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Abstract: The mid-infrared spectral region is of great technical and scientific importance in a variety
of research fields and applications. Among these studies, mid-infrared supercontinuum generation
has attracted strong interest in the last decade, because of unique properties such as broad wavelength
coverage and high coherence, among others. In this paper, the intrinsic optical properties of different
types of glasses and fibers are presented. It turns out that microstructured chalcogenide fibers
are ideal choices for the generation of mid-infrared supercontinua. The fabrication procedures of
chalcogenide microstructured fibers are introduced, including purification methods of the glass,
rod synthesis processes, and preform realization techniques. In addition, supercontinua generated
in chalcogenide microstructured fibers employing diverse pump sources and configurations are
enumerated. Finally, the potential of supercontinua for applications in mid-infrared imaging and
spectroscopy is shown.
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1. Introduction

The search for supercontinuum (SC) sources reaching into the mid-infrared (mid-IR) region
(which covers the 2–20 µm electromagnetic spectral range) has drawn much attention in recent
years. This is mainly because the atmospheric transparent windows (3–5 µm and 8–12 µm) and
the molecular fingerprint region are included in this range. Thanks to these features, Mid-IR SC
is considered to be a new source highly applicable in the fields of spectroscopy, sensing, biology,
metrology, and defense [1,2]. Limited in terms of infrared absorption, silica-based SC generation could
merely extend their spectral domain above ~2.7 µm [1,3–5]. Meanwhile, several other alternative
materials were selected for the realization of Mid-IR SC generation, some of which are soft glasses
such as tellurite [6,7], fluoride glasses [8,9], and chalcogenide glasses (ChG) [10–12]. As an example,
Martinez et al. reported an all-fiber configuration SC generation with a continuous spectrum from
1.6 to >11 µm and 417 mW on-time average output power, by pumping a cascade of Zr–Ba–La–Al–Na
fluoride (ZBLAN) fiber, arsenic sulfide (As2S3) fiber, and arsenic selenide (As2Se3) fiber with a master
oscillator power amplifier (MOPA) [13]. Considering the optical and chemical properties of these
materials, chalcogenide glass with its wide transparency in the Mid-IR range and several orders of
magnitude higher nonlinearity than standard fused silica [14] surpasses the other glasses. Furthermore,
by combining the characteristics of single-mode propagating and more flexible chromatic dispersion
modification of microstructured optical fibers (MOF), chalcogenide MOFs would be optimal for Mid-IR
SC generation. In this paper, optical transmissions of different fibers are compared, and the advantages
of chalcogenide photonic crystal fiber (PCF) for generating Mid-IR supercontinua are introduced and
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discussed. Fabrication methods of chalcogenide fibers and chalcogenide PCF are described, and finally,
examples of Mid-IR supercontinua generated from these fibers and applications are presented.

2. Why Choose Chalcogenide Microstructured Optical Fibers for Mid-Infrared Supercontinuum Generation?

For the generation of supercontinua in the Mid-IR region, the gain medium or the conversion
medium is of great importance, besides the pump source. Generally, there are two sorts of Mid-IR fibers,
which are passive fibers and active fibers, respectively. Passive fibers are applied to transmit infrared
information, whereas active fibers generate Mid-IR light by using nonlinear effects or rare-earth
doping [15]. Figure 1 lists and compares the transmission coverage of several different fibers.
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Figure 1. Mid-infrared transmissions of different types of optical fibers. Reproduced with permission
from [15], copyright Informa PLC, 2017.

