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Abstract: Navigation is necessary for autonomous mobile robots that need to track the roads in
outdoor environments. These functions could be achieved by fusing data from costly sensors, such as
GPS/IMU, lasers and cameras. In this paper, we propose a novel method for road detection and road
following without prior knowledge, which is more suitable with small single lane roads. The proposed
system consists of a road detection system and road tracking system. A color-based road detector
and a texture line detector are designed separately and fused to track the target in the road detection
system. The top middle area of the road detection result is regarded as the road-following target and
is delivered to the road tracking system for the robot. The road tracking system maps the tracking
position in camera coordinates to position in world coordinates, which is used to calculate the control
commands by the traditional tracking controllers. The robustness of the system is enhanced with
the development of an Unscented Kalman Filter (UKF). The UKF estimates the best road borders
from the measurement and presents a smooth road transition between frame to frame, especially in
situations such as occlusion or discontinuous roads. The system is tested to achieve a recognition rate
of about 98.7% under regular illumination conditions and with minimal road-following error within
a variety of environments under various lighting conditions.

Keywords: color-based detector; texture line detector; UKF; road following

1. Introduction

In recent years, autonomous mobile robots have been an active research field. Navigation is one of
the significant problems that need to be addressed by robots, which work in outdoor environments [1].
Laser-based navigation has been rapidly improved and is leveraged by most commercial robots or
driverless cars. A continuous curvature path is generated for car-like vehicle navigation by multiple
clothoids composition and parametric adjustment [2]. The clothoids composition method for path
generation relies heavily on detailed and highly accurate prior maps of the environments, which give
the boundary geometric constraints. However, outside of small urban areas, it is very challenging
to build, store, and transmit detailed maps since the spatial scales are so large. A novel mapless
driving framework is proposed for addressing the problem of maintaining detailed maps of large
areas, which combines sparse topological maps for global navigation with a laser-based perception
system for local navigation [3]. However, the technical issue of laser-based navigation techniques is
the reduction of the prior information because most of them require a precise 2D or 3D model of the
environment. The lasers are comparative costly. In contrast, vision-based systems provide natural and
powerful information of the environment at a high frame rate with a wide field of view. Image data
captured by vision sensors contain rich information, such as luminance, color, texture, etc. Moreover,
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vision sensors are inexpensive compared to laser sensors. Thus, it could become a reliable complement
of the laser-based navigation strategies.

The laser-based navigation method relies strongly on accurate prior maps and is very expensive.
In this paper, a low-cost, vision-based road-following system is proposed for autonomous mobile robots
working in outdoor environments. Our main algorithm consists of two steps, namely, road detecting
and road tracking. In the road detecting system, the road is extracted by fusing the results of a
color-based road detector and a texture line detector. The UKF is adopted to track the road and the
extracted following target. Then, in the road-tracking system, the road-following position in world
coordinate frame is calculated by the surrounding box of the target in images. The contributions of
this paper can be summarized as follows:

(1) In order to have the ability to detect the road in the majority of cases, the system combines the
detection of a color-based road detector and texture line detector. Benefiting from the combination
of the two detectors, the proposed road-following system is more suitable with small single lane
roads, such as sidewalks, bikeways, parkways, etc.

(2) The UKF is used to enhance the robustness of the system. The UKF estimates the best road
borders from the measurements in occlusion or in miss detection and presents a smooth road
transition frame to frame.

(3) The proposed system could be easily integrated with a local controller, such as pure pursuit,
model predictive control (MPC) or Douglas-Peucker (DP). This will improve the navigation
ability of robots in single lane road scenarios.

The rest of the paper is constructed as follows. Section 2 illustrates the related work of vision-based
road detection. In Section 3, the mobile robot system is briefly introduced, including the description of
the platform and system architecture. The specifications of the CCD camera used for road detection
are listed in detail. Formulations of the road detection system and road tracking system are given at
the end of this section. In Section 4, the road detection system is given in detail, such as the image
processing module, color-based road detector and texture line detector. The UKF is used to fuse the
detection results by the color-based and texture line detector and to track the target. We introduce the
road tracking system that maps the road-following position in camera coordinate to world coordinate
and calculates the control commands in Section 5, and we present our experiments in Section 6. Finally,
the conclusions of this paper are given in Section 7.

