of SBM in detail.

Figure 2. The working principle of the subproblem-based bunchy memory (SBM) method.

For question (1), the corresponding extraction process: SBM first selects Bsize even representative
subproblems {i1, ..., iBsize} from the N subproblems, and then selects the optimal solutions of the
corresponding individuals to be a string of individuals to be extracted.

For question (2), the corresponding deposit process: Insert the string of extracted individuals into
the queue of the memory pool first. If the queue is full, it will be replaced according to the “first in,
first out” strategy. Then, the memory pool is re-evaluated and updated in the new environment



Appl. Sci. 2018, 8, 1673 8 of 22

(i.e., calculating the values of the object functions and the constraint functions). Finally, update the
best individual array of Bsize, bs[j](j = 1, ..., Bsize) is preserved as the best scalar objective function in
the direction of λij (i rows and j columns of weight vector distribution) weight vector.

For question (3), the retrieval process: First, evaluate the individuals of pτ in the new environment.
Then, let p′τ = pτ . Finally, the optimal array bs competes with pτ , which means for any subproblem
ij of the Bsize subproblem {i1, ..., iBsize}. If the scalar objective function of the individual bs[j] is less
than the scalar objective function value of the individual pτ [ij], set p′τ [ij] = bs[j], then the population
is updated and the memory population p′τ is obtained.

A detailed description can be seen in Algorithm 1.

Algorithm 1: SBM method

1 Input
2 population Pτ ; memory pool M;
3 Output
4 population P′τ ;

5 Step 1 Extraction process:
6 (1) A uniform selection of Bsize representative sub-problems {i1, ..., iBsize};
7 (2) The current optimal solutions of these subproblems are saved as a bunch array.
8 Step 2 Deposit process:
9 (1) Save the bunch to the end of the M queue; if the M is full, then the first string of the M

queue is deleted;
10 (2) Reevaluate the individual in M;
11 (3) Initialize the optimal individual array bs: set bs as the first string of M, i.e., bs = M(1);
12 (4) Update bs: for bunch = M(2) to the last string of M
13 for j = 1, ..., Bsize
14 if bunch[j].so f < bs[j].so f do
15 bs[j] = bunch[j];
16 endif
17 end
18 end
19 Step 3 Retrieval process:
20 (1) Reevaluate the individual of Pτ ;
21 (2) P′τ = Pτ ;
22 (3) bs competes with Pτ : for j = 1, ..., Bsize
23 if bs[j].so f < Pτ [ij].so f do
24 endif
25 end
26 Pτ [ij] = bs[j];
27 Step 4 Output P′τ

The sample process of SBM is easy to extract a series of more evenly distributed individuals
and maintain a better diversity in the objective space. For example, when N = 100 and Bsize = 5,
the sample process first selects 5 from 100 subproblems {i |i = 1, 25, 50, 75, 100} . Then, five solutions
of {x1, x25, ..., x100} are extracted from population Pτ . These five solutions in the objective space
are {F(x1, t), F(x25, t), ..., F(x100, t)}. Because of the uniform distribution of the Bsize representative
problems, these five mapping points in the objective space are also evenly distributed.



Appl. Sci. 2018, 8, 1673 9 of 22

3.4. Detailed Description of dMOEA/D-Lp and Its Time Complexity Analysis

Based on what we have discussed above, a detailed description of dMOEA/D-Lp can be
concluded in Algorithm 2.

Algorithm 2: The overall framework of dMOEA/D-Lp

1 Input:
2 DMOP; Stop criterion;
3 N: The number of uniformly distributed weight vectors;
4 T: The number of neighbors;
5 τT : Frequency of environmental change;
6 nT : Severity of environmental change.
7 Output:
8 Population Pτ ;

9 Step 1 Initialization:
10 (1) population: iterative counter τ=0, Pτ = {x1, ..., xn};
11 (2) reference point: z(t) = (z1(t), ..., zm(t));
12 for each j = 1 to m, do
13 zj(t) = min1≤i≤N f j(xi, t);
14 end
15 (3) memory pool: M = φ;
16 Step 2 Decomposition process:
17 (1) According to Equation (6), the DMOP is decomposed into N dynamic scalar

optimization subproblems;
18 (2) Calculate Euclidean distance between any two weight vectors:
19 for each i = 1 to N, do
20 B(i) = {i1, ..., iT}, /*(λi1 , ..., λiT ) are the T nearest weight vectors to the weight

vector λi */;
21 end
22 Step 3 Detect and respond to environmental changes:
23 Detect the environmental changes as Equation (7):
24 if δ(t) > δ̃ then
25 Preserve and output the population Pτ before environmental change;
26 Apply Algorithm 1 to acquire new population Pτ

′, and set Pτ = Pτ
′

27 endif
28 Step 4 Update of subproblems:
29 For each i = 1 to N do
30 ȳ← xi + F(xk, xl) /* k and l are randomly selected from B(i) */

31 yj ←
{

ȳj i f (rand(j) ≤ CR)
xj otherwise

j = 1, 2, ..., n;

32 if y = (y1, y2, ..., yn) does not satisfy the constraints, then y← repair(y);
33 if F(y, t) < F(xi, t) then F(xi, t) = F(y, t);
34 For each j = 1 to m do
35 if zj(t) < f j(y, t) then zj(t) = f j(y, t);
36 end
37 For each j ∈ B(i) do
38 if gLp(y, t|λj, z(t)) < gLp(xj, t|λj, z(t)) then
39 xj = y;
40 FV j(t) = F(y, t);
41 endif
42 end
43 end
44 Step 5 Stopping criterion:
45 if τ ≥ G then stop and output Pτ ,
46 otherwise τ = τ + 1 go to Step3.



Appl. Sci. 2018, 8, 1673 10 of 22

The time cost of dMOEA/D-Lp is mainly focused on two steps: first detect and respond to
environmental change, then optimize the sub-problems.

(1) Detection and response steps: the time complexity of the detection operation is O(K), K is the
number of individuals used in Formula (7), and the time complexity of responding environment
change (i.e., calling SBM) is O(N). Because K < N, the time complexity of this step is O(N).

(2) The evolutionary optimization step of subproblems: because N subproblems are involved, and the
neighborhood size of each subproblem is T, the time complexity of this step is O(mNT), where m
is the number of objectives.

Comprehensively analyzing the above two steps, the time complexity of dMOEA/D-Lp is
O(mNT), which is the same as of MOEA/D [23].

4. Experiments

In order to solve dynamic multi-objective optimization problems well, we propose dMOEA/D-Lp

in this paper. For ease of expressions and comparisons, we call the version of dMOEA/D with
the Tchebycheff decomposition approach as dMOEA/D-TCH, the version of dMOEA/D with
the weighted sum decomposition approach as dMOEA/D-WS, the version of dMOEA/D with
the PBI decomposition approach as dMOEA/D-PBI, and the version of dMOEA/D that uses Lp

decomposition approach as dMOEA/D-Lp. There are two main sets of experimental studies in this
section: (1) We compare dMOEA/D-Lp with dMOEA/D-TCH, dMOEA/D-WS, and dMOEA/D-PBI
to test the effectiveness of the Lp decomposition method for dynamic multi-objective optimization;
(2) We compare dMOEA/D-Lp with two other state-of-the-art algorithms (DNSGA-II [23], QICCA [7])
to test the overall performance of the algorithm.

4.1. Test Problems

We used FDA benchmark test instances [3,16] and their improved versions [30,32] as our test
problems. Detailed definitions of these test problems are shown in Table 1. When the intensity of
environmental change (nT) is relatively small, the environmental change is less intense, and the number
of POF(t) is less in each cycle. When the nT value is large, the environmental change is more intense,
and there will be many different POF(t) in each cycle.

Table 1. Test problems used in our experiments.