As can be seen, among glass fibers, chalcogenide glass is the only one with a transparent domain
paving the Mid-IR region. The transmission varies with the constituting chalcogen elements, such as
sulfur, selenium, and tellurium [16], as shown in Figure 2. Thus, As–S fiber can transmit from
1 to 6.5 µm [17], As–Se fiber from 1.5 to 10 µm [18], and Te-based fibers, due to heavy atomic
weight, can transmit further than 14 µm. In terms of optical nonlinearity, chalcogenide glasses
possess a nonlinear refractive index that is 2 to 3 orders of magnitude higher than that of silica [16].
These nonlinear optical properties are even enhanced in small-core single-mode fibers.Appl. Sci. 2018, 8, x FOR PEER REVIEW  3 of 11 
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In microstructured optical fibers (MOF), the mode of the light propagating in the fiber is
determined by the diameter of the air holes (d) and the distance between air holes (Λ), as depicted
in Figure 3. Thus, single-mode guiding regardless of the wavelength can be achieved in MOF,
as long as the d/Λ ratio is less than 0.42 [19,20]. Also, by reducing the diameter of the core in
MOF, the nonlinearity can be increased and the zero-dispersion wavelength (ZDW) can be controlled
over a wide range of wavelengths [21]. Indeed, in order to obtain an efficient supercontinuum source,
the fiber has to be pumped close to the ZDW. One of the main advantages of MOFs is to obtain strong
flexibility in dispersion modification. The intrinsic ZDWs of chalcogenide glasses are normally located
beyond 5 µm, where it is difficult to find available powerful laser pump sources, not to mention fiber
lasers. Then, it would be beneficial to shift the ZDW to a shorter wavelength: 1.55 µm for the telecom
wavelength, 2 µm, or at least less than 4 µm.
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For example, by altering the core diameter and with the microstructured geometry,
a suspended-core chalcogenide As2S3 fiber with a ZDW blue-shifted to around 2 µm was realized [11],
whereas the ZDW of the bulk glass is around 5 µm. In this study, the simulated results were confirmed
by experimental measurements. Besides, in a Ge–As–Se system [22], where the ZDW of the bulk
material is around 7 µm, a microstructured fiber with a ZDW blue-shifted to 3.6 µm was achieved by
tapering the fiber core diameter from 12 to 6 µm [22].

Therefore, chalcogenide MOFs combine a broad Mid-IR transmission, high nonlinearity,
single-mode guiding, and dispersion tunability, which open up the way to the generation of
Mid-IR supercontinua.

3. Fabrications of Chalcogenide Fibers

In order to achieve a broad-bandwidth Mid-IR supercontinuum generation, chalcogenide glass
has to be synthesized under vacuumed conditions and purified to avoid optical absorption caused by
the presence of chemical bonds such as O–H, Se–H, and As–O, or impurities such as CO2 and H2O.
To date, several purification methods have been reported, such as the purification of raw material
before synthesis [23] or using microwave treatment before synthesis [24]. Also, distillation of the
glass after synthesis in the presence of chemical getters proved to be efficient in reducing optical
losses in fibers [25]. This last process consists of the addition of halides (such as TeCl4) and metals
(such as Mg or Al) to the charge before synthesis. During the melting of the charge, metals will
react with oxygen-based pollutants, while halides will react with hydrogen and carbon impurities.
The byproducts of this reaction are either refractory or volatile, allowing for their removal by distillation
of the glass.

Standard chalcogenide fibers exhibit a step-index profile that can be achieved by implementing
two different fabrication methods: the “rod-in-tube” method and the double-crucible method [26–28].
The first technique allows a better control of the fiber-core size, and consequently of the core-clad
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ratio [21,29,30]. The second one permits a better control of the core–clad interface [31,32], and commercial
step-index chalcogenide fibers have been fabricated by using this technique. Microstructured optical
fibers have been obtained with a variety of different glasses, including chalcogenide glasses [33,34].
In 2000, the first chalcogenide MOF, with a Ga–La–S composition, was successfully fabricated by
using the “stack-and-draw” technique originally utilized for making silica MOF, yet guidance of
light was not observed [33]. Later on, light propagation in chalcogenide MOFs based on sulfur and
selenide was realized [35,36]. Then, in 2006, single-mode propagation in a chalcogenide MOF with
Ge–Ga–Sb–S composition was reported [34]. Propagation losses of the fiber were quite high, between
15 and 20 dB m−1 at 1.55 µm; this was attributed to the poor quality of chalcogenide glass preforms
prepared by the “stack-and-draw” method [37]. Indeed, it has been shown that important defects at the
interfaces between the chalcogenide capillaries constituting the stack induce strong optical losses [37].