2. Related Work

The vision sensors are defined as passive sensors and can be used for some specific applications,
such as road detection, traffic sign recognition and obstacle identification [4]. Road detection is a
fundamental issue in field robot navigation systems, which have attracted keen attention in the past
several decades. As a result, various navigation algorithms for different types of vision sensors have
been proposed [5–8]. Some of the works employ a monocular camera, stereo/multi camera, or depth
camera systems for navigation. The road detection and target extraction are essential for vision-based
navigation in outdoor environments. For these reasons, many state-of-the-art field robot systems
employ vision sensors for road detection.

Xu et al. presented a mobile robot using a vision system to navigate in an unstructured
environment [9]. The vision system consisted of two cameras. One is used for road region detection,
and the other is used for road direction estimation. For a system trained by driving a robot through
its environment, a vision-based road detection allows us to classify each individual image pixel as
either an obstacle or the ground based on its color appearance [10]. For robot navigation in agricultural
environments or hazardous related areas, a method for extracting and tracking man-made roads
segments color images in small areas was proposed. These small areas are characterized later by color
and texture attributes, and features are classified using the KNN rule or the Support Vector Machines
method [4]. A vision-based road detection method was proposed to realize visual guiding navigation
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for autonomous land vehicles [11]. In this case, the images are segmented into road and non-road
region using Otsu thresholding algorithm. Some methods detect road regions on triangular [12–14]
or trapezoidal shape [15,16] and linear boundary constraints [17]. A triangle constraint means that
the road surface is triangular in the image. In [12], one vanishing point and two road boundaries are
detected to form a triangular road region. In [13], a self-supervised method is proposed, where positive
and negative samples are initially extracted from the inside and outside of the triangle that corresponds
to the road surface in the image. The road boundaries are fit to a trapezoidal model described by
5 parameters [16].

A number of deep learning-based methods for road surface segmentation have been proposed in
recent years. A multitask deep convolutional network is developed for the problem of lane detection,
which simultaneously detects the presence of the target and its geometric attributes with respect to
the region of interest (ROI) [18]. Inspired by an iterative deep analysis thinking, a novel method
is proposed to solve the optimal precision by balancing local and global information to conduct
pixel-level classification for road segmentation [19]. A deep convolutional encoder-decoder architecture
is proposed for semantic segmentation, termed SegNet [20]. SegNet performs competitively,
achieving high scores for road scene understanding based on large and well-known datasets. However,
end-to-end learning of deep segmentation architectures remains a challenge. In the literature ([15]),
a symmetric and fixed-height trapezoid is used to reduce model parameters, and a single Gaussian
model is used to describe the road surface. Yuan et al. proposed an online structural learning
method, and the road boundary fitting is adopted to detect a more reliable boundary, while straight
roads are assumed [17]. A vision-based control law is proposed to follow the road boundary with a
monocular camera. This method is a part of the topological navigation to reduce prior information
and enhance scalability of the map [21]. Although these methods seem to produce satisfactory results
for pixel-wise scene segmentation, they require additional post-processing to determine the position of
road marker images.

Although vision-based navigation techniques using cameras have been studied intensively for
many years, no robots have achieved full camera navigation. An image acquired by the camera
contains a large amount of information on the environments, such as color, shape, texture, distance and
landmarks [22]. However, to extract useful information from the image and to make effective use of it
is a long-standing problem. In addition, the lighting condition makes the problem even more difficult.
Camera-based robots have to be tested thoroughly in outdoor environments for breakthrough purposes.
A series of additional conjunct technologies have been developed for extracting environmental
information [23], including semantic mapping, which provides an abstraction of space and a means for
human-robot communication. Therefore, the formation of maps augmented by semasiology attributes
involving human concepts, such as types of rooms, objects and their spatial arrangement, is considered
a compulsory attribute for future robots that should be designed to operate in environments inhabited
by humans. Semantic mapping could offer a qualitative description of the robot’s surroundings,
aiming to augment the navigation capabilities.

3. Mobile Robot System

3.1. Platform Description

The mobile robot used for experiments in this study is a four-wheel driving system, which is
equipped with a CCD camera, an on-board computer, a motion controller, wheel encoders and other
devices, see Figure 1.