Problems Objective Functions Variable Bounds n

FDA1


f1(x1) = x1, f2(x) = g · h
g(xI I) = 1 + ∑

xi∈xI I

(xi − G(t))2, h( f1, g) = 1−
√

f1
/
g

G(t) = sin(0.5πt), t = bτ/τTc /nT

xI = (x1) ∈ [0, 1]
xI I = (x2, ..., xn) ∈ [−1, 1] 20

FDA2


f1(x1) = x1, f2(x) = g · h

g(xI I) = 1 + ∑
xi∈xI I

x2
i , h(xI I I f1, g) = 1− ( f1

/
g)

2

(
H(t)+ ∑

xi∈xI I I
(xi−H(t)/4)2

)

H(t) = 2 sin(0.5πt− 1), t = bτ/τTc /nT

xI = (x1) ∈ [0, 1]
xI I = (x2, ..., x6) ∈ [−1, 1]
xI I I = (x7, ..., xn) ∈ [−1, 1]

20

FDA3


f1(x1) = x1

F(t), f2(x) = g · h
g(xI I) = 1 + G(t) + ∑

xi∈xI I

(xi − G(t))2, h( f1, g) = 1−
√

f1
/
g

G(t) = |sin(0.5πt)| , F(t) = 102 sin(0.5πt), t = bτ/τTc /nT

xI = (x1) ∈ [0, 1]
xI I = (x2, ..., xn) ∈ [−1, 1] 30

FDA4



f1(x) = (1 + g(xI I))
m−1
Π

i=1
cos(0.5πtxi)

fk(x) = (1 + g(xI I))

(
m−k
Π

i=1
cos(0.5πtxi)

)
sin(0.5πtxm−k+1), k = 2 : m− 1

fm(x) = (1 + g(xI I)) sin(0.5πx1)

g(xI I) = ∑
xi∈xI I

(xi − G(t))2, G(t) = |sin(0.5πt)|, t = bτ/τTc /nT

xI I = (xm, ..., xn)
xi ∈ [0, 1], i = 1 : n 12



Appl. Sci. 2018, 8, 1673 11 of 22

Table 1. Cont.

Problems Objective Functions Variable Bounds n

FDA5



f1(x) = (1 + g(xI I))
m−1
Π

i=1
cos(0.5πtyi)

fk(x) = (1 + g(xI I))

(
m−k
Π

i=1
cos(0.5πtyi)

)
sin(0.5πtym−k+1), k = 2 : m− 1

fm(x) = (1 + g(xI I)) sin(0.5πy1)

g(xI I) = G(t) + ∑
xi∈xI I

(xi − G(t))2, G(t) = |sin(0.5πt)|

yi = xi
F(t), i = 1, .., (m− 1), F(t) = 1 + 100sin4(0.5πt)

t = bτ/τTc /nT

xI I = (xm, ..., xn)
xi ∈ [0, 1], i = 1 : n 12

4.2. Performance Metric

The dynamic inverse generation distance rGD(t) [33] and dynamic generation distance GD(t) [34,35]
are used as the performance evaluation metrics of the DEMOAs, and are defined as follows, respectively:

rGD(t) =
∑
|POF∗(t)|
i=1 di

|POF∗(t)| , di =
|Q(t)|
min
k=1

√
∑m

j=1 ( f ∗(i)j − f (k)j )
2
, (8)

GD(t) =

√
∑
|Q(t)|
i=1 (d′i)

2

|Q(t)| , d′i =
|POF∗(t)|

min
k=1

√
∑m

j=1 ( f (i)j − f ∗(k)j )
2
, (9)

where POF∗(t) is a set of uniformly distributed points in the objective space along the POF at time t,
Q(t) is an approximation set to the POF obtained by the algorithm at the same time t, f ∗(i)j is the j-th

objective function value of the i-th sampling point in POF∗(t), and f (i)j is the j-th objective function
value of the i-th point in Q(t).

Moreover, di is the minimum Euclidean distance between point i of POF∗(t) and the points in
Q(t). In a sense, if the |POF∗(t)| is sufficiently large to represent the POF∗(t) very well, rGD(t) can
measure both the diversity and convergence of Q(t). To have a low value of rGD(t), Q(t) must be
very close to the POF∗(t), and cannot miss any part of the POF∗(t). Therefore, the value of rGD(t) is
smaller, which means that the convergence and diversity of the obtained Pareto front is better.

d′i is the minimum Euclidean distance between point i of Q(t) and the points in |POF∗(t)|.
GD(t) measures the distance of Q(t) to POF∗(t). The value of GD(t) is smaller, which means that the
convergence and diversity of the obtained Pareto front is better. The perfect situation is that GD(t) = 0,
which means that all solutions in Q(t) are Pareto optimal solutions.

4.3. Setting of Experimental Parameters

Individuals used real vector encoding in all test problems. Differential evolution (DE) crossover
and polynomial mutation operators [30] are adopted in the five compared algorithms (i.e., dMOEAD-Lp,
dMOEA/D-TCH, dMOEA/D-WS, dMOEA/D-PBI and DNSGA-II) [16], where crossover rate
CR = 0.9, scaling factor F = 0.5. The whole clone (clone ratio of 5) and non-uniform mutation
is adopted in QICCA [7]; diversified introduction ratio (ζ) was set to 0.2 in DNSGA-II [7]; memory
pool size was set to 100. All of number of neighbors in four compared algorithms (dMOEAD-Lp,
dMOEA/D-TCH, dMOEA/D-WS, and dMOEA/D-PBI) was set to 20; Bsize was set to 5 for 2-objective
problems, and to 15 for 3-objective problems; the penalty parameter (θ) was set to 5 in dMOEA/D-PBI.
For parameters used in the environmental monitoring operator, we took k = 2, δ̃ = 0.002 for
problems with two objectives, and k = 3, δ̃ = 0.006 for 3-objective problems. Table 2 displays
the common parameter settings for the compared algorithms, where n is the dimension of the decision
variable. To study the effects of various dynamic changes in uncertain environments, different
combinations of (τT , nT) were set according to different DMOPs. Thirty independent runs were done
for each combination of the various problems. In each experiment, various algorithms uniformly



Appl. Sci. 2018, 8, 1673 12 of 22

tracked 100 times of environmental change. The number of generations was the combination of the
environmental change time of each algorithm and the frequency of environmental change.

Table 2. Public parameter settings in the experiments.

Parameter Value

Population size (N) Two objectives: N = 100; Three objectives: N = 300
Crossover probability 0.9
Mutation probability 1/N

Frequency of change (τT) 5, 10, 15, 20, 25, 35
Severity of change (nT) 5, 10

To choose a proper p for each test instance, we executed dMOEA/D-Lp on FDA1–FDA5 with
different p values: p = 0, p = 1/3, p = 1/2, p = 1, p = 2. Experimental results are shown in Table 3.
The best performance is highlighted with bold font. It can be seen from the table that p = 2 generally
performEd the best for dMOEA/D-Lp in dealing with the FDA series problems. This may be because
the POFs curvature of FDA1–FDA5 are quadratic, and p = 2 in the Lp function was the most suitable
according to the geometric shape of the Lp function in Figure 1.

Table 3. Verification of p value in the Lp decomposition method for the FDA series problem. The best
performance is highlighted with bold font. rGD(t): dynamic inverse generation distance.

Problem (τT ,nT ) Statistic
rGD(t)

p = ∞ p = 1/2 p = 1/3 p = 1 p = 2

FDA1(2) (25,5)
Min

Mean
Std

(6.03 × 10−1)
(9.81 × 10−1)
(2.55 × 10−1)

(8.30 × 10−1)
(1.07 × 100)

(8.98 × 10−2)

(8.30 × 10−1)
(1.07 × 100)
(8.98 × 10−2)

(1.98 × 100)
(2.02 × 100)

(8.11 × 10−2)

(6.75 × 10−1)
(1.06 × 10−1)
(2.41 × 10−2)

FDA2(2) (15,5)
Min

Mean
Std

(1.11 × 10−1)
(1.83 × 10−1)
(7.47 × 10−2)

(9.33 × 10−1)
(1.56 × 100)

(5.30 × 10−1)

(9.33 × 10−1)
(1.56 × 100)
(5.30 × 10−1)

(2.10 × 100)
(2.91 × 100)

(4.20 × 10−1)

(6.33 × 10−2)
(7.34 × 10−2)
(5.04 × 10−3)

FDA3(2) (35,5)
Min

Mean
Std

(4.13 × 10−1)
(4.60 × 10−1)
(1.84 × 10−1)

(6.94 × 10−1)
(3.33 × 100)
(1.34 × 100)