Consequently, other fabrication methods had to be developed for chalcogenide glasses.
For example, the geometry of chalcogenide MOF can be realized by the “drilling method” or
“casting method”. The “drilling method” exploits mechanical drilling in chalcogenide glass preforms to
create various geometrical structures. In order to avoid structure destruction, the position of the holes
and the friction between glass and drills have to be precisely controlled. Besides, for the protection of
the inner side of the holes, it is necessary to optimize the rotation speed and the force applied by the
drills [38]. For the “casting method”, a mold made of silica capillaries threaded in hexagonal silica
guides is designed with the desired distribution of holes. Then, the chalcogenide glass, which has
been heated to a quasi-liquid state, is poured into the mold. Afterward, the mold–glass ensemble is
quenched in air and annealed. The silica tube and capillaries, which are still inside the MOF preform
at this stage, are removed with a diamond tool and soaking in 40% concentrated hydrofluoric acid [39].
Both methods have been tested for making monolithic preforms suitable for obtaining microstructured
optical fibers [38–40].

4. Supercontinuum Generation in Chalcogenide MOFs

As one of the promising applications of chalcogenide fibers, Mid-IR supercontinuum generation
has been investigated extensively with both step-index and microstructured chalcogenide fibers [41–44].

The first generation of supercontinuum was demonstrated in 2006 for chalcogenide MOFs [36].
One meter of a selenide-based chalcogenide MOF was pumped by a Ti:sapphire laser, with an output
wavelength at 2.5 µm and pulse duration and pulse energy of 100 fs and 100 pJ, respectively.
The experimental results displayed in Figure 4 show that effective wavelength broadening can be
achieved through pumping around the ZDW or the anomalous region [1] of the fiber.
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Later in 2010, M. El-Amraoui et al. reported the fabrication of the first As2S3 chalcogenide MOFs
with a suspended core. Instead of the “stack-and-draw” method, mechanical drilling was used to
prepare the fiber preform. By pumping a 45-m-long section of MOF with an 8-ps mode-locked laser at
around 1.55 µm, a continuum covering more than 200 nm from 1450 to over 1700 nm was obtained [11].

Several other pumping schemes have been investigated to generate Mid-IR supercontinua.
In 2016, Petersen et al. used a two-cascading configuration, based on a 1.55-µm laser-diode-pumped
thulium-doped silica fiber and a Zr–Ba–La–Al–Na fluoride (ZBLAN) fiber, to pump a chalcogenide
MOF, which generated a Mid-IR supercontinuum up to 4.4 µm [45]. By comparing the output spectra
of ZBLAN fibers with different chromatic dispersions, it was concluded that solitons located in the
long-wavelength part of the pump are essential for the effective generation of the supercontinuum.
This was corroborated by a series of simulations. The spectrum of the supercontinuum was extended
to 7 µm with a total output power of 6.5 mW. Then, in 2017, Petersen et al. demonstrated a Mid-IR
SC generation from a tapered large-mode-area chalcogenide MOF [22]. The tunable Mid-IR pump
light utilized in the experiment was achieved by combining a tunable seed laser and a 1.04-µm
mode-locked Yb:KYW (ytterbium-doped potassium yttrium tungstate crystal) solid-state laser into
periodically-poled MgO:LiNbO3 crystals to obtain quasi-phase-matched parametric anti-Stokes
generation from 3.7 to 4.5 µm. In order to increase the spectral broadening and reduce the confinement
losses, tapered fibers with a diameter of 15.1 µm and shorter lengths before and after the taper,
with length before taper (Lbt) of 7.5 cm and length after taper (Lat) of 4.5 cm, was utilized in the
experiment. At the end, an output spectrum from 1 to 11.5 µm with an average output power of
35.4 mW was obtained, as shown in Figure 5.
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Figure 5. Supercontinuum spectra obtained from a tapered chalcogenide MOF, for three different
configurations of lengths of nontapered zones at the input and output of the fiber (in brown color).
(a) Lbt = 25 cm, Lat = 7.5 cm; (b) Lbt = 7.5 cm, Lat = 25 cm; (c) Lbt = 7.5 cm, Lat = 4 cm. (With Lbt:
length before taper, Lat: length after taper and Pout: average integrated out power). Adapted with
permission from ref [22], copyright The Optical Society, 2017.