In order to capture the outside road view, a monocular network camera from HIK vision was
used. The main specification of the camera and lenses is listed in Table 1. The on-board computer
processes images from the CCD camera and computes the desired control commands to track the
road-following waypoint. Then, it sends the control commands to the motion controller. The motion
controller receives control commands from the computer and drives the robot to move.
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Gain 0 to 16 DB 
Shutter 1/1 s to 1/30,000 s 

SNR 52 dB or better at minimum gain  
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Mass 320 g 
Operating temperature −10 °C to 60 °C 

Focal length 4.7–94 mm 
Max CCD format 1/3″ 

Aperture F1.6–F3.5 
Maximum field of view Horizontal: 58.9° 

Video compression H.265/H.264 

3.2. System Architecture 
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2. The overall system runs on the robot operating system (ROS) which provides a communication 
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Sensor type HIK Vision DS-2ZCN2006 (C)
Resolution 1280 × 960

Format JPEG or BMP
Frame rates 25 fps, 30 fps

Signal system PAL/NTSC
Interface 1 RJ45 10 M/100 M Ethernet interface

Voltage requirements DC12 V ± 10%
Power consumption 2.5 W (static), 4.5 W (dynamic)

Gain 0 to 16 DB
Shutter 1/1 s to 1/30,000 s

SNR 52 dB or better at minimum gain
Camera dimensions 74.3 mm × 81.1 mm × 142 mm

Mass 320 g
Operating temperature −10 ◦C to 60 ◦C

Focal length 4.7–94 mm
Max CCD format 1/3”

Aperture F1.6–F3.5
Maximum field of view Horizontal: 58.9◦

Video compression H.265/H.264

3.2. System Architecture

The system architecture consists of road detection system and road tracking system, see Figure 2.
The overall system runs on the robot operating system (ROS) which provides a communication
mechanism between different modules for the road-following system.
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The road detection system is used to detect and track the border of unstructured roads, where the
color-based road detector and texture line detector are implemented. Both methods work in parallel
and are combined by a weighted average algorithm. The UKF is implemented to estimate and track
the road borders. The final results of road detection system are the traversable road and the tracking
waypoint on the road. The road tracking system is responsible for calculating the control commands
and sending them to the robot base according to the tracking waypoint.

4. Road Detection System

The road detection system is divided into two components: a color-based road detector and a
texture line detector. Both modules will detect the borders of the road using different approaches.
One module uses color contrast, and the other module is based on texture. The borders detected by
both modules are fused by a weighted average algorithm in the fusion module. The UKF is then
implemented to track the road borders.

4.1. Image Processing Module

The image preprocessing process prepares the image in a state that makes it more effective
to use in the algorithm. The raw image has undesirable characteristics that must be eliminated
before use, for example, noise generated by the camera sensor, by the environment or by other
factors. Another undesirable factor is the illumination that changes the properties of the image with
different strength. First, the image is downsized to reduce the size and increase the processing speed.
Then, a median filter is applied to reduce noise in the image, followed by white balance and RGB
normalization to improve the image quality and reduce the illumination effects.

The original input image is 1280 × 960 pixels and is compressed to 640 × 480 pixels.
The downsizing process is done by a nearest-neighbor interpolation, which means that a weighted
average of pixels is performed in the nearest neighborhood. The scaling factor during the downsizing
process is 2. Thus, the value of pixel (x, y) in the target image is set to the value of the pixel (xo, yo) in
the original image, xo = 2x, yo = 2y. The objective of the downsizing is to cut the size of the image and
reduce time consumption complexity in the following process.

In some cases, the focus of an algorithm is reduced to a small portion of the image because the
other portion is meaningless. The image is reduced in size by taking account of the ROI. The ROI is
extracted by cutting the image in the focus area and deleting the other part. This process enhances
the time consumption, and by focusing only on the interest region, better results will be expected.
The ROI is determined in an image according to vanishing points. In our system, the detection of
vanishing point is based on literature [24], which presents a method for the automatic detection of
vanishing points based on finding point alignments in a dual space, where converging lines in the
image are mapped to aligned points. After the vanishing points are detected, the part of the image
over it is eliminated, which corresponds to the skyline and horizon. Also, the bottom 1/5 of the image
is excluded because that portion of the image corresponds to the frame of the robot; see Figure 3 as an
example of image after ROI cropping. The ROI area can be adjusted depending on the location of the
camera on the robot. The ROI parameters can be adjusted in configuration files.
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The image contains only the region of interest after ROI is extracted. However, the noise is not
eliminated in the image. Noise is a common effect due to the camera sensor and the procedure to
convert the analogue 3D world to an image. A median filter is applied to reduce the impulse noise.
A blur filter with a two-dimensional window, each one of size 7 × 7 pixels, is applied. For every pixel,
the output values will be the median of the whole image pixel. After the filter is applied, the abrupt
peaks values will be eliminated.

