
applied
sciences

Article

Web-Based Android Malicious Software Detection
and Classification System

İbrahim Alper Doğru * and Ömer KİRAZ

Department of Computer Engineering, Gazi University Faculty of Technology,
Teknikokullar Ankara 06500, Turkey; omer.kiraz1@gazi.edu.tr
* Correspondence: iadogru@gazi.edu.tr; Tel.: +90-312-202-8591

Received: 20 August 2018; Accepted: 10 September 2018; Published: 12 September 2018
����������
�������

Abstract: Android is the most used operating system (OS) by mobile devices. Since applications
uploaded to Google Play and other stores are not analyzed comprehensively, it is not known whether
the applications are malicious software or not. Therefore, there is an urgent need to analyze these
applications regarding malicious software. Moreover, mobile devices have limited resources to
analyze the applications. In this study, a malicious detection system named “Web-Based Android
Malicious Software Detection and Classification System” was developed. The system is based
on client-server architecture, static analysis and web-scraping methods. The proposed system
overcomes the resource restriction issue, as well as providing third-party service support by means
of client-server architecture. Based on the performance evaluation conducted in this research,
the developed system’s success rate is 97.62% on benign and malicious datasets.

Keywords: Android; malware detection; static analysis; mobile security

1. Introduction

The use of mobile devices has been increasing in the world. Mobile device users can easily
perform banking, shopping, web page navigation, gaming, and similar transactions without computers.
According to first quarter report of International Data Corporation (IDC) Company of 2017, the global
smartphone market has grown 3.4% and Android’s market share in the smartphone market has reached
up to 85% [1]. According to the G Data H1/2016 report, worldwide use of the Android platform
was determined to be 68% in the first half of 2016 [2]. Again, according to this report, 1,723,265 new
malicious application examples were identified. Yet again, the amount of new malicious software is
increasing, as well as the complexity of the malicious software introduced to prevent the detection of
malicious software. Google Play Protect, announced at Google I/O 2017, runs embedded on Play Store
and scans the applications before and after their installations [3,4].

Android apps have become the target of malicious software developers because the Android
platform has a free and open-source operating system, and whenever an application is added on the
Google Play Market, the app is not examined in detail [5]. Beginning from version 6.0 Marshmallow,
the operating system warns users and demands confirmation when an application requests a dangerous
permission at run time. Additionally, unlike previous versions, you have the option to turn off the
permissions in the latest version. These features are included on Android 6.0, so users of older Android
versions are not able to use these features. Since 38.6% of Android users use Android 5.1 and older as of
2018 (Data collected during a 7-day period ending on 16 April 2018) [6], solutions covering all Android
users are needed. It is, therefore, essential to develop systems that detect whether applications on the
Google Play Market and other application markets are benign or malicious software. Yet, the resources
of mobile devices are inadequate for such a detection system.

Appl. Sci. 2018, 8, 1622; doi:10.3390/app8091622 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-9324-7157
http://www.mdpi.com/2076-3417/8/9/1622?type=check_update&version=1
http://dx.doi.org/10.3390/app8091622
http://www.mdpi.com/journal/applsci

Appl. Sci. 2018, 8, 1622 2 of 19

In this study, an Android malware detection system was developed to detect malicious applications
through client-server architecture, static analysis and web-scraping methods. All transactions are
conducted on the server side in consideration of the limited resource of mobile phones. Hence, there
is no load generated on the client side. Virus Total, which is a highly trusted virus/malware scanner
tool, was integrated into the developed system and used in the calculation method. The robustness
of the developed system was evaluated using 5545 malicious and 1173 benign Android applications.
The developed system was compared with existing static analysis methods as a basis for a discussion of
its pros and cons.

In this article, the following topics are discussed in sequence: the related literature is reviewed
in the second section; the structure of the developed system and the used tools are shown in the
third section; the obtained outcomes of the performance evaluation are shared in the fourth section;
the studies to be conducted in the future and the results of the research are given in the last section.

2. Related Studies

There are three methods found in the literature used as analysis methods for Android malicious
software. These are the static, dynamic and hybrid analysis methods.

2.1. Static Analysis Method

In this analysis method, Android applications are analyzed using the features found in the .apk
file before being installed on the device. DroidMat uses a static analysis method to determine whether
applications are benign or malicious [7]. Permissions in each application’s AndroidManifest.xml file,
other components (activity, service and receiver) and API (Application Programming Interface) calls
in the application’s bytecodes are used as features. Using the Apktool [8] tool, AndroidManifest.xml
and smali files of benign and malicious applications are obtained. The permissions, activities, service
and receiver components, intent and API calls in these files are considered as features. In a DREBIN
study, a method for Android malware detection was introduced that allows malicious applications
to be identified directly on the smartphone [9,10]. Based on the developed method, many features
were collected from the application code and AndroidManifest.xml file. APK Auditor is a system
for detecting malicious Android-based malware [11]. APK Auditor uses a static analysis method
to characterize and classify Android applications as to whether they are benign or malicious [11].
The developed system consists of three main components: an Android client, a signature database and
a central server [11,12]. DroidOL addresses the issue of malware detection and suggests a new online
machine learning-based framework [13]. The DroidOL system consists of three stages. In the first stage,
static analysis is performed on a certain number of applications to obtain inter-procedural control-flow
graphs [13]. In the second stage, the sub-graph properties of the inter-procedural control-flow graphs
are extracted using the Weisfehler-Lehman kernel, and the applications are represented as feature
vectors [13]. In the last stage, an online passive aggressive classifier is used and trained to detect
malicious software with these vectors [13]. In the ASE study, an integrated static detection system
with four filtering layers was proposed, including MD5 (Message Digest 5) detection of characteristic
values, detection of combination of malicious permissions, detection of hazardous permissions and
detection of hazardous intent [14]. Wang et al. proposed a system to manage a large application market
effectively and efficiently in order to categorize malicious and benign applications [15]. The alarm is
triggered if the application is identified as malicious by using a combination of multiple classifiers.
In the study of Sokolova et al., a system was proposed that characterizes normal behaviors for each
application category and emphasizes expected permission requests. Moreover, category patterns
and central permissions are obtained using graph analysis metrics [16]. The models obtained are
evaluated by the performance of the application classification based on the categories developed [16].
Anwar et al. proposed a static system for mobile botnet detection [17]. This system considers the static
features of Android applications, including MD, permissions, recipients, and background services [17].
Arslan et al. made a static approach that detects malicious and benign software by calculating

Appl. Sci. 2018, 8, 1622 3 of 19

the number of the permissions that applications request on the code side [18]. The Dex2jar [19],
and Apktool [8] tools were used to perform reverse engineering on the applications [18]. In the
AndroDialysis study, the intentions in the AndroidManifest.xml file were used as a distinguishing
feature in identifying malware [20]. In the study conducted, it was determined that the intentions
were more effective than the permissions in the detection of malicious software [20]. However, it is
considered that intentions cannot replace the permissions in the detection of malicious software [20].
In the study of Kang et al., developer information was used as an attribute [21]. It was argued that the
detection of malicious software can be made more effective by comparing the application certificate
serial number with pre-defined malicious certificate serial numbers [21,22]. Along those lines, Utku
and Dogru developed a malicious software detection system based on well-known malicious software
at the application level for mobile devices [23]. Naive Bayes and KNN machine learning algorithms
were used in this study to classify permissions [23]. Atici et al. developed a static system based on
machine learning algorithms and control flow graphs of Dalvik byte codes for Android malware
analysis [24]. In this study, grammatical expressions consisting of control flow graphs of Android
malicious software were used as an input vector [24].