Besides, hybrid chalcogenide MOFs were fabricated by Cheng et al. to generate a Mid-IR
supercontinuum [46]. The hybrid MOF has been made with four AsSe2 capillaries and inserted
into an As2S5 glass tube (Figure 6a). The high refractive index difference (around 0.61) between the
core and the cladding would improve light confinement in the fiber, which was the original intent
of the fiber designing. As for the pump light, a tunable optical parametric oscillator (OPO) emitting
200-fs pulses at a repetition of 80 MHz was employed. For the purpose of extending the output spectra,
different pump wavelengths: 3062 nm, 3241 nm, and 3389 nm, located at positions far from the ZDW in
the normal dispersion range, close to the ZDW in the normal dispersion range, and close to ZDW in the
anomalous dispersion range, respectively, were used to pump the 2-cm-long hybrid MOF. Compared
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to the other wavelengths used, the broader spectrum from 1250 to 5370 nm was obtained by pumping
at 3.389 µm (Figure 6b).
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Figure 6. (a) Cross section of the AsSe2–As2S5 hybrid MOF. (b) Output spectrum of the mid-infrared
(Mid-IR) supercontinuum obtained by pumping at 3389 nm. Adapted with permission from ref [46],
copyright The Optical Society, 2014.

A summary of supercontinua generated in chalcogenide MOF with different glass compositions,
geometries, and pumping regimes discussed in this article are presented in Table 1. The broader
supercontinuum spectrum obtained in a chalcogenide MOF presents a spectral coverage from 1 to
11.5 µm with an average output power of 35 mW. The higher output power obtained in a chalcogenide
MOF reaches more than 57 mW in the 1–8 µm wavelength range.

Table 1. Mid-IR supercontinuum generation obtained in chalcogenide MOFs.

Fiber Composition Spectral Coverage Pump Wavelength (Pulse Duration) Output Average Power References

As2S3 2.1–3.2 µm 2.5 µm (100 fs) - [36]
As2S3 1–2.6 µm 1.55 µm (400 fs) - [38]

AsSe2-As2S5 1.2–5.37 µm 3.3 µm (200 fs) 214 mW (input) [46]
As38Se62 1.9–7.1 µm Cascading from 1.55 to 4.5 µm (3 ns) 6.5 mW [45]

Ge10As22Se68 1–11.5 µm 4 µm (252 fs) 35.4 mW [22]
Ge10As22Se68 1–8 µm 4 µm (252 fs) 57.3 mW [22]

The supercontinuum obtained by cascading SC in different materials [45] is probably the most
promising way for the future. Indeed, this all-fiber approach can lead to more stable, versatile, robust,
and compact Mid-IR sources with easy handling. Also, it is well known that more stable and better
coupling efficiencies can be obtained with fibers in comparison to free space coupling.

5. Applications of Mid-IR Supercontinuum Generation

Thanks to a broad Mid-IR range coverage, high coherence, and good beam quality, Mid-IR
supercontinuum sources are potential candidates for a variety of applications in domains such as
spectroscopy, sensing, biology, metrology, and spectral imaging [43,47].

As an example of this, the IR signature of propanol and acetone has been detected by fibers
evanescent wave spectroscopy (FEWS) using a chalcogenide MOF [47]. In this experiment, it was
demonstrated that an exposed-core chalcogenide MOF, as shown in Figure 7, can be more sensitive to
the environment than classical single-index fibers, such as those used in ref. [23].
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Figure 7. Scanning electron microscope image of an exposed-core chalcogenide microstructured optical
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Mid-IR spectral imaging, combined with data mining algorithms, has been utilized as an aid for
diagnosing some types of cancers [48–51]. The acquisition speed and penetration depth of traditional
Mid-IR spectral imaging is subject to low brightness and lack of flexibility for the delivery and detection
of light [52]. Therefore, intense laser sources with high signal-to-noise ratios become an ideal choice
for rapid acquisition through the Mid-IR range. Quantum cascade lasers (QCL) were once used in
Mid-IR spectral imaging systems to reduce the acquisition time, but the limited frequency coverage
of QCLs cannot satisfy the diagnostic requirements and maintain, at the same time, the simplicity of
the system at a reasonable cost. Thus, supercontinuum sources were selected for broadband Mid-IR
spectral imaging. For example, ZBLAN-fluoride-fiber-based supercontinuum sources, with a 2–4.5 µm
spectral range, were selected to be integrated into Mid-IR spectral imaging systems demonstrated in
the past few years [53–55].