However, the illumination condition is changing all the time, since the robot is working in
outdoor environments. The illumination condition is influenced by many factors, such as the intensity
of sunlight that changes from time to time, or to the location of the camera related to sunlight that is
not fixed; also, shadows can appear in the road, and so on. The white balance is adjusted and RGB
normalization is performed to reduce the illumination effect. The white balance technique adjusts the
intensities of colors taking into account the whole image. For each pixel in the image, the (R, G, B)
value is calculated by using (1).

R′ =
Yavg

Ravg
, G′ =

Yavg

Gavg
, B′ =

Yavg

Bavg
(1)

in which Yavg is defined as (Ravg + Gavg + Bavg)/3 and Ravg, Gavg, Bavg are the average of R, G,
B channels.

RGB normalization is used to decrease distortions caused by illumination and to enhance results
in color modelling after the white balance. For each pixel, the (R, G, B) value is updated by using (2).

Rnorm =
R

rgb
, Gnorm =

G
rgb

, Bnorm =
B

rgb
(2)

in which R, G, B are the red, green and blue channels, respectively, rgb is the sum of R, G, B for
each pixel.

4.2. Color-Based Road Detector

The main features that are used to achieve a proper segmentation of the road image are the Hue
and Saturation channels of the HSV color space. It has been shown that the Hue value is insensitive to
shadows and water areas, which often cover parts of a road. The road color is extracted from each
frame and used to classify each pixel. To extract the road color model, we assume that the road is
in front of the camera. A small road area is extracted and it is transformed from RGB to HSV color
space. The road window is located in the middle bottom of the image and has a size of 50 × 50 pixels.
The middle bottom of the image is assumed to be road pixels; see Figure 4.
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The segmentation of an image into an area associated with the road and into a non-road area
is a rather crucial step. A mean-shift algorithm keeps track of the color model and establishes the
segmentation criteria. The current prototype implements a road color model that is extracted frame
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by frame. This adaptation makes it more reliable and robust against changes in illumination or color.
This adaptation is advantageous because avoids the requirement of prior knowledge of the road and
allows road detection under different environmental circumstances; however, a disadvantage is that
the wrong road model extraction would produce false road detection.

To avoid false road detection, we keep track of road color-histograms. The color model is adapted
considering previous color models. The mean-shift tracking algorithm is an iterative scheme based on
comparing the histogram of the road in the current image frame and histogram of the road color in
previous image frames. The color model is updated by using (3).

CMt = (1− α)CMt−1 + αCF (3)

in which CMt−1 is the previous road color model, CF is the road color model of the actual frame and α

is 0.2 as a weight. Therefore, the proposed road color model is slow to adapt to a new road surface.
A remembering process is applied in the sense that the contribution of a specific frame decreases
exponentially the further it lies in the past.

The Manhattan distance classifies every pixel into a road or non-road area. Furthermore,
the segmentation is enhanced with a hysteresis threshold that filters out some of the misjudgments.
To reduce the computation complexity, not all pixels are used in the segmentation. Instead, pixels in
non-consecutive rows and non-consecutive columns are selected. The distance of a pixel to the road
model is evaluated by using (4).

Dist(i, j) =
|H(i, j)− qHue|+

∣∣S(i, j)− qSat
∣∣

2
(4)

in which i and j are the pixels coordinates, H(i, j), S(i, j) are the Hue and Saturation values, respectively,
and qHue, qSat are the mean values of the road model in the Hue and Saturation channels.

The segmentation in the road and a non-road area is naturally affected by noise. A certain
number of pixels will be misclassified; this is due to natural phenomena such as shadows, water areas,
road texture, and obstacles. To reduce the noise, morphological filters (dilatation and erosion) are
applied. The dilatation technique is used to fill up small noise holes, and erosion is used to eliminate
disconnected line segments. The size of dilation or erosion kernel window is 3 × 3 pixels. In the case
of multi-channel images, each channel is processed independently. To select the proper road borders,
a rather trivial but effective heuristic technique is performed assuming that the road has parallel lines.
With these procedures, obstacles and water areas on the road can be eliminated. This assumption
states that the road width should decrease gradually from bottom to top due the perspective projection
of the camera, and the middle line point of the road would not change suddenly because the road in
the real world is continuous.