2.2. Dynamic Analysis Method

This analysis method is based on the behavior of Android applications. Shabtai et al. developed
a system that uses a dynamic analysis method to detect malicious software by network patterns
of applications [12,25]. In the study, it is claimed that the network traffic patterns of different
applications with the same function have similar patterns, and the results confirmed the claim [12,25].
The DroidAuditor is a behavior analysis system that monitors the behavior of apps on real Android
devices and creates the graphical representations of such [26]. Andro-Profiler classifies malicious
software using behavioral profiles extracted from the integrated system logs, including system calls [27].
Andro-Profiler runs a malicious application on the virtual device to create integrated system logs
and analyzes the integrated system logs to create human-readable behavioral profiles [27]. In a
study by Garg et al., a system is developed to detect malicious applications by looking at network
activity through an observing eye on the network [28]. The developed model also has the ability
to detect malicious applications using network traces, to work with different versions of operating
systems, to detect unknown applications, and to detect infected applications with encrypted data [28].
In the study of Chang et al., a behavior-based malware detection system using machine learning was
proposed [29]. In this study, in addition to the DroidBox [30] structure, an automatically triggered
view identification program was added [29].

2.3. Hybrid Analysis Method

This method of analysis is based on the usage of static and dynamic analysis methods together.
Shi et al. proposed a hybrid system that combines static and dynamic analysis to detect security threats
that attacks on mobile applications [31]. The system consists of two main components; namely, static
and dynamic analysis [31]. In the first stage, all files contained in the .apk file are obtained using
Apktool [31]. The focus of this static analysis phase is to analyze the file AndroidManifest.xml [31].
In addition, a Java application was developed to read file and text patterns during this static analysis
phase [31]. Start-up activity is attained from the AndroidManifest.xml file, and this information is
used in the second stage to obtain sensitive API calls [31]. In the second stage, the Auto-sign tool is
used to repackage the application [31]. Dynamic analysis is performed by running the repackaged
application [31]. This run is called ‘symbolic run’, because the application is run to get the API
call path [31]. In ScanMe Mobile study, a local and cloud-based hybrid malware detection system
was developed [32]. A mobile cloud-based architecture was used to perform real-time detection
efficiently [32]. In a study by Singh et al., a framework for the identification of malicious applications
is presented [33]. The intent of this framework is to imitate artificial user behavior and analyze the real
behavior of malicious software [33]. In the study of Wang et al., a static analysis technique was used to

Appl. Sci. 2018, 8, 1622 4 of 19

obtain permission usage information from API calls [34]. In addition, dynamic analysis techniques
were also used to test and monitor the runtime usage behavior of applications [34].

3. Web-Based Android Malicious Software Detection and Classification System

The developed system uses the static analysis method for the analysis of Android applications.
The Android version used was chosen to be 4.1, due to the highest targetSdkVersion information of
the applications in the Drebin malware dataset [9] being 16. The reason for this selection is that the
permissions used by applications in the malicious dataset practice permissions that are present in the
Android 4.1 version. To create a benign application data set, Android applications of official institutions in
Turkey, other countries, and popular applications on the Google Play market were downloaded by using
the APKPure [35] web page. The APKPure web page is a platform for downloading Android .apk files.
By using this web page, 1331 applications were manually downloaded and a benign data set was created.

The data set created in the Drebin [9] study was used for collecting the malicious software data
set, which has been shared as an open resource. This data set contains 5560 applications from 179
different malware families. These samples were collected in a period from August 2010 to October
2012 [36,37]. Since applications added to Google Play Market in the benign dataset did not go through
a detailed analysis process to determine whether the applications in the benign data set were safe
or not, the safety was checked using the VirusTotal API [38]. VirusTotal was used in the studies of
AndroDialysis [20], Kang et al. [39], Ma et al. [40] and ICCDetector [41], which are available in the
literature to ensure the safety of the applications that are used in benign data sets. 158 applications were
found to be malicious by at least one antivirus program, namely the VirusTotal scanning, to sustain
safer applications in the data set. As a result, a summary of the data set obtained is shown in Table 1.

Table 1. Summary of data set created as per VirusTotal.

Data Set Type # Source

Malicious 5545 Drebin
Benign 1173 Google Play market

For the static analysis methods, information obtained from the permissions that the applications
use was utilized. In related works, API calls are also used as an attribute during static analysis; but
these were not included in this study because it involves source code analysis. The architecture of the
developed system is shown in Figure 1.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 4 of 19

3. Web-Based Android Malicious Software Detection and Classification System

The developed system uses the static analysis method for the analysis of Android applications.
The Android version used was chosen to be 4.1, due to the highest targetSdkVersion information of
the applications in the Drebin malware dataset [9] being 16. The reason for this selection is that the
permissions used by applications in the malicious dataset practice permissions that are present in the
Android 4.1 version. To create a benign application data set, Android applications of official
institutions in Turkey, other countries, and popular applications on the Google Play market were
downloaded by using the APKPure [35] web page. The APKPure web page is a platform for
downloading Android .apk files. By using this web page, 1,331 applications were manually
downloaded and a benign data set was created.

The data set created in the Drebin [9] study was used for collecting the malicious software data
set, which has been shared as an open resource. This data set contains 5560 applications from 179
different malware families. These samples were collected in a period from August 2010 to October
2012 [36,37]. Since applications added to Google Play Market in the benign dataset did not go through
a detailed analysis process to determine whether the applications in the benign data set were safe or
not, the safety was checked using the VirusTotal API [38]. VirusTotal was used in the studies of
AndroDialysis [20], Kang et al. [39], Ma et al. [40] and ICCDetector [41], which are available in the
literature to ensure the safety of the applications that are used in benign data sets. 158 applications
were found to be malicious by at least one antivirus program, namely the VirusTotal scanning, to
sustain safer applications in the data set. As a result, a summary of the data set obtained is shown in
Table 1.

Table 1. Summary of data set created as per VirusTotal.

Data Set Type # Source
Malicious 5545 Drebin

Benign 1173 Google Play market

For the static analysis methods, information obtained from the permissions that the applications
use was utilized. In related works, API calls are also used as an attribute during static analysis; but
these were not included in this study because it involves source code analysis. The architecture of the
developed system is shown in Figure 1.

Figure 1. Architecture of the developed system. Figure 1. Architecture of the developed system.

Appl. Sci. 2018, 8, 1622 5 of 19

The .apk files in the benign and malicious data sets were reverse engineered using the Apktool
tool. The permissions found in the AndroidManifest.xml file were obtained and then the permissions
that each application possessed were saved in the created database. In the third step, the permissions
found individually in the malicious and benign data sets were obtained. The percentage of availability
of these permissions for malicious and benign data sets was calculated. Lastly, the percentage of
availability for malicious software was subtracted from the percentage of availability for benign
software, and the value that we designated the malicious value was calculated. The formulated
representation of this process was shown in Equation (1).