In 2012, Dupont et al. presented, for the first time, a high-resolution contact-free infrared
microscope. By using a 1900-nm fiber laser to pump 10 m of ZBLAN fiber, the generated
supercontinuum spanned from 1.4 to 4.0 µm. The system was tested by a mixture of oil and water
and resolutions of 35 µm and 25 µm for the water absorption image and oil absorption image were
obtained, respectively, as shown in Figure 8 [53].
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Figure 8. (a) Optical microscope image of oil–water mixture; (b,c) IR microscope image obtained at
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In 2017, Farries et al. reported a mid-infrared spectral imaging system for the rapid assessment
of cells for cytological diagnosis, consisting of a ZBLAN-fiber-based supercontinuum source, a fast
acousto-optic tunable filter (AOTF), and a high-resolution thermal camera. The AOTF enables the
system to record a 100-wavelengths image cube and 300 k pixels in 2 s, so that it can be used to test the
cells of a living person. By comparison, the system proved to have a higher spectral resolution than
a Fourier transform infrared (FTIR) system. Restricted by the filter inside the thermal camera and the
range of the supercontinuum source, collection of samples of colon cells could be imaged, nevertheless,
in the 2.87–3.7 µm spectral range [54].
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Hence, in the later studies, chalcogenide MOFs were chosen to replace ZBLAN fibers. In 2018,
Peterson et al. designed the first Mid-IR spectral imaging system in the long-wavelength region using
SC generation [52]. The system consisted of a point scanning device and a chalcogenide fiber-based
supercontinuum. The supercontinuum source could deliver light from 2 to 7.5 µm with an output
power of 25 mW, which enabled the system to collect sample information from 5.7 to 7.3 µm, in the
diagnostic fingerprint region [52]. Figure 9 presents the first mid-IR spectral image obtained with
an SC containing wavelengths longer than 4 µm. The Mid-IR image obtained at 6.03 µm (Figure 9c) is
compared to classical histologic analysis (visible images, Figure 9a,b) [52].Appl. Sci. 2018, 8, x FOR PEER REVIEW  8 of 11 
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Figure 9. (a) Confocal image from histological analysis using gold standard hematoxylin and eosin
(H&E); (b) visible light transmission image of the sample; (c) Mid-IR absorbance image. Adapted with
permission from ref [52], copyright The Optical Society, 2018.

6. Conclusions

The main interest in chalcogenide MOFs is to combine the broad Mid-IR transmission range of
chalcogenide glasses with the highly tunable optical properties of microstructured fibers. Via the
comparison of different classes of glasses and fiber structures, we can establish that chalcogenide
MOFs are surely an optimal medium for efficient supercontinuum generation in the Mid-IR region.

Since the first generations of supercontinua in chalcogenide fibers, the power and the bandwidth
obtained have increased dramatically, now reaching 400 mW in step-index fibers and 55 mW in
chalcogenide MOFs, with mid-IR wavelengths generated up to 12 µm. Consequently, we can say that
the concept of generating supercontinua in chalcogenide fibers has been proved. It has been shown
also that the power obtained is now sufficient for applications such as spectroscopy or imaging.

However, some strong challenges remain to be tackled before compact and robust all-fiber sources
are achieved. Setting innovative and efficient pump schemes, achieving fiber splicing, and improving
the damage threshold are examples of those challenges. When overcome, it will be possible to take full
advantage of the unique and versatile optical properties of chalcogenide microstructured fibers in the
infrared spectrum, such as endless single-mode propagation, high numerical aperture, and readily
tunable dispersion.
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