The above-mentioned color-based road detector is tested under a variety of light conditions and
road scenarios; see Figure 5 for an example of road border detecting results. More road scene datasets
and detection results are available at https://github.com/robotman801/roady.git.
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4.3. Texture Line Detector

The texture line detector does not require color contrast to detect a boundary. Instead, it is based
on the texture or shape of the roads. This module detects straight lines in an inverse perspective
mapping image (IPM). The IPM image is a change in the perspective, from the perspective of the
camera to a top view of the road, see Figure 6. The IPM image has the benefit of eliminating the
perspective distortions, which means that parallel lines that intersect in the vanishing point will appear
again as parallel in the IPM image.
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Figure 6. Inverse perspective mapping. (a) Original image; (b) Image after IPM transformation.

To obtain the IPM image, the camera intrinsic and extrinsic parameters are required to perform this
transformation. The intrinsic parameters represent a projective transformation from the 3-D camera’s
coordinates into the 2-D image coordinates. The extrinsic parameters represent a rigid transformation
from the 3-D world coordinate system to the 3-D camera’s coordinate system. These parameters
represent the rotation matrix and translation matrix between points in the camera’s coordinate system
and world coordinate system.

• Intrinsic parameters are the parameters of the lens and the image sensor. These parameters consist
of the camera focal lengths, the optical centers and also the distortion coefficients. The calibration
algorithm detects the corners of a chessboard pattern. The chessboard pattern requires at least
two snapshots. However, based on experience, more images produce better results. We used
24 images that cover the whole 3D visual area of the camera. The output of the algorithm is an
“XML” file with the camera matrix and distortion coefficients.

• Extrinsic parameters are calculated based on the Perspective-n-Point problem or PNP.
This problem is used to estimate the position of an object when we have a calibrated camera.
The locations of the 3D points on the object and the corresponding 2D projections in the image
are known. The corresponding translation and rotation vectors can be estimated based on the 3D
points and the corresponding 2D projections.

The camera parameters are computed from a chessboard pattern that is attached to the mobile
robot, see Figure 7. The chessboard pattern is obstructed by the front tire of the mobile robot. The tire
divides the pattern into two pieces. Therefore, the input image is divided into the left and the right
side. On each side, 15 corner points are detected. The intrinsic parameters are calculated using the
OpenCV library. The locations of the 3D points on the object and the corresponding 2D projections
in the image are known. Thus, the corresponding translation and rotation vectors can be estimated
based on the 3D points and the corresponding 2D projections, which are used as extrinsic parameters.
This calibration process has to be done only once.
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Figure 7. Computed camera parameters from the pattern in the image.

A canny edge detection algorithm is applied to the IPM image to detect vertical lines. Then,
the clearly delineated edges are used within a Hough transform to detect the borders of the road.
The Hough transform finds image features by collecting global evidence in a parameter space. In the
most common application of the Hough transform, the features are lines and the parameters are their
polar coordinates.

The vertical lines detected by the Hough transform are grouped into right and left depending on
their location. For every group (Figure 8a,c), an outlier exclusion filter is applied to estimate the road
borders. An example of the detected border is shown in Figure 8. The outlier exclusion criterion is a
distance higher than two standard deviations of the line distribution.
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4.4. Fusion Module with UKF

The borders detected by the color-based and the texture line detector are fused by a weighted
average algorithm. From both modules, metrics are calculated to estimate a value of trust. The detected
borders have more confidence and therefore a larger weight when the value of trust is high. The weight
that every border will take is computed from metrics and it is updated in every cycle.

(1) Metrics of the color-based road detector
There is a fixed number of rows in every image, and we expect to find a border of the road in

every row. The border is represented as a black circle in the following image; see Figure 9. The black
circles are computed in the segmentation process. The trust value Tcolor of the color-based road detector
is computed using (5).

Tcolor =
Number of circles× 100

2×Number of rows
(5)

As indicated in (3), if the number of circles is the same as the number of rows in an image; the road
is 100% detected in that image. Therefore, it will have a high trust value. On the other hand, if the
number of circles is very low in an image, it means that the road is hardly detected. In this case,
the trust value will be low, see Figure 10.
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Figure 10. Road borders with low confidence value.