Malicious Value of Permission = ∑n
i=0 MV_Malicious(t)−∑n

i=0 MV_Benign(t) (1)

The total malicious value of each application was obtained by adding and evaluating the malicious
values of the permissions that each application possesses. Additionally, the results of each application
in the VirusTotal database were obtained using the API of VirusTotal in this step. Here, the reason
for using VirusTotal to calculate the malicious values of applications is its ability to show the results
of more than 50 anti-virus programs [42], and it is used in security-based studies in the literature.
The studies of Ban et al. [43] and Wang et al. [15] can be given as examples of these studies. Google’s
subsidiary VirusTotal is a free online service that analyzes files and URLs that identify viruses, worms,
Trojans, and other malicious content, as detected by virus protection engines and website scanners [44].
There are four methods for analyzing Android applications with VirusTotal: the web page, VirusTotal
application installation tool, sending a mail and VirusTotal API. In this study, applications were
analyzed using VirusTotal API. VirusTotal integration was added with the idea of using it for the
purpose of the detection of non-new malware variants. When the literature was reviewed, it was
seen that VirusTotal has been used in many studies. The md5 hash code of the application analyzed
in the static analysis section of the Mobile-Sandbox study was compared with all the hashes in the
VirusTotal database. If the hash is found, the “detection rate” is calculated by dividing the number
of tools classifying the application as malicious by using the number of antivirus tools analyzing the
application [12,45]. In the study conducted by Ban et al., VirusTotal was used to determine whether
the applications used in the data set were malicious [43]. In the study of Wang et al., VirusTotal was
used to generate a data set of benign applications [15]. The VirusTotal score was not evaluated for the
final result, but it was used as a parameter at the point of determining whether the application was
malicious or not. The VirusTotal score is calculated for each application in this study. The formulated
form of this calculation is shown in Equations (2)–(4).

Total (MV) = ∑number of permission
i=0 Malicious Value of Permission (t) (2)

VirusTotalScore = (The Number of Antivirus Programs that Find The Application
Malicious/Total Antivirus Program Number) * 100

(3)

Final Malicious Value = (Total (MV) + VirusTotalScore)/2 (4)

A threshold value was determined using the final malicious values of the applications in the
benign and malicious data sets by using the Receiver Operating Characteristics curve. The receiver
operating characteristics curve is drawn as a graph calculated for different threshold values, with the
true positivity (sensitivity) rates on the vertical axis and the false positivity (1-specificity) rates on the
horizontal axis [46]. Figure 2 shows the curve of receiver operating characteristics represents excellent,
good and worthless tests.

Appl. Sci. 2018, 8, 1622 6 of 19

Appl. Sci. 2018, 8, x FOR PEER REVIEW 6 of 19

Figure 2. Comparison of receiver operating characteristics curves [47].

When Figure 2 is assessed, the area remaining under the curve represents an excellent test. If the
area under the curve is 0.5, it represents a worthless test. In the fifth step, the applications were
determined as being benign or malicious software based on this threshold value. The
Accord.Statistics.Analysis [48] library was used to calculate the threshold value through the receiver
operating characteristics curve. The algorithm of the piece of code used to determine the threshold
value by using this library, as shown in Figure 3. A web-based client was developed for evaluating
unknown Android applications. The server made by the Android application was subjected to some
steps; namely, reverse engineering, computing of the malicious value of the application, and
determining of the threshold value respectively. Then, the results of the analysis were saved in the
database and sent to the client.

Figure 3. The algorithm used to calculate the threshold value.

Figure 2. Comparison of receiver operating characteristics curves [47].

When Figure 2 is assessed, the area remaining under the curve represents an excellent
test. If the area under the curve is 0.5, it represents a worthless test. In the fifth step,
the applications were determined as being benign or malicious software based on this threshold
value. The Accord.Statistics.Analysis [48] library was used to calculate the threshold value through
the receiver operating characteristics curve. The algorithm of the piece of code used to determine the
threshold value by using this library, as shown in Figure 3. A web-based client was developed for
evaluating unknown Android applications. The server made by the Android application was subjected
to some steps; namely, reverse engineering, computing of the malicious value of the application, and
determining of the threshold value respectively. Then, the results of the analysis were saved in the
database and sent to the client.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 6 of 19

Figure 2. Comparison of receiver operating characteristics curves [47].

When Figure 2 is assessed, the area remaining under the curve represents an excellent test. If the
area under the curve is 0.5, it represents a worthless test. In the fifth step, the applications were
determined as being benign or malicious software based on this threshold value. The
Accord.Statistics.Analysis [48] library was used to calculate the threshold value through the receiver
operating characteristics curve. The algorithm of the piece of code used to determine the threshold
value by using this library, as shown in Figure 3. A web-based client was developed for evaluating
unknown Android applications. The server made by the Android application was subjected to some
steps; namely, reverse engineering, computing of the malicious value of the application, and
determining of the threshold value respectively. Then, the results of the analysis were saved in the
database and sent to the client.

Figure 3. The algorithm used to calculate the threshold value. Figure 3. The algorithm used to calculate the threshold value.

Appl. Sci. 2018, 8, 1622 7 of 19

When Figure 3 is considered, in order to use the ReceiverOperatingCharacteristic object,
it is essential that sequences allow the distinguishing of the benign and malicious applications,
and the sequences that hold the total values possessed by the benign and malicious applications
need to have been generated. These generated sequences were added as input to the
ReceiverOperatingCharacteristic method. In the next step, a threshold value curve with 100 coordinate
values was calculated. True positivity (sensitivity) and false positivity (1-specificity) scores of the
generated coordinate axes were calculated. Those with a true positive rate greater than 90 and a false
positive rate of lower than 15 were added to a list. The (100 - true positivity value) and false positivity
values of the members in this list were added. From among the members in the list, the one with the
lowest value for this was designated as the threshold value.

3.1. Obtaining of Application Information

Android apps are installed on phones together with .apk archive files. The information contained
in these .apk files is obtained using ready-made tools or libraries. In this study, version 2.2.2 of
Apktool was used to obtain the information in the AndroidManifest.xml file. On the C# Windows
Form application, an application which gets the permission information of Android applications
using Apktool has been developed. This application uses the System.Diagnostics.ProcessStartInfo
class in the C# library to run the command that Apktool uses for reverse engineering. Since there
are 6876 Android applications in total in the data set, parallel processes were used in order to make
the reverse engineering process faster. The application name, target SDK version, minimum SDK
version, and permissions were used, and file names that are available in the AndroidManifest.xml file
of these applications were registered in the database after the reverse engineering was finished for each
application in the benign and malicious data sets. In addition, malicious software family information
was registered in the database for the applications in the Drebin malicious data set.

3.2. Malicious and Benign Application Assessment Process

In this section, the evaluation process of benign and malicious applications in the datasets is
discussed. First, the singular permissions available in the malicious and benign data sets were found.
This resulted in 1323 different permissions to be found. Then, the number of occurrences of each
permission in the benign and malicious data sets was obtained. By using the number of occurrences
obtained, the rate of occurrences in the benign and malicious data sets were calculated. Finally, the rate
of occurrence in the benign data set was subtracted from the rate of occurrence in the benign data set
in order to obtain the malicious value for each permission.