(6.94 × 10−1)
(3.33 × 100)
(1.34 × 100)

(5.01 × 10−1)
(6.23 × 10−1)
(8.71 × 10−2)

(4.79 × 10−1)
(5.16 × 10−1)
(2.73 × 10−2)

FDA4(3) (25,5)
Min

Mean
Std

(2.02 × 10−1)
(4.64 × 10−1)
(2.64 × 10−2)

(8.31 × 100)
(8.36 × 100)

(2.71 × 10−2)

(8.31 × 100)
(8.36 × 100)
(2.71 × 10−2)

(8.91 × 10−1)
(1.03 × 100)

(6.38 × 10−2)

(1.30 × 10−1)
(1.35 × 10−1)
(2.51 × 10−2)

FDA5(3) (25,5)
Min

Mean
Std

(8.43 × 10−2)
(1.02 × 10−1)
(8.43 × 10−4)

(8.32 × 100)
(1.26 × 10+1)
(2.37 × 100)

(8.32 × 100)
(1.26 × 10+1)
(2.37 × 100)

(1.01 × 10−1)
(1.69 × 10−1)
(1.86 × 10−2)

(5.01 × 10−2)
(5.69 × 10−2)
(3.05 × 10−4)

4.4. Experimental Results and Analysis

In this subsection, we carry out the two parts of the experimental results and analyses. In the
experiments, the statistics of the performance metrics were based on 30 independent runs.

(1) Compare dMOEA/D-Lp with dMOEA/D-WS, dMOEA/D-TCH, and dMOEA/D-PBI

To test the effectiveness of the Lp decomposition method, dMOEA/D-Lp was compared with
dMOEA/D-WS, dMOEA/D-TCH, and dMOEA/D-PBI on the FDA series problems. Except for
the decomposition method, all the other operators were the same for all four compared algorithms.
The final rGD(t)-metric statistical results are shown in Table 4, and the final GD(t)-metric statistical
results are shown in Table 5. Each table includes the best, mean, and standard deviation (std) of
the performance metric values, and the best performance of the metric value is highlighted in bold.
As shown in Table 4, in terms of the rGD(t)-metric, we can see that dMOEA/D-Lp achieved the best



Appl. Sci. 2018, 8, 1673 13 of 22

performance out of these four algorithms. In terms of the GD(t)-metric, the same situations occur in
Table 5. The best and the mean metric values in Tables 4 and 5 are mainly focused on dMOEA/D-Lp,
indicating that dMOEA/D-Lp behaved the best in almost all the test instances. The minimal std values
obtained by dMOEA/D-Lp presented the best stability of the algorithm. We can conclude that the Lp

decomposition method is effective and has some advantages over TCH, WS, and PBI decomposition
approaches for decomposition-based dynamic multi-objective optimization.

In the Lp decomposition method, p ∈ (0, ∞], when p = 1, gLp becomes the weighted sum method,
and when p = ∞, gLp becomes the standard Tchebycheff function. Figure 1 draws the contour lines of
the Lp function with different p values showing that the search ability of Lp function decreased with
the increase of p. All the gLp functions suffered from the geometry issue except for the Tchebycheff
function. Especially, a gLp function cannot identify the whole Pareto optimal front of an MOP when
the curvature of the Pareto optimal front is larger than the curvature of the contour line of the chosen
gLp function. Since the curvature of the Tchebycheff function is ∞, it is able to identify Pareto optimal
solutions for any type of geometry. Overall, for a gLp scalar function, its search ability and its robustness
on problem geometries is a trade-off. The higher the search ability, the lower the robustness. If we can
estimate the curvature of the Pareto optimal front in advance, then we can easily select a suitable gLp

function based on its search ability. Based on our trial experiments on p for the FDA series problem in
Section 4.3, p was set to 2 in advance for dMOEA/D-Lp in all experiments, which is consistent with the
observation that if the curvature of the Pareto optimal front is quadratic, the most suitable gLp function
should be the one using p = 2 [36]. Alternatively, for a new problem or a problem having a complex
geometry, the use of the Tchebycheff function is a good choice.

(2) Compare dMOEA/D-Lp with DNSGA-II [16] and QICCA [7]

In order to test the performance of the proposed dMOEA/D-Lp, we tested dMOEA/D-Lp on each
test instance, and compared the results obtained by dMOEA/D-Lp with those obtained by the other
two state-of-the-art algorithms: DNSGA-II [16] and QICCA [7]. Referring to the literature with open
source codes of NSGA-II [21] and MOEA/D [23], we realized the DNSGA-II, QICCA, and dMOEAD-Lp

with C++ language programming. The final rGD(t)-metric statistical results are shown in Table 6,
and the final GD(t)-metric statistical results are shown in Table 7. Each table includes the best, mean,
and standard deviation (std) of the performance metric values, and the best performance of each metric
value is marked in bold. For intuitive analysis of the performance of three algorithms, Figures 3–7
describe the approximation set to the Pareto front in different times. As shown in Tables 6 and 7,
in terms of the rGD and GD-metric, dMOEA/D-Lp achieved the best performance in almost all of the
test instances. Compared with DNSGA-II and QICCA, dMOEA/D-Lp was competitive in solving this
kind of dynamic multi-objective optimization problem.

0 0.2 0.4 0.6 0.8 1

F1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

F
2

t=4.6

POF(t)

dMOEA/D-Lp

DNSGA-II

QICCA

0 0.2 0.4 0.6 0.8 1

F1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

F
2

FDA1

t=6.0

POF(t)

dMOEA/D-Lp

DNSGA-II

QICCA

0 0.2 0.4 0.6 0.8 1

F1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

F
2

t=10.0

POF(t)

dMOEA/D-Lp

DNSGA-II

QICCA

Figure 3. Solution sets obtained by three algorithms at different times on FDA1 in case
of τT = 10, nT = 10. dMOEA/D-Lp: memory-enhanced dynamic multi-objective evolutionary
algorithm based on Lp decomposition; DNSGA-II: dynamic non-dominated sorting genetic algorithm
II; POF: Pareto optimal front; QICCA: immune clonal coevolutionary algorithm for dynamic
multi-objective optimization.



Appl. Sci. 2018, 8, 1673 14 of 22

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F1

0

0.2

0.4

0.6

0.8

1

1.2

F
2

t=14.4

POF(t)

dMOEA/D-Lp

DNSGA-II

QICCA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F1

0

0.2

0.4

0.6

0.8

1

1.2

F
2

FDA1

t=15.8

POF(t)

dMOEA/D-Lp

DNSGA-II

QICCA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F1

0

0.2

0.4

0.6

0.8

1

1.2

F
2

t=16.6

POF(t)

dMOEA/D-Lp

DNSGA-II

QICCA

Figure 4. Solution sets obtained by three algorithms at different times on FDA1 in case of τT = 25,
nT = 5.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F1

0

0.2

0.4

0.6

0.8

1

1.2

F
2

t=12.4

POF(t)

dMOEA/D-Lp

DNSGA-II

QICCA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F1

0

0.2

0.4

0.6

0.8

1

1.2

F
2

FDA2

t=13.2

POF(t)

dMOEA/D-Lp

DNSGA-II

QICCA

0 0.2 0.4 0.6 0.8 1

F1

0

0.2

0.4

0.6

0.8

1

1.2

F
2

t=13.8

POF(t)

dMOEA/D-Lp

DNSGA-II

QICCA

Figure 5. Solution sets obtained by three algorithms at different times on FDA2 in case of τT = 15,
nT = 5.

0 0.2 0.4 0.6 0.8 1

F1

0

0.5

1

1.5

2

2.5

F
2

t=9.0

POF(t)

dMOEA/D-Lp

DNSGA-II

QICCA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F1

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

F
2

FDA3

t=9.6

POF(t)

dMOEA/D-Lp

DNSGA-II

QICCA

0 0.2 0.4 0.6 0.8 1

F1

0

0.5

1

1.5

F
2

t=10.4

POF(t)

dMOEA/D-Lp

DNSGA-II

QICCA

Figure 6. Solution sets obtained by three algorithms at different times on FDA3 in case of τT = 35,
nT = 5.