(2) Metrics of the texture line detector
After the IPM mapping and the canny edge detection, the Hough transform will compute the

more likely vertical lines. These lines will be distributed over the image and will be grouped into left
and right. The distribution of these lines will tell us the quality of the borders and therefore the trust
value. Since the input image for line detection is the IPM image, which is scaled to 1 pixel (1 cm),
the lines can have a maximum distribution of 320 pixels. Therefore, the line distribution means the
number of lines that are detected by canny edge detection. The trust value Ttexture of the texture line
detector is computed by using (6). There will be two weights: one weight for the left border and the
other one for the right border. Both weights are computed with (6).

Ttexture = 100%− Lines distribution× 100
Number of columns/2

(6)

in which the number of columns is 640.
A greater distribution of the lines in the image will have a low trust value, and a small distribution

of the lines will have a high trust value, see Figure 11.
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After having computed the weights of the color-based road detector and texture line detector,
the detection results are fused together. The fusion algorithm is a weighted average. The algorithm is
expressed by using (7).

F = β× Tcolor
Tcolor + Ttexture

+ γ× Ttexture

Tcolor + Ttexture
(7)

in which F is the fusion line, β is the color-based line, γ is the texture line.
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The UKF is implemented to estimate and track the road borders. In the Kalman filter, two main
steps rule the process. One is the measurement update step, where the measured signal is the
combination of both modules, and a time update state, where the borders are estimated based on the
motion model of the robot.

The estimation of the road borders is governed by the estimation of UKF [25]. The main idea
behind the UKF is to obtain the best estimation of the borders from the measure and the movement
of the robot. In the presented approach, the motion model of the lines is a non-linear function. It has
been demonstrated that the UKF has a substantial performance gain in the context of state estimation
for nonlinear systems compare with the Extended Kalman Filter (EKF). The UKF uses an unscented
transformation to model non-linear dynamics, while the EKF will linearize the nonlinear system
with the use of the Jacobian of the model; this linearization could cause divergence problems. In the
presented approach, the borders of the road are represented by lines in a 2D Cartesian space. A line
has two parameters, which are l and ψ. l represents the intersection point with the “x-axis” of the
reference frame, and ψ represents the angle between the line and the “y-axis” of the reference frame;
see Figure 12.
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(1) The state
In the proposed approach, the left and the right borders will have an independent state, both of

them have their own filter and will be computed separately. A state is represented as x = [l, ψ]. The state
of the estimated line is represented as x̂ = [l−, ψ−], and x̂− is the last state of x̂.

(2) Measurement update
The state is updated based on the measurements by using (8).

Kk =
P−k

(P−k +Rk)

x̂k = x̂−k + Kk(zk − x̂−k )
Pk = (I − Kk)P−k

(8)

in which the matrix R represents the covariance of the measurements. K is the Kalman gain that
updates the ratio gain between the estimates and the measurements. The matrix P is the covariance
error, and P− is the covariance error of last period. The matrix R is updated in every step because the
error variance of the measurements varies over time. The function z represents the process of detecting
the road borders in the images.

(3) Time update
The function that models the movement of the lines will be represented by the function f (xk−1,

uk−1, wk−1). The function f relates the state xk based on the previous state xk−1, and the control
input uk−1 and wk−1, which is the function that models the noise of the motion model. The motion
model is a non-linear function that includes the homogeneous transformation which rotates and
translates the lines based on the motion of the mobile robot m(ϕ, ∆x, ∆y), where ϕ is the angle of
difference of the robot between time steps, and ∆x, ∆y are the displacements in the “x-axis” and “y-axis”
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respectively. The model also includes the transformation of lines from the polar to the corresponding
Cartesian representation.

A =

∣∣∣∣∣∣∣
cos ϕ − sin ϕ ∆x
sin ϕ cos ϕ ∆y

0 0 1

∣∣∣∣∣∣∣ (9)

The Polar and Cartesian coordinates are related as:

P(x, y) = (r× cos ϕ, r× sin ϕ)

P(r, ϕ) = (
√

x2 + y2, arctan(y/x))
(10)

Therefore, the time update is governed by:

x̂−k = f (x̂k−1, uk−1, wk−1)

P−k = Pk−1 + Qk−1
(11)

in which the matrix Q represents the covariance of the motion model. It is updated in every step. It is
updated based on the influence of the robot’s movement on the estimated line.