3.3. Web Application

The developed Android malware detection system in this study runs according to the client-server
architecture. Because the transactions are conducted on the server side, there is no load generated
on the client side. On the client side, only the analysis result is shown. The most important reason
for performing server-side operations is that Android phone clients have limited resources, such as
battery, processor, and RAM. The capabilities of the developed web application include Google Play
integration, Apktool, VirusTotal, web scraping for APKPure, apkleecher [49] and apkbucket [50].
The application search interface of the developed web application is presented in Figure 4.

When looking at Figure 4, there are two options on the application splash screen: application
search and application download. In the search for application option, you will be able to search
for words on Google Play. A web-scraping method was used to do this. When the search button
in the application is clicked, the searched word is added at the end of https://play.google.com/
store/search?q=link, then &c=apps and the web page is web-scraped. To perform web scraping, it is
necessary to find the XPath in the information to be obtained. In this application, the information,
obtained from Google Play, is the official name and package name of the application being searched.
For example, if the searched word is “football”, the link to be used for web scraping should be https:

https://play.google.com/store/search?q= link
https://play.google.com/store/search?q= link
https://play.google.com/store/search?q=football&c=apps
https://play.google.com/store/search?q=football&c=apps

Appl. Sci. 2018, 8, 1622 8 of 19

//play.google.com/store/search?q=football&c=apps. To get a list of related applications according to
the searched word for this link, there is a need to find the XPath. To find the XPath, the relevant link
is entered into an Internet browser and the mouse is right clicked on the opened page. The XPath is
obtained by selecting the location of the application information on the incoming screen. An image
showing this operation is shown in Figure 5.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 8 of 19

For example, if the searched word is “football”, the link to be used for web scraping should be
https://play.google.com/store/search?q=football&c=apps. To get a list of related applications
according to the searched word for this link, there is a need to find the XPath. To find the XPath, the
relevant link is entered into an Internet browser and the mouse is right clicked on the opened page.
The XPath is obtained by selecting the location of the application information on the incoming screen.
An image showing this operation is shown in Figure 5.

Figure 4. The application search interface of the developed web application.

Figure 5. HTML labels used to determine the Xpath in Google Play.

When Figure 5 is analyzed, the line marked with red is the section where the application
information is located. The mouse is right-clicked on this marked section, then the Copy path is
clicked, and finally the XPath is obtained by selecting Copy XPath. Using the obtained XPath, the
image, package name, and application name information that the applications have will be obtained.
With the Search Applications option, Android applications can be searched for by application name,
application package name, or any desired words. In Figure 6, a search result based on the word
football is shown.

Figure 4. The application search interface of the developed web application.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 8 of 19

For example, if the searched word is “football”, the link to be used for web scraping should be
https://play.google.com/store/search?q=football&c=apps. To get a list of related applications
according to the searched word for this link, there is a need to find the XPath. To find the XPath, the
relevant link is entered into an Internet browser and the mouse is right clicked on the opened page.
The XPath is obtained by selecting the location of the application information on the incoming screen.
An image showing this operation is shown in Figure 5.

Figure 4. The application search interface of the developed web application.

Figure 5. HTML labels used to determine the Xpath in Google Play.

When Figure 5 is analyzed, the line marked with red is the section where the application
information is located. The mouse is right-clicked on this marked section, then the Copy path is
clicked, and finally the XPath is obtained by selecting Copy XPath. Using the obtained XPath, the
image, package name, and application name information that the applications have will be obtained.
With the Search Applications option, Android applications can be searched for by application name,
application package name, or any desired words. In Figure 6, a search result based on the word
football is shown.

Figure 5. HTML labels used to determine the Xpath in Google Play.

When Figure 5 is analyzed, the line marked with red is the section where the application
information is located. The mouse is right-clicked on this marked section, then the Copy path is clicked,
and finally the XPath is obtained by selecting Copy XPath. Using the obtained XPath, the image,
package name, and application name information that the applications have will be obtained. With the
Search Applications option, Android applications can be searched for by application name, application
package name, or any desired words. In Figure 6, a search result based on the word football is shown.

https://play.google.com/store/search?q=football&c=apps
https://play.google.com/store/search?q=football&c=apps

Appl. Sci. 2018, 8, 1622 9 of 19

Appl. Sci. 2018, 8, x FOR PEER REVIEW 9 of 19

Figure 6. User interface of the developed system showing the search results for the word “football”.

When Figure 6 is analyzed, the results are listed based on the searched word “football”. Analyses
were conducted by selecting the chosen applications from the list. If the application has already been
analyzed, the result is shown on the client side. If there was no analysis made earlier, the application
must be downloaded first to the server. For downloading, the application is downloaded from the
APKPure site first. A link such as “https://apkpure.com/Upload Name /package name/download?
from=details” is created for this process. The most important thing to note here is whether there is a
special character in the application name. Special characters in application names need to be replaced
with a hyphen “-” character. This link is used for web scraping on the relevant site. “// * [@ id=\”
download_link \”]” XPath is used for web scraping. This link should result in the “click here” link,
as shown in Figure 7, on the resulting web page.

Figure 6. User interface of the developed system showing the search results for the word “football”.

When Figure 6 is analyzed, the results are listed based on the searched word “football”. Analyses
were conducted by selecting the chosen applications from the list. If the application has already been
analyzed, the result is shown on the client side. If there was no analysis made earlier, the application
must be downloaded first to the server. For downloading, the application is downloaded from the
APKPure site first. A link such as “https://apkpure.com/UploadName/packagename/download?
from=details” is created for this process. The most important thing to note here is whether there is a
special character in the application name. Special characters in application names need to be replaced
with a hyphen “-” character. This link is used for web scraping on the relevant site. “// * [@ id=\”
download_link \”]” XPath is used for web scraping. This link should result in the “click here” link,
as shown in Figure 7, on the resulting web page.

https://apkpure.com/Upload Name /package name/download? from=details
https://apkpure.com/Upload Name /package name/download? from=details

Appl. Sci. 2018, 8, 1622 10 of 19

Appl. Sci. 2018, 8, x FOR PEER REVIEW 10 of 19

Figure 7. A sample .apk download link on APKPure web page.

If the application cannot be downloaded, the apkleecher site is used as a second alternative. For
this process, a link like “http://apkleecher.com/download/dl.php?dl=Packet Name” is created. This
link is used for web scraping on the relevant site. The XPath “//body//script[3]” is used for
downloading the link.

If the application cannot be downloaded, apkbucket is used as a third alternative. This process
has three steps. In the first step, a link, such as https://apkbucket.net/search?s=Packet Name, is
created. This link is used for web scraping on the relevant site. The XPath
“/html/body/div/div/div/div/div[1]/div[1]/div/div[3]/a” is used for the web scraping process. In the
second step, the XPath “//*[@id=\”downloadSection\”]/p[2]/a” is used for the web scraping process.
In the last step, the XPath “/html/body/div/div/div/div/div[1]/div[1]/div/div[2]/p[2]/strong/a” is used
for getting download the link.