0
00

0.5

F
3

1

0.50.5

F1F2

1.5

11

1.51.5

POF(t)

dMOEA/D-Lp

FDA4

0
00

0.5

F
3

1

0.50.5

1.5

F1F2

11
1.51.5

POF(t)

DNSGA-II

0
00

0.5

F
3

1

0.5

1.5

0.5

F1F2

11
1.51.5

POF(t)

QICCA

Figure 7. Solution sets obtained by three algorithms at t = 13.2 on FDA4 in case of τT = 25, nT = 5.



Appl. Sci. 2018, 8, 1673 15 of 22

Table 4. The best, mean, and standard deviation of rGD(t) metric values obtained by dMOEA/D-Lp

and the other versions of dMOEA/D on test problems based on 30 independent runs. The best
performance of each metric value is marked in bold. dMOEA/D-PBI: dMOEA/D with the PBI
decomposition approach; dMOEA/D-TCH: dMOEA/D with the Tchebycheff decomposition approach;
dMOEA/D-WS: dMOEA/D with the weighted sum decomposition approach.

Problem (τT ,nT ) Statistic
rGD(t) Metrics

dMOEA/D-Lp dMOEA/D-TCH dMOEA/D-WS dMOEA/D-PBI

FDA1(2)

(10, 10)
Min

Mean
Std

(6.69 × 10−1)
(1.05 × 100)

(2.39 × 10−2)

(5.76 × 10−1)
(1.12 × 100)

(3.20 × 10−1)

(1.94 × 100)
(2.05 × 100)

(1.27 × 10−1)

(8.01 × 10−1)
(1.16 × 100)

(5.13 × 10−1)

(25,10)
Min

Mean
Std

(6.75 × 10−1)
(7.27 × 10−1)
(2.03 × 10−2)

(7.33 × 10−1)
(1.96 × 100)

(2.32 × 10−1)

(1.99 × 100)
(2.01 × 100)

(3.49 × 10−2)

(8.01 × 10−1)
(8.74 × 10−1)
(2.11 × 10−1)

(25,5)
Min

Mean
Std

(6.75 × 10−1)
(1.06 × 10−1)
(2.41 × 10−2)

(6.03 × 10−1)
(9.81 × 10−1)
(2.55 × 10−1)

(1.98 × 100)
(2.02 × 100)

(8.11 × 10−2)

(8.85 × 10−1)
(9.13 × 10−1)
(2.32 × 10−1)

FDA2(2)

(5,10)
Min

Mean
Std

(2.25 × 10−1)
(3.32 × 10−1)
(5.78 × 10−2)

(1.79 × 100)
(2.75 × 100)
(6.91 × 100)

(1.05 × 100)
(2.44 × 100)

(6.01 × 10−1)

(2.33 × 10−1)
(1.13 × 100)

(5.25 × 10−1)

(15,10)
Min

Mean
Std

(1.21 × 10−1)
(1.30 × 10−1)
(5.71 × 10−2)

(3.49 × 10−1)
(7.33 × 10−1)
(5.69 × 10−1)

(1.77 × 100)
(2.74 × 100)

(6.92 × 10−1)

(2.33 × 10−1)
(1.13 × 100)

(5.25 × 10−1)

(15,5)
Min

Mean
Std

(6.33 × 10−2)
(7.34 × 10−2)
(5.04 × 10−3)

(1.11 × 10−1)
(1.83 × 10−1)
(7.47 × 10−2)

(2.10 × 100)
(2.91 × 100)

(4.20 × 10−1)

(1.00 × 100)
(1.77 × 100)

(7.14 × 10−1)

FDA3(2)

(25,10)
Min

Mean
Std

(1.00 × 10−1)
(1.03 × 10−1)
(2.05 × 10−3)

(2.64 × 10−1)
(4.03 × 10−1)
(2.38 × 10−3)

(5.74 × 10−1)
(6.56 × 10−1)
(2.10 × 10−2)

(1.51 × 10−1)
(5.15 × 10−1)
(2.54 × 10−1)

(35,10)
Min

Mean
Std

(4.04 × 10−1)
(6.05 × 10−1)
(2.73 × 10−2)

(6.06 × 10−1)
(7.56 × 10−1)
(2.05 × 10−2)

(6.13 × 10−2)
(7.23 × 10−2)
(1.34 × 10−1)

(2.17 × 10−1)
(6.06 × 10−1)
(2.31 × 10−1)

(35,5)
Min

Mean
Std

(4.79 × 10−1)
(5.16 × 10−1)
(2.73 × 10−2)

(4.13 × 10−1)
(4.60 × 10−1)
(1.84 × 10−1)

(5.01 × 10−1)
(6.23 × 10−1)
(8.71 × 10−2)

(1.35 × 10−1)
(5.33 × 10−1)
(2.08 × 10−1)

FDA4(3)

(20,10)
Min

Mean
Std

(1.29 × 10−2)
(2.43 × 10−2)
(5.67 × 10−3)

(7.01 × 10−1)
(8.00 × 10−1)
(2.34 × 10−1)

(1.96 × 100)
(2.74 × 100)

(6.97 × 10−1)

(4.05 × 10−1)
(4.14 × 10−1)
(1.13 × 10−1)

(25,10)
Min

Mean
Std

(1.26 × 10−1)
(1.40 × 10−1)
(3.36 × 10−2)

(7.01 × 10−1)
(8.00 × 10−1)
(2.34 × 10−1)

(1.00 × 10−1)
(2.98 × 10−1)
(6.30 × 10−1)

(1.01 × 10−1)
(3.87 × 10−1)
(3.20 × 10−1)

(25,5)
Min

Mean
Std

(1.30 × 10−1)
(1.35 × 10−1)
(2.51 × 10−2)

(2.02 × 10−1)
(4.64 × 10−1)
(2.64 × 10−2)

(8.91 × 10−1)
(1.03 × 100)

(6.38 × 10−2)

(1.14 × 10−1)
(2.32 × 10−1)
(1.03 × 10−1)

FDA5(3)

(20,10)
Min

Mean
Std

(8.22 × 10−2)
(9.05 × 10−2)
(8.43 × 10−4)

(7.37 × 10−1)
(9.06 × 10−1)
(2.76 × 10−3)

(6.03 × 10−1)
(8.96 × 10−1)
(1.09 × 10−3)

(7.79 × 10−1)
(9.16 × 10−1)
(1.75 × 10−3)

(25,10)
Min

Mean
Std

(7.83 × 10−2)
(8.86 × 10−2)
(9.75 × 10−5)

(8.21 × 10−2)
(8.35 × 10−2)
(1.07 × 10−4)

(8.43 × 10−2)
(8.65 × 10−2)
(1.09 × 10−3)

(8.03 × 10−2)
(8.43 × 10−2)
(1.10 × 10−4)

(25,5)
Min

Mean
Std

(5.01 × 10−2)
(5.69 × 10−2)
(3.05 × 10−4)

(8.43 × 10−2)
(1.02 × 10−1)
(8.43 × 10−4)

(1.01 × 10−1)
(1.69 × 10−1)
(1.86 × 10−2)

(8.01 × 10−2)
(1.05 × 10−1)
(6.09 × 10−2)



Appl. Sci. 2018, 8, 1673 16 of 22

Table 5. The best, mean, and standard deviation of GD(t) metric values obtained by dMOEA/D-Lp and
the other versions of dMOEA/D on test problems based on 30 independent runs. The best performance
of each metric value is marked in bold.