5. Road Tracking System

The road detection result is received from the road detection system described in Section 3,
and can be represented simply as a bounding box at time t:

zt = [ut, vt, wimg
t , himg

t ]
T

(12)

We assume that the ground is relatively flat, ignoring any in-plane rotation of the cylindrical
object. For a pinhole camera with focal length f and principal point (cx, cy), we can write

ut = ( f xcam
t + cx)/zcam

t
vt = ( f ycam

t + cy)/zcam
t

wimg
t = f w0/zcam

t

himg
t = f h0/zcam

t

(13)

in which (h0, w0) is the assumed road target’s height and width.
The rigid transformation of the center of the road target into the camera coordinate systems is

homogeneously represented as

xcam
t =


xcam

t
ycam

t
zcam

t
1

 = TW/C
t


xt

yt

zt

1

 (14)

in which (xt, yt, zt) is the road target’s position in the world coordinate and the transformation TW/C
t

is defined as
TW/C

t = TR/CTW/R
t (15)

TW/R
t is the rigid transformation from the world coordinate system to the robot coordinate at

time t, and TR/C is the fixed transformation from the robot coordinate system to the camera coordinate
system. We can write

TW/R
t =

[
RT

t −RT
t xr

t
0T 1

]
(16)
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in which xr
t = (xr

t , yr
t , zr

t) and RT
t represent the orientation of the robot in the world coordinate frame,

which can be obtained through the odometer and inertial measurement unit.
Hence, given the bounding box z0 of road detection, the initial position [xcam

0 , ycam
0 , zcam

0 , 1]T of
the initial road target in the camera coordinate frame can be obtained by using (13). In (13), xcam

0

and ycam
0 can be calculated given u0 if zcam

0 is known. zcam
0 can be obtained from wimg

0 or himg
0 , such as

zcam
0 = f h0/himg

0 . Then, the road target position at time 0 is mapped to the world coordinate frame by
x0

y0

z0

1

 = (TR/CTW/C
0 )

−1


xcam

0
ycam

0
zcam

0
1

 (17)

For the given road detection bounding box zt at time t, the corresponding road target position
(xt, yt, zt) in the world coordinate frame can be calculated using (13) and (14) frame by frame.

After the road target position in the world coordinate is obtained, we treat it as the next tracking
waypoint of the robot. The regular waypoint tracking controller can be integrated into the system to
calculate the desired control commands, such as pure pursuit, MPC, and DP.

6. Experiments

The proposed road-following system is evaluated and tested on a variety of unstructured roads
under different lighting and weather conditions. The condition includes both the environmental
conditions as lighting and weather, and the structure condition like road material and border state.
The system has also been tested under variable illumination. In this case, the same road has been
surveyed with different lighting conditions during different hours on the same day, such as natural
daylight, sunshine, sunset, etc.

The robot shown in Figure 1 is used for the road-following test in dynamic environments with
maximum speed 0.5 m/s. More than 27,000 images are taking into account, which are grouped into
13 types of roads. During the image processing, the correct recognition is defined as a detection
trust value higher than 90% according to (5) and (6). Hence, the correct rate is defined as the
number of frames in which the road tracking position is recognized correctly over the total number
of image frames. The statistical results of the experiment are listed in Table 2. As shown in Table 2,
the recognition rate median value is about 98.7%, with a minimum recognition rate of 79.27%. Therefore,
the system has a recognition rate of 99.78% in the optimal case; in the regular cases, a recognition rate
of about 98.7%; and in the worst cases, a recognition rate of 79.27%.

Table 2. The correct rate.

Road Type Number Characteristic Number of Frames Correct Rate

1 Bikeway, daylight, cement road 1912 97.8%
2 Parkway, sunset, cement road 734 97.4%
3 Parkway, daylight, asphalt road 3660 99.1%
4 Bikeway, sunset, asphalt road 1555 92.9%
5 Parkway, sunshine, asphalt road 951 95.7%
6 Bikeway, daylight, asphalt road 1645 99.39%
7 Parkway, daylight, dirt road 2123 99.15%
8 Sidewalk, daylight, brick road 4366 98.35%
9 Sidewalk, daylight, dirt road 3069 99.24%
10 Sidewalk, sunset, brick road 387 98.7%
11 Bikeway, sunshine, asphalt road 386 79.27%
12 Sidewalk, daylight, cement road 2066 99.61%
13 Sidewalk, daylight, asphalt road 1884 99.78%
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The image processing is run on a PC with an Intel Core i7 CPU at 2.93 GHz in Ubuntu 16.04.
The software for image processing is written with C++ using OpenCV library. The proposed system
works at the frame rate of 10 Hz. The computation time for each sub-process is clearly indicated in
Table 3.