After the application is downloaded, reverse engineering is performed using Apktool. With
reverse engineering, the name of the application, the package name, the permissions it uses, the
targetSdkVersion and minSdkVersion information are registered in the database. After this
information is obtained, information stored in the VirusTotal database is obtained using the
VirusTotal API. There are two main constraints: the size of the application should not be larger than
32,766 kilobytes, and the ability to make four queries per minute. If the Android application size is
larger than 32,766 kilobytes in the VirusTotal database, the registers will be used. However, if the
reverse is the case, the relevant sections will be assigned a −2 value to distinguish them in the database
of the relevant application, and the analysis result will only be shown by making an evaluation based
on the malicious score of the application. If the results of files with a size of smaller than 32,766
kilobytes are in the VirusTotal database, the registers will be used. However, if not, the application
is scanned using the VirusTotal API. This scanning process depends on the usage intensity of
VirusTotal and the file size. Therefore, whether the process is finished or not is checked every 3 min
using the scanning number assigned by VirusTotal. If this process takes more than 3 min, the result
of the analysis is shown only by evaluating the malicious score of the application, in order not to keep
the user waiting for too long. On the other hand, when the result from VirusTotal is obtained, it is
registered in the database. For the 48 applications whose sizes were larger than 32,766 kilobytes in
the benign and malicious data sets, the VirusTotal web page was visited and the application was
analyzed by manual downloading. Using the calculation method described above, the final malicious

Figure 7. A sample .apk download link on APKPure web page.

If the application cannot be downloaded, the apkleecher site is used as a second alternative.
For this process, a link like “http://apkleecher.com/download/dl.php?dl=PacketName” is created.
This link is used for web scraping on the relevant site. The XPath “//body//script[3]” is used for
downloading the link.

If the application cannot be downloaded, apkbucket is used as a third alternative.
This process has three steps. In the first step, a link, such as https://apkbucket.net/search?s=
PacketName, is created. This link is used for web scraping on the relevant site. The XPath
“/html/body/div/div/div/div/div[1]/div[1]/div/div[3]/a” is used for the web scraping process. In the
second step, the XPath “//*[@id=\”downloadSection\”]/p[2]/a” is used for the web scraping process.
In the last step, the XPath “/html/body/div/div/div/div/div[1]/div[1]/div/div[2]/p[2]/strong/a” is
used for getting download the link.

After the application is downloaded, reverse engineering is performed using Apktool.
With reverse engineering, the name of the application, the package name, the permissions it uses,
the targetSdkVersion and minSdkVersion information are registered in the database. After this
information is obtained, information stored in the VirusTotal database is obtained using the VirusTotal
API. There are two main constraints: the size of the application should not be larger than 32,766
kilobytes, and the ability to make four queries per minute. If the Android application size is larger
than 32,766 kilobytes in the VirusTotal database, the registers will be used. However, if the reverse is
the case, the relevant sections will be assigned a −2 value to distinguish them in the database of the
relevant application, and the analysis result will only be shown by making an evaluation based on the
malicious score of the application. If the results of files with a size of smaller than 32,766 kilobytes
are in the VirusTotal database, the registers will be used. However, if not, the application is scanned
using the VirusTotal API. This scanning process depends on the usage intensity of VirusTotal and the
file size. Therefore, whether the process is finished or not is checked every 3 min using the scanning
number assigned by VirusTotal. If this process takes more than 3 min, the result of the analysis is
shown only by evaluating the malicious score of the application, in order not to keep the user waiting
for too long. On the other hand, when the result from VirusTotal is obtained, it is registered in the
database. For the 48 applications whose sizes were larger than 32,766 kilobytes in the benign and

http://apkleecher.com/download/dl.php?dl=Packet Name
https://apkbucket.net/search?s=Packet Name
https://apkbucket.net/search?s=Packet Name

Appl. Sci. 2018, 8, 1622 11 of 19

malicious data sets, the VirusTotal web page was visited and the application was analyzed by manual
downloading. Using the calculation method described above, the final malicious value of the application
can be obtained. If this value is greater than the threshold value determined by the receiver operation
characteristics curve, the application is considered to be malicious. If it is smaller than threshold value,
the the application is considered to be benign and the result is shown to the client.

In the Install application option, the Android application on the client side is downloaded to the
server for analysis. The Android application in the local file system is loaded on the server, and then
the process, starting with the reverse engineering phase, mentioned in the application search option
is implemented. After the subprocesses described in the application search and application install
process are finalized, the analysis results are shown in Figure 8.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 11 of 19

value of the application can be obtained. If this value is greater than the threshold value determined
by the receiver operation characteristics curve, the application is considered to be malicious. If it is
smaller than threshold value, the the application is considered to be benign and the result is shown
to the client.

In the Install application option, the Android application on the client side is downloaded to the
server for analysis. The Android application in the local file system is loaded on the server, and then
the process, starting with the reverse engineering phase, mentioned in the application search option
is implemented. After the subprocesses described in the application search and application install
process are finalized, the analysis results are shown in Figure 8.

Figure 8. User interface showing the results of the application analysis.

Examining Figure 8, the result of the analysis shows the name of the application, the package
name, the version of Android it runs on, the permissions it requests, and two analysis results. The
calculation method used by the first analysis result in the evaluation based on the permissions found
in the benign and malicious data sets. The calculation method used by the second analysis result,
however, is the calculation that VirusTotal has added to the calculation used in the first analysis
method. Furthermore, the user is provided with the date information of the scan made on VirusTotal.

4. Results and Discussion

In this study, 5545 malicious applications from the Drebin data set and 1173 benign applications
manually downloaded from the Google Play market were employed. In the developed web
application, users can analyze any application based on the model created by using the information
of the applications in the datasets. The permissions that the applications in the benign data set use
and number of uses are shown in Table 2.

Figure 8. User interface showing the results of the application analysis.

Examining Figure 8, the result of the analysis shows the name of the application, the package name,
the version of Android it runs on, the permissions it requests, and two analysis results. The calculation
method used by the first analysis result in the evaluation based on the permissions found in the benign
and malicious data sets. The calculation method used by the second analysis result, however, is the
calculation that VirusTotal has added to the calculation used in the first analysis method. Furthermore,
the user is provided with the date information of the scan made on VirusTotal.

4. Results and Discussion

In this study, 5545 malicious applications from the Drebin data set and 1173 benign applications
manually downloaded from the Google Play market were employed. In the developed web application,
users can analyze any application based on the model created by using the information of the
applications in the datasets. The permissions that the applications in the benign data set use and
number of uses are shown in Table 2.

Appl. Sci. 2018, 8, 1622 12 of 19

Table 2. 10 permissions used most in benign data set.

Permission Name Total

android.permission.INTERNET 1306
android.permission.ACCESS_NETWORK_STATE 1142
android.permission.WRITE_EXTERNAL_STORAGE 930

android.permission.WAKE_LOCK 774
com.google.android.c2dm.permission.RECEIVE 679
android.permission.ACCESS_FINE_LOCATION 533

android.permission.VIBRATE 520
android.permission.ACCESS_COARSE_LOCATION 492

android.permission.GET_ACCOUNTS 473
android.permission.ACCESS_WIFI_STATE 462

When Table 2 is examined, the most commonly used permission is the INTERNET permission, found
in 1173 benign data sets. Thus, almost all applications require the use of the Internet. The permissions
that the applications in the malicious data set use and number of uses are shown in Table 3.

Table 3. 10 permissions used most in malicious data set.