Problem (τT ,nT ) Statistic
GD(t) Metrics

dMOEA/D-Lp dMOEA/D-TCH dMOEA/D-WS dMOEA/D-PBI

FDA1(2)

(10,10)
Min

Mean
Std

(5.55 × 10−4)
(9.14 × 10−4)
(4.79 × 10−4)

(5.96 × 10−4)
(6.45 × 10−3)
(4.45 × 10−3)

(7.74 × 10−4)
(9.61 × 10−3)
(1.77 × 10−2)

(9.72 × 10−4)
(1.01 × 10−2)
(6.49 × 10−3)

(25,10)
Min

Mean
Std

(4.18 × 10−4)
(1.26 × 10−3)
(5.18 × 10−4)

(4.92 × 10−4)
(1.62 × 10−3)
(6.00 × 10−4)

(1.20 × 10−3)
(1.66 × 10−3)
(1.49 × 10−3)

(6.71 × 10−4)
(3.00 × 10−3)
(1.24 × 10−3)

(25,5)
Min

Mean
Std

(5.97 × 10−4)
(9.13 × 10−4)
(4.79 × 10−4)

(6.26 × 10−4)
(2.26 × 10−3)
(1.29 × 10−3)

(1.12 × 10−3)
(3.35 × 10−3)
(6.37 × 10−3)

(7.64 × 10−4)
(4.12 × 10−3)
(1.86 × 10−3)

FDA2(2)

(5,10)
Min

Mean
Std

(7.89 × 10−20)
(5.10 × 10−5)
(4.92 × 10−3)

(1.20 × 10−6)
(3.31 × 10−3)
(2.54 × 10−3)

(3.16 × 10−18)
(1.55 × 10−4)
(1.26 × 10−3)

(8.04 × 10−4)
(5.79 × 10−3)
(3.43 × 10−3)

(15,10)
Min

Mean
Std

(6.16 × 10−4)
(2.43 × 10−3)
(4.92 × 10−4)

(6.70 × 10−4)
(2.46 × 10−3)
(1.22 × 10−3)

(1.02 × 10−3)
(1.32 × 10−3)
(1.31 × 10−3)

(6.49 × 10−4)
(2.57 × 10−3)
(1.54 × 10−3)

(15,5)
Min

Mean
Std

(7.56 × 10−4)
(4.75 × 10−3)
(2.53 × 10−3)

(5.99 × 10−4)
(1.91 × 10−2)
(1.40 × 10−2)

(6.02 × 10−9)
(7.66 × 10−3)
(1.28 × 10−2)

(6.60 × 10−4)
(1.98 × 10−2)
(1.36 × 10−2)

FDA3(2)

(25,10)
Min

Mean
Std

(1.00 × 10−3)
(3.48 × 10−2)
(3.91 × 10−2)

(8.07 × 10−3)
(4.92 × 10−2)
(7.34 × 10−2)

(1.00 × 10−2)
(2.20 × 10−1)
(1.08 × 10−1)

(3.37 × 10−2)
(3.71 × 10−2)
(4.17 × 10−2)

(35,10)
Min

Mean
Std

(1.02 × 10−3)
(3.15 × 10−2)
(3.48 × 10−2)

(7.56 × 10−1)
(2.16 × 100)
(1.06 × 100)

(5.90 × 10−3)
(6.89 × 10−2)
(5.35 × 10−2)

(3.23 × 10−3)
(3.36 × 10−2)
(3.87 × 10−2)

(35,5)
Min

Mean
Std

(1.06 × 10−3)
(3.64 × 10−2)
(3.39 × 10−2)

(9.18 × 10−3)
(3.90 × 10−2)
(3.89 × 10−2)

(1.11 × 10−2)
(6.67 × 10−2)
(5.53 × 10−2)

(7.72 × 10−3)
(3.63 × 10−2)
(3.48 × 10−2)

FDA4(3)

(20,10)
Min

Mean
Std

(2.13 × 10−2)
(2.16 × 10−2)
(1.68 × 10−4)

(2.52 × 10−2)
(2.56 × 10−2)
(8.54 × 10−4)

(3.24 × 10−2)
(4.64 × 10−2)
(2.48 × 10−2)

(2.31 × 10−2)
(2.56 × 10−2)
(2.04 × 10−4)

(25,10)
Min

Mean
Std

(2.51 × 10−2)
(2.55 × 10−2)
(1.48 × 10−4)

(1.52 × 10−2)
(2.59 × 10−2)
(3.08 × 10−3)

(3.22 × 10−2)
(5.18 × 10−2)
(2.53 × 10−2)

(2.31 × 10−2)
(2.34 × 10−2)
(1.64 × 10−4)

(25,5)
Min

Mean
Std

(1.12 × 10−2)
(1.47 × 10−2)
(6.04 × 10−5)

(2.53 × 10−2)
(2.56 × 10−2)
(1.07 × 10−4)

(3.21 × 10−2)
(5.33 × 10−2)
(3.62 × 10−2)

(2.31 × 10−2)
(2.34 × 10−2)
(1.64 × 10−4)

FDA5(3)

(20,10)
Min

Mean
Std

(2.69 × 10−2)
(4.26 × 10−2)
(8.35 × 10−3)

(2.20 × 10−2)
(3.99 × 10−2)
(1.16 × 10−2)

(3.23 × 10−2)
(7.14 × 10−2)
(3.11 × 10−2)

(5.76 × 10−2)
(3.25 × 10−2)
(7.09 × 10−2)

(25,10)
Min

Mean
Std

(2.68 × 10−2)
(4.23 × 10−2)
(8.30 × 10−4)

(1.96 × 10−2)
(3.62 × 10−2)
(7.29 × 10−3)

(3.42 × 10−2)
(6.38 × 10−2)
(2.28 × 10−3)

(2.56 × 10−2)
(3.83 × 10−2)
(1.81 × 10−2)

(25,5)
Min

Mean
Std

(2.86 × 10−2)
(4.21 × 10−2)
(7.85 × 10−4)

(2.22 × 10−2)
(4.19 × 10−2)
(8.84 × 10−4)

(3.26 × 10−2)
(9.34 × 10−2)
(5.04 × 10−2)

(2.82 × 10−2)
(3.89 × 10−2)
(8.11 × 10−3)



Appl. Sci. 2018, 8, 1673 17 of 22

Table 6. The best, mean, and standard deviation of rGD(t) metric values obtained by dMOEA/D-Lp

and the other two compared algorithms on test problems based on 30 independent runs. The best
performance of each metric value is marked in bold.

Problem (τT ,nT ) Statistic
rGD(t) Metrics

dMOEA/D-Lp DNSGA-II QICCA

FDA1(2)

(10,10)
Min

Mean
Std

(6.69 × 10−1)
(1.05 × 100)

(2.39 × 10−2)

(1.115 × 100)
(1.21 × 100)

(3.11 × 10−1)

(1.05 × 100)
(1.08 × 100)

(2.45 × 10−1)

(25,10)
Min

Mean
Std

(6.75 × 10−1)
(7.27 × 10−1)
(2.03 × 10−2)

(1.07 × 100)
(1.08 × 100)

(5.48 × 10−2)

(1.05 × 100)
(1.06 × 100)

(4.43 × 10−2)

(25,5)
Min

Mean
Std

(6.75 × 10−1)
(1.06 × 100)

(2.41 × 10−2)

(1.06 × 100)
(1.09 × 100)

(1.36 × 10−1)

(1.06 × 100)
(1.07 × 100)

(7.44 × 10−2)

FDA2(2)

(5,10)
Min

Mean
Std

(2.25 × 10−1)
(3.32 × 10−1)
(5.78 × 10−2)

(1.50 × 100)
(3.65 × 100)

(7.53 × 10−1)

(1.07 × 100)
(3.32 × 100)

(7.11 × 10−1)

(15,10)
Min

Mean
Std

(1.21 × 10−1)
(1.30 × 10−1)
(5.71 × 10−2)

(1.34 × 100)
(4.30 × 100)

(5.95 × 10−1)

(1.47 × 100)
(3.95 × 100)

(6.36 × 10−1)

(15,5)
Min

Mean
Std

(6.33 × 10−2)
(7.34 × 10−2)
(5.04 × 10−3)

(1.88 × 100)
(3.75 × 100)

(6.33 × 10−1)

(1.40 × 100)
(3.63 × 100)

(6.95 × 10−1)

FDA3(2)

(25,10)
Min

Mean
Std

(1.00 × 10−1)
(1.03 × 10−1)
(2.05 × 10−3)

(1.17 × 10−1)
(6.36 × 10−1)
(2.61 × 10−2)

(1.40 × 10−1)
(6.40 × 10−1)
(2.63 × 10−2)

(35,10)
Min

Mean
Std

(4.04 × 10−1)
(6.05 × 10−1)
(2.73 × 10−2)

(6.30 × 10−1)
(6.35 × 10−1)
(2.67 × 10−2)