Table 3. The required computation time for image processing.

Sub-Process Time (ms) Percentage (%)

Extraction of the region of interest 4.4915 6.03%
Smooth the image 0.47 0.63%

Apply white balance filter 10.31625 13.84%
Apply RGB normalization 5.6225 7.55%

Convert to HSV color space 2.70725 3.63%
Extraction of road window 0.403 0.54%
Image color segmentation 1.4385 1.93%

Morphological filtering 3.4315 4.61%
Border validation 0.457 0.61%

Road border estimation 1.17075 1.57%
IPM 11.79625 15.83%

Extraction of straight lines 12.57375 16.88%
Fusion of color-based borders and texture borders 9.503 12.76%

UKF computation 5.16875 6.94%
Draw IPM lines, 3D points and Kalman borders 4.951 6.65%

Total computation time [ms] 74.5

The runtimes are analyzed based on more than 24,700 images. The required computation time for
image processing is shown in Table 3. The values that are shown in the column “Time (ms)” represent
the average value of each sub-process during the road following. The column “Percentage (%)” shows
the percentage of each sub-process in relation to the complete detection process.

As can be seen in Table 3, the sub-processes that require longer run times are the extraction
of straight lines and the IPM. The extraction of the road image and the borders validation are the
faster ones. The entire runtime required to processes one single image is about 74.5 ms. In other
words, the value represents a frame rate of about 13.4 Hz. According to literature [20], the deep
fully convolutional neural network SegNet for road scene segmentation needs more computational
resources and trains much more slowly. The computational time of the forward pass and backward
pass for SegNet architecture is 422.50 ms and 488.71 ms, respectively, i.e., a higher time cost than the
image processing of our proposed method.

A sequence of frames showing the detection and road tracking target is presented in Figure 13.
The red lines are the estimated road borders. The black square is the road tracking target in the image.

In order to evaluate the performance of the proposed system, the variance error is compared
based on the measured line, detected line and estimated UKF lines; see Figure 14 for an example of
an experiment with asphalt road in a parkway under sunshine illumination. The red line is the error
of the measured lines detected by the color-based module and the texture line detector. The green
line is the error of robot’s motion model that varies with time, which is based in the accuracy of the
robot’s odometer. The error of estimated UKF lines is shown as the blue line. As indicated in Figure 14,
the filter keeps the inertia of the estimated state and filters the high variance of the measurements and
the motion model. The maximum error of UKF lines is 352 mm, and the average error of UKF lines
is 33.6 mm. As a conclusion, the UKF produces minimal error and more stable road detection and
tracking target position, even in the frames where the road boundaries are occluded.
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7. Conclusions

This paper presents a low-cost road-following system for mobile robots based on a monocular
camera. The system is composed of a road detection system and road tracking system. The color-based
road detector and texture line detector are implemented in the road detection system and are fused
to improve the road detection performance. The two detection methods work in parallel and are
combined by a weighted average. The UKF produce the best estimates of the detected target, and it
filters out the noise of the measurements and produces the estimated borders when the road is occluded
or discontinuous.

The road tracking system provides the tracking waypoints for the robot by mapping the target
position in camera coordinate to the position in world coordinate. After the waypoint in the world
coordinate is given, the regular waypoint tracking controller can be integrated into the road-following
system to calculate the control commands, such as the pure pursuit algorithm, MPC algorithm,
and DP algorithm.

According to the experiment, it is shown that the system is more suitable with single lane roads.
The results show a recognition rate of about 98.7% in regular illumination condition and minor
target tracking error within a variety of environments under various lighting conditions. However,
the proposed system does not work well in the environment where the road borders are not well
defined or the road borders are not in the field of view of the camera. Future work will introduce
some deep learning algorithms to set the parameters in the proposed system, such as the parameters
of Hough transform and the area of ROI or pixel segmentation, and will focus on improving the
application in various environments.
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