Permission Name Total

android.permission.INTERNET 5332
android.permission.READ_PHONE_STATE 4939

android.permission.WRITE_EXTERNAL_STORAGE 3722
android.permission.ACCESS_NETWORK_STATE 3677

android.permission.SEND_SMS 2992
android.permission.RECEIVE_BOOT_COMPLETED 2671

android.permission.ACCESS_WIFI_STATE 2430
android.permission.RECEIVE_SMS 2135
android.permission.WAKE_LOCK 2128

android.permission.READ_SMS 2081

When Table 3 is analyzed, the most commonly used permission in the malicious data
set is the INTERNET permission, as in the case of the benign data set. The INTERNET,
READ_PHONE_STATE, WAKE_LOCK, WRITE_EXTERNAL_STORAGE, ACCESS_WIFI_STATE,
and ACCESS_NETWORK_STATE permissions are common in the 10 permissions most commonly
used in both the malicious and benign data sets. It is considered that it is natural for the permissions
INTERNET, ACCESS_WIFI_STATE and ACCESS_NETWORK_STATE to be common in both benign
and malicious data sets, since these permissions authorize the application to use the Internet.
In addition, READ_PHONE_STATE, WRITE_EXTERNAL_STORAGE, SEND_SMS, RECEIVE_SMS,
and READ_SMS permissions are common in the permissions that Android has identified as dangerous
permissions, and in the 10 most used permissions in the malicious data sets. Table 4 shows some of the
results obtained as a result of the transactions carried out.

Appl. Sci. 2018, 8, 1622 13 of 19

Table 4. Permissions with the highest and lowest malicious value.

Permission Name Number of Occurrences
in Malicious Data Set

Number of Occurrences
in Benign Data Set

Rate of Occurrences in
Malicious Data Set (%)

Rate of Occurrences in
Benign Data Set (%) Malicious Value

android.permission.READ_PHONE_STATE 4939 369 89 28 61
android.permission.SEND_SMS 2992 33 54 2 52
android.permission.READ_SMS 2081 27 38 2 36

android.permission.RECEIVE_SMS 2135 51 39 4 35
android.permission.RECEIVE_BOOT_COMPLETED 2671 296 48 22 26

com.android.launcher.permission.INSTALL_SHORTCUT 1414 55 26 4 22
android.permission.WRITE_SMS 1239 8 22 1 21

android.permission.CAMERA 227 274 4 21 −17
android.permission.READ_EXTERNAL_STORAGE 333 301 6 23 −17
android.permission.ACCESS_NETWORK_STATE 3677 1142 66 86 −20

android.permission.WAKE_LOCK 2128 774 38 58 −20
com.google.android.providers.gsf.permission.READ_GSERVICES 1 289 0 22 −22

android.permission.GET_ACCOUNTS 443 473 8 36 −28
com.google.android.c2dm.permission.RECEIVE 380 679 7 51 −44

Appl. Sci. 2018, 8, 1622 14 of 19

When examining Table 4, the READ_PHONE_STATE permission is the one with the highest
malicious value. This permission is followed by SEND_SMS, READ_SMS, RECEIVE_SMS and
RECEIVE_BOOT_COMPLETED permissions. READ_PHONE_STATE, SEND_SMS, RECEIVE_SMS,
READ_SMS, and READ_CONTACTS are also permissions in common with the permissions that
Android has identified as dangerous permissions.

The confusion matrix is used to calculate the evaluation results. Accuracy, error rate, true positive
rate, false positive rate, true negative rate and false negative rate equations are shown below.

Accuracy: (TN + TP)/Total (5)

Error Rate: 1 − Accuracy (6)

True Positive Rate: TP/(FN + TP) (7)

False Positive Rate: FP/(TN + FP) (8)

True Negative Rate: TN/(TN + FP) (9)

False Negative Rate: FN/(FN + TP) (10)

True Positive (TP), number of malware applications that are classified truly as malware. False
Negative (FN), number of malware applications that are classified incorrectly as benign. False Positive
(FP), number of benign applications that are classified incorrectly as malware. True Negative (TN),
number of benign applications that are classified truly as benign.

In this study, different methods were used to evaluate benign and malicious data sets. The first
method is the evaluation based on 197 permissions that the applications possess in the data sets that
are available in Android version of 4.1. In this method, while the malicious values of the applications
are calculated, the permissions, except for these 197 permissions, are ignored. The malicious values
of the apps are calculated by adding the malicious values of the Android 4.1 permissions that the
applications possess. The results obtained based on this evaluation are shown in Table 5.

Table 5. Results of evaluation based on the permissions in Android version 4.1.

Number of
Correct Detection

Number of False
Detection

Rate of Correct
Detection (%)

Rate of False
Detection (%)

Benign Data Set 1106 67 94.29 5.71
Malicious Data Set 5136 409 92.62 7.38

Overall 6242 476 92.91 7.09

When Table 5 is examined, the correct detection rate of the benign data set according to the
relevant evaluation is 94.29%. The correct detection rate in the malicious dataset is 92.62%. The overall
correct detection rate is 92.91%, and the overall false detection rate is 7.09%.

The second method is an evaluation based on the permissions used by the applications in the
benign and malicious data sets. In this method, the malicious values of the applications are calculated
by adding the malicious values of the permissions the applications possess. The result obtained based
on this evaluation is shown in Table 6.

Table 6. Evaluation results based on the permissions the applications in the data sets possess.

Number of
Correct Detection

Number of False
Detection

Rate of Correct
Detection (%)

Rate of False
Detection (%)

Benign Data Set 1129 44 96.25 3.75
Malicious Data Set 5164 381 93.13 6.87

Overall 6293 425 93.67 6.33

Appl. Sci. 2018, 8, 1622 15 of 19

When Table 6 is examined, the correct detection rate of the benign data set according to relevant
evaluation is 96.25%. The correct detection rate in the malicious dataset is 93.13%. The overall correct
detection rate is 93.67%, and the overall false detection rate is 6.33%.

The third method is the evaluation in which the malicious values of the applications are calculated
by using the VirusTotal values of the applications and the first method. That is, it is the evaluation made
using VirusTotal values of the applications in the benign and malicious data sets and 197 permissions
and applications in Android version 4.1. The obtained results based on this evaluation are shown in
Table 7.

Table 7. Evaluation results based on the permissions in Android 4.1 and VirusTotal.

Number of
Correct Detection

Number of False
Detection

Rate of Correct
Detection (%)

Rate of False
Detection (%)

Benign Data Set 1136 37 96.85 3.15
Malicious Data Set 5406 139 97.49 2.51

Overall 6542 176 97.38 2.62

When Table 7 is examined, the correct detection rate of the benign data set according to relevant
evaluation is 96.85%. The correct detection rate in the malicious dataset is 97.49%. The overall correct
detection rate is 97.38% and the overall false detection rate is 2.62%.

The fourth method is the evaluation in which the malicious values of the applications are
calculated using the VirusTotal values of the applications and the second method. That is, it is
the evaluation made using the VirusTotal values of the permissions and the applications that the
applications in benign and malicious data sets use. The results obtained based on this evaluation are
shown in Table 8.

Table 8. Evaluations results based on the permissions in the data sets and VirusTotal.