(6.35 × 10−1)
(6.38 × 10−1)
(2.68 × 10−2)

(35,5)
Min

Mean
Std

(4.79 × 10−1)
(5.16 × 10−1)
(2.73 × 10−2)

(6.06 × 10−1)
(6.10 × 10−1)
(2.70 × 10−2)

(6.09 × 10−1)
(6.11 × 10−1)
(2.52 × 10−2)

FDA4(3)

(20,10)
Min

Mean
Std

(2.43 × 10−2)
(1.29 × 10−2)
(5.67 × 10−3)

(1.39 × 10−1)
(1.40 × 10−1)
(5.19 × 10−1)

(1.41 × 100)
(1.77 × 100)

(3.13 × 10−1)

(25,10)
Min

Mean
Std

(1.26 × 10−1)
(1.40 × 10−1)
(3.36 × 10−2)

(1.27 × 10−1)
(1.42 × 10−1)
(4.38 × 10−1)

(1.38 × 10−1)
(1.45 × 10−1)
(3.83 × 10−2)

(25,5)
Min

Mean
Std

(1.30 × 10−1)
(1.35 × 10−1)
(2.51 × 10−2)

(1.32 × 10−1)
(1.38 × 10−1)
(3.08 × 10−2)

(2.02 × 10−1)
(2.29 × 100)

(5.98 × 10−2)

FDA5(3)

(20,10)
Min

Mean
Std

(8.22 × 10−2)
(9.05 × 10−2)
(8.43 × 10−4)

(7.31 × 10−1)
(9.73 × 10−1)
(3.16 × 10−3)

(8.03 × 10−2)
(9.13 × 10−2)
(4.86 × 10−3)

(25,10)
Min

Mean
Std

(8.43 × 10−2)
(9.16 × 10−2)
(1.07 × 10−4)

(6.36 × 10−2)
(8.65 × 10−2)
(1.55 × 10−4)

(7.91 × 10−2)
(8.43 × 10−2)
(1.10 × 10−4)

(25,5)
Min

Mean
Std

(5.01 × 10−2)
(5.69 × 10−2)
(3.05 × 10−4)

(8.00 × 10−2)
(1.06 × 10−1)
(5.43 × 10−4)

(9.38 × 10−2)
(1.05 × 10−1)
(6.09 × 10−4)



Appl. Sci. 2018, 8, 1673 18 of 22

Table 7. The best, mean, and standard deviation of GD(t) metric values obtained by dMOEA/D-Lp

and the other two compared algorithms on test problems based on 30 independent runs. The best
performance of each metric value is marked in bold.

Problem (τT ,nT ) Statistic
GD(t) Metrics

dMOEA/D-Lp DNSGA-II QICCA

FDA1(2)

(10,10)
Min

Mean
Std

(5.55 × 10−4)
(9.14 × 10−4)
(4.79 × 10−4)

(6.91 × 10−3)
(8.08 × 10−3)
(7.00 × 10−3)

(5.76 × 10−3)
(6.49 × 10−3)
(6.08 × 10−2)

(25,10)
Min

Mean
Std

(4.18 × 10−4)
(1.26 × 10−3)
(5.18 × 10−4)

(1.81 × 10−3)
(2.02 × 10−3)
(6.42 × 10−4)

(1.93 × 10−3)
(2.05 × 10−3)
(1.37 × 10−3)

(25,5)
Min

Mean
Std

(5.97 × 10−4)
(9.13 × 10−4)
(4.79 × 10−4)

(2.56 × 10−3)
(2.97 × 10−3)
(3.75 × 10−3)

(2.76 × 10−3)
(2.92 × 10−3)
(2.56 × 10−3)

FDA2(2)

(5,10)
Min

Mean
Std

(7.89 × 10−20)
(5.10 × 10−5)
(4.92 × 10−3)

(1.52 × 10−20)
(1.50 × 10−3)
(2.33 × 10−3)

(5.10 × 10−5)
(2.51 × 10−3)
(2.97 × 10−3)

(15,10)
Min

Mean
Std

(6.16 × 10−4)
(2.43 × 10−3)
(4.92 × 10−4)

(8.80 × 10−5)
(4.37 × 10−3)
(3.82 × 10−3)

(9.11 × 10−5)
(7.08 × 10−3)
(5.44 × 10−3)

(15,5)
Min

Mean
Std

(7.56 × 10−4)
(4.75 × 10−3)
(2.53 × 10−3)

(1.02 × 10−7)
(7.55 × 10−3)
(5.70 × 10−3)

(2.43 × 10−7)
(1.80 × 10−2)
(1.29 × 10−2)

FDA3(2)

(25,10)
Min

Mean
Std

(1.00 × 10−3)
(3.48 × 10−2)
(3.91 × 10−2)

(8.07 × 10−3)
(4.92 × 10−2)
(7.34 × 10−2)

(1.00 × 10−2)
(2.20 × 10−1)
(1.08 × 10−1)

(35,10)
Min

Mean
Std

(1.02 × 10−3)
(3.15 × 10−2)
(3.48 × 10−2)

(3.02 × 10−2)
(3.23 × 10−2)
(3.50 × 10−2)

(3.40 × 10−2)
(3.68 × 10−2)
(4.32 × 10−2)

(35,5)
Min

Mean
Std

(1.06 × 10−3)
(3.64 × 10−2)
(3.39 × 10−2)

(3.79 × 10−2)
(3.92 × 10−2)
(3.42 × 10−2)

(4.05 × 10−2)
(4.27 × 10−2)
(4.55 × 10−2)

FDA4(3)

(20,10)
Min

Mean
Std

(2.13 × 10−2)
(2.16 × 10−2)
(1.68 × 10−4)

(3.57 × 10−2)
(3.88 × 10−2)
(2.03 × 10−4)

(2.54 × 10−2)
(2.66 × 10−2)
(1.83 × 10−4)

(25,10)
Min

Mean
Std

(2.51 × 10−2)
(2.55 × 10−2)
(1.48 × 10−4)

(2.56 × 10−2)
(3.11 × 10−2)
(1.75 × 10−3)

(2.43 × 10−2)
(3.66 × 10−2)
(2.02 × 10−4)

(25,5)
Min

Mean
Std

(1.12 × 10−2)
(1.47 × 10−2)
(6.04 × 10−5)

(1.53 × 10−2)
(1.67 × 10−2)
(1.44 × 10−4)

(1.99 × 10−2)
(2.47 × 10−2)
(1.68 × 10−4)

FDA5(3)

(20,10)
Min

Mean
Std

(2.69 × 10−2)
(4.26 × 10−2)
(8.35 × 10−3)

(2.20 × 10−2)
(3.99 × 10−2)
(1.16 × 10−2)

(3.23 × 10−2)
(7.14 × 10−2)
(3.11 × 10−2)

(25,10)
Min

Mean
Std

(2.68 × 10−2)
(4.23 × 10−2)
(8.30 × 10−4)

(3.44 × 10−2)
(4.62 × 10−2)
(8.53 × 10−3)

(3.67 × 10−2)
(4.87 × 10−2)
(8.28 × 10−3)

(25,5)
Min

Mean
Std

(2.86 × 10−2)
(4.21 × 10−2)
(7.85 × 10−4)

(3.15 × 10−2)
(4.36 × 10−2)
(7.32 × 10−4)

(2.22 × 10−2)
(3.38 × 10−1)
(1.04 × 10−2)



Appl. Sci. 2018, 8, 1673 19 of 22

It can be seen from Table 1 that some components (xI I) of the Pareto optimal solutions in FDA1
varied sinusoidally with the function G(t), so the POS(t) of FDA1 changed with time. However, at any
time t, POF(t) is F2 = 1−

√
F1 and did not change with time. Figure 3 shows the solution sets obtained

by three algorithms for solving FDA1 at three different times in the tenth cycle. The corresponding
environmental change factors in these three moments were τT = 10, nT = 10. Figure 4 describes the
solution sets obtained by three algorithms, also for FDA1, under the parameters τT = 25 and nT = 10.
From the two figures, it can be seen clearly that the solution sets obtained by dMOEA/D-Lp were
the most uniformly convergent to POF(t) in different environments. The results of the other two
algorithms in mapping significantly deviated from POF(t) and the distributions were uneven.