Number of
Correct Detection

Number of False
Detection

Rate of Correct
Detection (%)

Rate of False
Detection (%)

Benign Data Set 1151 22 98.12 1.88
Malicious Data Set 5407 138 97.51 2.49

Overall 6558 160 97.62 2.38

When Table 8 is examined, the correct detection rate of the benign data set according to the
relevant evaluation is 98.12%. The correct detection rate in the malicious dataset is 97.51%. The overall
correct detection rate is 97.62%, and the overall false detection rate is 2.38%. Among these four
methods, the method with the highest performance rate is the method using the permissions in benign
and malicious data sets together with VirusTotal. The use of VirusTotal in the calculation method
increased the success of the system as seen in the results given above. Moreover, evaluation based
on permissions on the specified Android version was the least effective method. It is believed that
this is the result of the exclusion of special permissions and the permissions released after Android
version 4.1. The comparison of the developed system with studies using the static analysis method in
the literature is shown in Table 9.

When Table 9 is examined, permissions and API calls are used as attributes in general. Genom
and Drebin data sets have been commonly preferred for the evaluation of the proposed tools or
methods in literature. The detection rate of malicious applications was used as an evaluation criterion.
The proposed tools or methods were applied to both the malicious and the benign data sets. The success
rates vary between 80% and 99.2%. Our study differs from the others because users can easily analyze
Android applications by using our developed web application, and we used a web-scraping technique.

Appl. Sci. 2018, 8, 1622 16 of 19

Table 9. Comparison of static analysis methods.

Studies Attributes Dataset Success Rate (%)

DroidMat [7] Permissions and API calls
238 Malicious Data Sets

97.87%1500 Benign Data Sets

Drebin [9] Android Manifest File and source
codes

Drebin Malicious Data Set
94%123,453 Benign Data Sets

Kayabasi [37] Permissions and API calls
Drebin Malicious Data Set

99.20%1400 Benign Data Sets

APK Auditor [11] Permissions
Drebin and Genome

88.28%Malicious Data Set
1853 Benign Data Sets

Wang et al. [15] Permissions, intentions, API calls,
hardware features and info on coding

8701 Malicious Data Sets 99.39% for Malicious
Data Set107,327 Benign Data Sets

Wu et al. [51] DexFile andAPI calls
1050 Malicious Data Sets

97.66%1160 Benign Data Sets

Arslan et al. [18] Dexfile and Permissions
50 Malicious Data Sets 97.62% For Malicious

Data Set

25 Benign Data Sets 80% for Benign Data Set

The developed system (based on
permissions in Android 4.1 and VirusTotal) Permissions

Drebin Malicious Data Sets
97.38%1173 Benign Data Sets

The developed system (based on the
permissions in data sets and VirusTotal) Permissions

Drebin Malicious Data Sets
97.62%1173 Benign Data Sets

5. Conclusions

In this study, the proposed system was developed to detect malicious applications independently
from mobile device resources. The performances of the four different calculation models on the
applications were tested with benign and malicious data sets. The highest success rate of these four
calculation methods was the calculation method in which the permissions in the benign and malicious
data sets were used together with VirusTotal, with a rate of 97.62%. The calculation method that
demonstrated the lowest success rate of 92.91% was the calculation method that made the evaluation
based on the permissions in Android Version 4.1. It is seen that the reason behind this failure is that it
ignores the special permissions and permissions released after that Android version.

The most successful calculation model was applied to the proposed detection systems based on
the client-server architecture to analyze applications that are not known to be benign or malicious.
The users are able to analyze any Android application by uploading or searching in markets without
installing the application on their mobile devices. Thus, possible impacts of the malicious applications
on the mobile devices can be prevented in advance.

Within the framework of this study, it is important to ensure the use of the static analysis method,
as well as the usage of other features found in the .apk file, in the remediation efforts of the system.
For future studies, it is planned to conduct a study which analyzes the proposed system that is
supported by dynamic analysis techniques, along with the static ones, to improve the accuracy of the
developed system.

Author Contributions: Project administration, İ.A.D.; Software, İ.A.D. and Ö.K.; Writing—original draft, İ.A.D.
and Ö.K.; Writing—review & editing, İ.A.D. and Ö.K.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. IDC. Smartphone OS. Available online: https://www.idc.com/promo/smartphone-market-share/os
(accessed on 20 August 2018).

2. G DATA. G DATA Mobile Malware Report H1 2016. Available online: https://file.gdatasoftware.com/web/en/
documents/whitepaper/G_DATA_Mobile_Malware_Report_H1_2016_EN.pdf (accessed on 20 August 2018).

3. Cunningham, E. Keeping You Safe with Google Play Protect. Available online: https://blog.google/
products/android/google-play-protect/ (accessed on 20 August 2018).

https://www.idc.com/promo/smartphone-market-share/os
https://file.gdatasoftware.com/web/en/documents/whitepaper/G_DATA_Mobile_Malware_Report_H1_2016_EN.pdf
https://file.gdatasoftware.com/web/en/documents/whitepaper/G_DATA_Mobile_Malware_Report_H1_2016_EN.pdf
https://blog.google/products/android/google-play-protect/
https://blog.google/products/android/google-play-protect/

Appl. Sci. 2018, 8, 1622 17 of 19

4. Android. Google Play Protect. Available online: https://www.android.com/play-protect/ (accessed on
20 August 2018).

5. Google Play. Available online: https://play.google.com/store (accessed on 20 August 2018).
6. Android Developers. Distribution Dashboard. Available online: https://developer.android.com/about/

dashboards/index.html (accessed on 20 August 2018).
7. Wu, D.J.; Mao, C.H.; Wei, T.E.; Lee, H.M.; Wu, K.P. Droidmat: Android malware detection through manifest

and api calls tracing. In Proceedings of the Seventh Asia Joint Conference on Information Security, Tokyo,
Japan, 9–10 August 2012.

8. Apktool. A Tool for Reverse Engineering Android Apk Files. Available online: https://ibotpeaches.github.
io/Apktool/ (accessed on 20 August 2018).

9. Arp, D.; Spreitzenbarth, M.; Hubner, M.; Gascon, H.; Rieck, K. DREBIN: Effective and Explainable Detection
of Android Malware in Your Pocket. In Proceedings of the Network and Distributed System Security
Symposium (NDSS), San Diego, CA, USA, 23–26 February 2014.

10. Wang, Z.; Chenlong, L.; Zhenlong, Y.; Guan, Y.; Xue, Y. DroidChain: A novel Android malware detection
method based on behaviour chains. Pervasive Mob. Comput. 2016, 32, 3–14. [CrossRef]

11. Kabakus, A.T.; Dogru, I.A.; Cetin, A. APK Auditor: Permission-based Android malware detection system.
Digit. Investig. 2015, 13, 1–14.

12. Kiraz, O.; Dogru, I.A. Android Malware Detection Systems Review. Duzce Univ. J. Sci. Technol. 2017, 5, 281–298.
13. Narayanan, A.; Liu, Y.; Chen, L.; Liu, J. Adaptive and Scalable Android Malware Detection through Online

Learning. In Proceedings of the International Joint Conference on Neural Networks (IJCNN), Vancouver, BC,
Canada, 24–29 July 2016.