Some components (xI I I) of the Pareto optimal solutions in FDA2 varied sinusoidally with the
function H(t)/4, so the POS(t) of the FDA2 changed with time. Furthermore, the POF(t) of FDA2 also
changed with time sinusoidally because f2 = 1− ( f1/g)2H(t)

. Figure 5 shows the solution sets obtained
by three algorithms for solving FDA2 at three different times in the tenth cycle. Environmental change
factors were set to τT = 15 and nT = 5. It can be seen from Figure 5 that the Pareto front shape of
the problem changed from convex to concave. The solutions sets obtained by dMOEA/D-Lp at three
different times were closest to POF(t), and the convergence distribution of dMOEA/D-Lp was better
than the other two algorithms.

The POS(t) of the FDA3 also changed with time. Its POF(t) was f2 = (1 + G(t)) × (1 −√
f1/(1 + G(t)))], and also changed with G(t). Moreover, the density of the POF(t) also varied

with time. Figure 6 shows the distributions of the solution sets obtained by three algorithms at
three different times. From left to right, the corresponding environmental change amplitude of the
problem in Figure 6 varied from small to large, and the distributions of POF(t) shifted from top to
bottom. All three plots of Figure 6 show that the distribution and convergence of dMOEA/D-Lp were
the best.

Some components of FDA5’s optimal variables (xI I) changed with G(t), so its POS(t) changed
with time. When the number of objectives m was 3, the POF(t) of FDA5 was 1/8 of a sphere at any
time, but the radius of the sphere varied between 1 and 2 with time t. Figures 8–10 plot the solution sets
obtained by three algorithms on FDA5 at three different times. The environmental change amplitude of
the problem varied from large to small in the three times, and the spherical radius of the POF(t) grew
from 1 to 2. Figures 8–10 show that dMOEA/D-Lp could best track the POF(t), and the convergence
and distribution of the solution sets obtained by dMOEA/D-Lp were obviously superior to those
obtained by the other two algorithms.

0
00

0.5

F
3

0.5

1

0.5

F1F2

1.5

11

1.51.5

POF(t)

dMOEA/D-Lp

FDA5

0
00

0.5

F
3

0.5

1

0.5

F1F2

1.5

11

1.51.5

POF(t)

DNSGA-II

0
00

0.5

F
3

0.50.5

1

F1F2

1.5

11

1.51.5

POF(t)

QICCA

Figure 8. Solution sets obtained by three algorithms at t = 10.2 on FDA5 in case of τT = 15, nT = 5.



Appl. Sci. 2018, 8, 1673 20 of 22

0
0 0

0.5

1

0.5 0.5

1.5

F2 F1

1 1

2

1.5 1.5
2 2

POF(t)

dMOEA/D-Lp

FDA5

0
00

0.5

1F
3

0.50.5

1.5

F1F2

2

11
1.51.5

22

POF(t)

DNSGA-II

0
0

0

0.5

0.50.5

1F
3

F1F2

11

1.5

1.5

2

1.5

22

POF(t)

QICCA

Figure 9. Solution sets obtained by three algorithms at t = 10.8 on FDA5 in case of τT = 15, nT = 5.

0
0 0

0.5

1

0.5 0.5

1.5

F2 F1

1 1

2

1.5 1.5
2 2

POF(t)

dMOEA/D-Lp

FDA5

0
00

0.5

1F
3

0.50.5

1.5

F1F2

2

11
1.51.5

22

POF(t)

DNSGA-II

0
0 0

0.5

1

0.5

F
3

0.5

1.5

F2 F1

1

2

1
1.5 1.5

2 2

POF(t)

QICCA

Figure 10. Solution sets obtained by three algorithms at t = 13.2 on FDA5 in case of τT = 15, nT = 5.

The POS(t) and POF(t) of FDA4 were similar to FDA5, except that the spherical radius of the
POF(t) remained the same value (one), not varying with time t. Similar comparing results happen
for FDA4, which can be seen in Figure 7. It indicates that dMOEA/D-Lp performed with obvious
superiority over the other two algorithms.

5. Conclusions

In order to handle dynamic multi-objective optimization problems well, a memory-enhanced
dynamic multi-objective evolutionary algorithm based on Lp decomposition (denoted by dMOEA/D-Lp)
is proposed in this paper. Specifically, dMOEA/D-Lp decomposes a dynamic multi-objective optimization
problem into a number of dynamic scalar optimization subproblems and optimizes them simultaneously.
The Lp decomposition method is referred and modified to use. To skillfully monitor environmental
change and quickly respond to the new environment, an improved environment detection operator is
presented and a subproblem-based memory scheme is adopted which allows the evolutionary algorithm
to store good solutions from old environments and reuse them as necessary.

We conducted two sets of experimental studies . In the first set of experiments, we compared
dMOEA/D-Lp against dMOEA/D-TCH, dMOEA/D-WS, and dMOEA/D-PBI to test the effectiveness
of the Lp decomposition method for dynamic multi-objective optimization. In the second set of
experiments, we compared dMOEA/D-Lp with two other popular algorithms (DNSGA-II and
QICCA) to test the overall performance of the algorithm. Simulation results demonstrated the
effectiveness of the Lp decomposition method for decomposition-based dynamic multi-objective
optimization. Comparison results also revealed that the proposed dMOEA/D-Lp had quick tracking
performance and better convergence, it was superior and preferable in solving dynamic multi-objective
optimization problems.

Author Contributions: Conceptualization, X.X. and Y.T.; Formal analysis, S.L.; Funding acquisition, Y.T.;
Investigation, X.X.; Methodology, X.X.; Project administration, W.Z.; Validation, Y.T. and W.Z.; Writing—original
draft, X.X.; Writing—review & editing, Y.T.



Appl. Sci. 2018, 8, 1673 21 of 22

Funding: This research was funded by the [National Natural Science Foundation of China] grant numbers
[61401260, 61572298, 61602283], and the [Natural Science Foundation of Shandong, China] grant numbers
[BS2014DX006, ZR2016FB10].

Acknowledgments: This research was funded by the National Natural Science Foundation of China
(grant numbers: 61401260, 61572298, 61602283), and the Natural Science Foundation of Shandong, China
(grant numbers: BS2014DX006, ZR2016FB10).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Qu, B. Evolutionary Algorithms for Solving Multi-Modal and Multi-Objective Optimization Problems. Ph.D.
Thesis, Nanyang Technological University, Singapore, 2011.

2. Sindhya, K.; Miettinen, K.; Deb, K. A Hybrid Framework for Evolutionary Multi-Objective Optimization.
IEEE Trans. Evolut. Comput. 2013, 17, 495–511. [CrossRef]

3. Farina, M.; Deb, K.; Amato, P. Dynamic multiobjective optimization problems: Test cases, approximations,
and applications. IEEE Trans. Evolut. Comput. 2004, 8, 425–442. [CrossRef]

4. Wu, Y.; Jin, Y.; Liu, X. A directed search strategy for evolutionary dynamic multiobjective optimization.
Soft Comput. 2015, 19, 3221–3235. [CrossRef]

5. Jin, Y.; Branke, J. Evolutionary optimization in uncertain environments-a survey. IEEE Trans. Evolut. Comput.
2005, 9, 303–317. [CrossRef]

6. Liu, C.; Wang, Y. Dynamic Multi-objective Optimization Evolutionary Algorithm. Nat. Sci. J. Hainan Univ.
2010, 4, 456–459.

7. Shang, R.; Jiao, L.; Ren, Y.; Li, L.; Wang, L. Quantum immune clonal coevolutionary algorithm for dynamic
multiobjective optimization. Nat. Comput. Int. J. 2014, 13, 421–445. [CrossRef]

8. Zhang, Z. Multiobjective Optimization Immune Algorithm In Dynamic Environments And Its Application
To Greenhouse Control. Appl. Soft Comput. 2008, 8, 959–971. [CrossRef]

9. Li, X.; Branke, J.; Kirley, M. On performance metrics and particle swarm methods for dynamic multiobjective
optimization problems. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2007),
Singapore, 25–28 September 2007; pp. 576–583.

10. Li, Y.; Zhan, Z.H.; Lin, S.; Zhang, J.; Luo, X. Competitive and cooperative particle swarm optimization with
information sharing mechanism for global optimization problems. Inf. Sci. 2015, 293, 370–382. [CrossRef]

11. Zheng, X.W.; Lu, D.J.; Wang, X.G.; Liu, H. A cooperative coevolutionary biogeography-based optimizer.
Appl. Intell. 2015, 43, 95–111. [CrossRef]

12. Goh, C.K.; Tan, K.C. A Competitive-Cooperative Coevolutionary Paradigm for Dynamic Multiobjective
Optimization. IEEE Trans. Evolut. Comput. 2009, 13, 103–127.

13. Jiang, S.; Yang, S. A Steady-state and Generational Evolutionary Algorithm for Dynamic Multiobjective
Optimization. IEEE Trans. Evolut. Comput. 2017, 21, 65–82. [CrossRef]

14. Wang, Y.; Li, B. Multi-strategy ensemble evolutionary algorithm for dynamic multi-objective optimization.
Memet. Comput. 2010, 2, 3–24. [CrossRef]

15. Chen, J.H.; Cheng, C.W. Multi-objective evolutionary optimization of dynamic service facility location
problems. In Proceedings of the 2011 IEEE Southeastcon, Nashville, TN, USA, 17–20 March 2011; pp. 333–338.

16. Deb, K.; Udaya, B.R.N.; Karthik, S. Dynamic Multi-objective Optimization and Decision-Making Using
Modified NSGA-II: A Case Study on Hydro-thermal Power Scheduling. In Proceedings of the International
Conference on Evolutionary Multi-Criterion Optimization, Matsushima, Japan, 5–8 March 2007; Springer:
Berlin/Heidelberg, Germany, 2007; pp. 803–817.

17. Hutzschenreuter, A.K.; Bosman, P.A.N.; Han, L.P. Evolutionary Multiobjective Optimization for Dynamic
Hospital Resource Management. In Proceedings of the International Conference on Evolutionary
Multi-Criterion Optimization, Nantes, France, 7–10 April 2009; Springer: Berlin/Heidelberg, Germany,
2009; pp. 320–334.

18. Li, J.Q.; Sang, H.Y.; Han, Y.Y.; Wang, C.G.; Gao, K.Z. Efficient multi-objective optimization algorithm for
hybrid flow shop scheduling problems with setup energy consumptions. J. Clean. Prod. 2018, 181, 584–598.
[CrossRef]

http://dx.doi.org/10.1109/TEVC.2012.2204403
http://dx.doi.org/10.1109/TEVC.2004.831456
http://dx.doi.org/10.1007/s00500-014-1477-4
http://dx.doi.org/10.1109/TEVC.2005.846356
http://dx.doi.org/10.1007/s11047-014-9415-z
http://dx.doi.org/10.1016/j.asoc.2007.07.005
http://dx.doi.org/10.1016/j.ins.2014.09.030
http://dx.doi.org/10.1007/s10489-014-0627-9
http://dx.doi.org/10.1109/TEVC.2016.2574621
http://dx.doi.org/10.1007/s12293-009-0012-0
http://dx.doi.org/10.1016/j.jclepro.2018.02.004


Appl. Sci. 2018, 8, 1673 22 of 22

19. Barlow, G.J.; Smith, S.F. A Memory Enhanced Evolutionary Algorithm for Dynamic Scheduling Problems.
In Workshops on Applications of Evolutionary Computation; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2008; Volume 4974, pp. 606–615.

20. Yang, S.; Yao, X. Population-Based Incremental Learning with Associative Memory for Dynamic
Environments. IEEE Trans. Evolut. Comput. 2008, 12, 542–561. [CrossRef]

21. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T.A.M.T. A fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE Trans. Evolut. Comput. 2002, 6, 182–197, [CrossRef]

22. Koo, W.T.; Chi, K.G.; Tan, K.C. A predictive gradient strategy for multiobjective evolutionary algorithms in
a fast changing environment. Memet. Comput. 2010, 2, 87–110. [CrossRef]

23. Zhang, Q.; Li, H. MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Trans.
Evolut. Comput. 2007, 11, 712–731. [CrossRef]

24. Coello, C.A.C.; Lamont, G.B.; Van Veldhuizen, D.A. Evolutionary Algorithms For Solving Multi-Objective
Problems; Springer: New York, NY, USA, 2007.

25. Miettinen, K. Nonlinear Multiobjective Optimization; Kluwer Academic Publishers: Boston, MA, USA, 1999.
26. Bai, J.; Liu, H. Multi-objective artificial bee algorithm based on decomposition by PBI method. Appl. Intell.

2016, 45, 976–991. [CrossRef]
27. Branke, J. Memory enhanced evolutionary algorithms for changing optimization problems. In Proceedings

of the 1999 Congress on Evolutionary Computation-CEC99, Washington, DC, USA, 6–9 July 1999; Volume 3,
pp. 1875–1882.

28. Das, S.; Suganthan, P.N. Differential Evolution: A Survey of the State-of-the-Art. IEEE Trans. Evolut. Comput.
2011, 15, 4–13. [CrossRef]

29. Tan, Y.Y.; Jiao, Y.C.; Li, H.; Wang, X.K. A modification to MOEA/D-DE for multiobjective optimization
problems with complicated Pareto sets. Inf. Sci. 2012, 213, 14–38. [CrossRef]

30. Min, L. Memory Enhanced Dynamic Multi-Objective Evolutionary Algorithm Based on Decomposition.
J. Softw. 2013, 24, 1571–1588.

31. Liu, R.; Niu, X.; Fan, J. An orthogonal predictive model-based dynamic multi-objective optimization
algorithm. Soft Comput. 2015, 19, 3083–3107. [CrossRef]

32. Sola, M.C. Parallel Processing for Dynamic Multi-Objective Optimization. Ph.D. Thesis, University of
Granada, Granada, Spain, 2010.

33. Zitzler, E.; Thiele, L.; Laumanns, M.; Fonseca, C.M.; Da Fonseca, V.G. Performance assessment of
multiobjective optimizers: An analysis and review. IEEE Trans. Evolut. Comput. 2003, 7, 117–132. [CrossRef]

34. Veldhuizen, D.A.V.; Lamont, G.B. Evolutionary Computation and Convergence to a Pareto Front. Late
Breaking Papers at the Genetic Programming 1998 Conference, Madison, WI, USA, 22–25 July 1998;
pp. 221–228.

35. Veldhuizen, D.A.V.; Lamont, G.B. Multiobjective evolutionary algorithm test suites. In Proceedings of
the 1999 ACM Symposium on Applied Computing, San Antonio, TX, USA, 28 February–2 March 1999;
pp. 351–357.

36. Okimoto, T.; Schwind, N.; Clement, M. Lp-Norm based algorithm for multi-objective distributed constraint
optimization. In Proceedings of the 2014 International Conference on Autonomous Agents and Multi-Agent
Systems, Paris, France, 5–9 May 2014; Volume 18, pp. 1427–1428.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TEVC.2007.913070
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1007/s12293-009-0026-7
http://dx.doi.org/10.1109/TEVC.2007.892759
http://dx.doi.org/10.1007/s10489-016-0787-x
http://dx.doi.org/10.1109/TEVC.2010.2059031
http://dx.doi.org/10.1016/j.ins.2012.06.007
http://dx.doi.org/10.1007/s00500-014-1470-y
http://dx.doi.org/10.1109/TEVC.2003.810758
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related works
	Problem Description and Basic Definitions
	Decomposition Methods
	Memory-Enhanced Algorithm for Environmental Change
	DEMO Algorithm with Short-Term Memory
	DEMO Algorithm with Medium-Term Memory


	Memory-Enhanced Dynamic Multi-Objective Evolutionary Algorithm Based on Lp Decomposition
	Lp Decomposition Used in dMOEA/D-Lp
	Environmental Change Detection Operator
	Subproblem-Based Bunchy Memory (SBM) Method to Respond to Environmental Change
	Detailed Description of dMOEA/D-Lp and Its Time Complexity Analysis

	Experiments
	Test Problems
	Performance Metric
	Setting of Experimental Parameters
	Experimental Results and Analysis

	Conclusions
	References