14. Song, J.; Han, C.; Wang, K.; Zhao, J.; Ranjan, R.; Wang, L. An integrated static detection and analysis
framework for android. Pervasive Mob. Comput. 2016, 32, 15–25. [CrossRef]

15. Wang, W.; Li, Y.; Wang, X.; Liu, J.; Zhang, X. Detecting android malicious apps and categorizing benign apps
with ensemble of classifiers. Future Gener. Comput. Syst. 2017, 78, 987–994. [CrossRef]

16. Sokolova, K.; Perez, C.; Lemercier, M. Android Application Classification and Anomaly Detection with
Graph-based Permission Patterns. Decis. Support Syst. 2017, 93, 62–76. [CrossRef]

17. Anwar, S.; Zain, J.M.; Inayat, Z.; Karim, A.; Haq, R.U.; Jabir, A.N. A Static Approach towards Mobile Botnet
Detection. In Proceedings of the 3rd International Conference on Electronic Design (ICED), Phuket, Thailand,
11–12 August 2016.

18. Arslan, R.S.; Dogru, I.A.; Barisci, N. Permisson Comparison Based Malware Detection System for Android
Mobile Applications. J. Polytech. 2017, 20, 175–189.

19. Dex2jar. Tools to Work with Android .dex and java .class Files. Available online: https://github.com/
pxb1988/dex2jar (accessed on 20 August 2018).

20. Feizollah, A.; Anuar, N.B.; Salleh, R.; Suarez-Tangil, G.; Furnell, S. AndroDialysis: Analysis of Android Intent
Effectiveness in Malware Detection. Comput. Secur. 2016, 65, 121–134. [CrossRef]

21. Kang, H.; Jang, J.-W.; Mohaisen, A.; Kim, H.K. Detecting and Classifying Android Malware Using Static
Analysis along with Creator Information. Int. J. Distrib. Sens. Netw. 2015, 1–9. [CrossRef]

22. Goyal, R.; Spognardi, A.; Dragoni, N.; Argyriou, M. SafeDroid: A Distributed Malware Detection Service
for Android. In Proceedings of the IEEE 9th International Conference on Service-Oriented Computing and
Applications (SOCA), Macau, China, 4–6 November 2016.

23. Utku, A.; Dogru, I.A. Permission based Detection System for Android Malware. J. Fac. Eng. Archit. Gazi Univ.
2017, 32, 1015–1024.

24. Atici, M.A.; Sagiroglu, S.; Dogru, I.A. Android malware analysis approach based on control flow graphs and
machine learning algorithms. In Proceedings of the 4th International Symposium on Digital Forensic and
Security (ISDFS), Little Rock, AR, USA, 25–27 April 2016.

25. Shabtai, A.; Tenenboim-Chekina, L.; Mimran, D.; Rokach, L.; Shapira, B.; Elovici, Y. Mobile malware detection
through analysis of deviations in application network behavior. Comput. Secur. 2014, 43, 1–18. [CrossRef]

26. Heuser, S.; Negro, M.; Pendyala, P.K.; Sadeghi, A.-R. DroidAuditor: Forensic Analysis of Application-Layer
Privilege Escalation Attacks on Android. In Proceedings of the Financial Cryptography and Data Security
(FC 2016), Christ Church, Barbados, 26 February 2016.

27. Jang, J.-W.; Yun, J.; Mohaisen, A.; Woo, J.; Kim, H.K. Detecting and classifying method based on similarity
matching of Android malware behavior with profile. SpringerPlus 2016, 5, 1–23. [CrossRef] [PubMed]

https://www.android.com/play-protect/
https://play.google.com/store
https://developer.android.com/about/dashboards/index.html
https://developer.android.com/about/dashboards/index.html
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
http://dx.doi.org/10.1016/j.pmcj.2016.06.018
http://dx.doi.org/10.1016/j.pmcj.2016.03.003
http://dx.doi.org/10.1016/j.future.2017.01.019
http://dx.doi.org/10.1016/j.dss.2016.09.006
https://github.com/pxb1988/dex2jar
https://github.com/pxb1988/dex2jar
http://dx.doi.org/10.1016/j.cose.2016.11.007
http://dx.doi.org/10.1155/2015/479174
http://dx.doi.org/10.1016/j.cose.2014.02.009
http://dx.doi.org/10.1186/s40064-016-1861-x
http://www.ncbi.nlm.nih.gov/pubmed/27006882

Appl. Sci. 2018, 8, 1622 18 of 19

28. Garg, S.; Peddoju, S.K.; Sarje, A.K. Network-based detection of Android malicious apps. Int. J. Inf. Secur.
2016, 16, 385–400. [CrossRef]

29. Chang, W.-L.; Sun, H.-M.; Wu, W. An Android Behavior-Based Malware Detection Method using Machine
Learning. In Proceedings of the 2016 IEEE International Conference on Signal Processing, Communications
and Computing (ICSPCC), Hong Kong, China, 5–8 August 2016.

30. Lantz, P. An Android application sandbox for dynamic analysis. Bachelor’s Thesis, Department of Electrics
and Information Technologies, Lund University, Lund, Sweden, November 2011.

31. Shi, Y.; You, W.; Qian, K.; Bhattacharya, P.; Qian, Y. A Hybrid Analysis for Mobile Security Threat Detection.
In Proceedings of the IEEE 7th Annual Ubiquitous Computing, Electronics & Mobile Communication
Conference (UEMCON 2016), New York, NY, USA, 20–22 October 2016.

32. Cole, Y.; Zhang, H.; Ge, L.; Wei, S.; Yu, W.; Lu, C.; Chen, G.; Shen, D.; Blasch, E.; Pham, K.D. ScanMe Mobile:
A Local and Cloud Hybrid Service for Analyzing APKs. In Proceedings of the Research in Adaptive and
Convergent Systems (RACS 2015), Prague, Czech Republic, 9–12 October 2015.

33. Singh, S.; Mishra, B.; Singh, S. Detecting Intelligent Malware on Dynamic Android Analysis Environments.
In Proceedings of the 10th International Conference for Internet Technology and Secured Transactions
(ICITST 2015), London, UK, 14–16 December 2015.

34. Wang, H.; Guo, Y.; Tang, Z.; Bai, G.; Chen, X. Re-evaluating Android Permission Gaps with Static and
Dynamic Analysis. In Proceedings of the IEEE Global Communications Conference (GLOBECOM 2015), San
Diego, CA, USA, 6–10 December 2015.

35. Apkpure. Available online: https://apkpure.com/ (accessed on 20 August 2018).
36. The Drebin Dataset. Available online: https://www.sec.cs.tu-bs.de/~danarp/drebin/ (accessed on

20 August 2018).
37. Kayabasi, G. Classification of Android Applications through Permission Based Static Analysis. Bachelor’s

Thesis, Gazi University, Institute of Science, Ankara, Turkey, December 2016.
38. VirusTotal. VirusTotal Public API v2.0. Available online: https://www.virustotal.com/en/documentation/

public-api (accessed on 20 August 2018).
39. Kang, B.; Yerima, S.Y.; McLaughlin, K.; Sezer, S. N-opcode Analysis for Android Malware Classification and

Categorization. In Proceedings of the International Conference on Cyber Security and Protection of Digital
Services (Cyber Security 2016), London, UK, 13–14 June 2016.

40. Ma, L.; Wang, X.; Yang, Y.; He, J. Ultra-lightweight Malware Detection of Android Using 2-level Machine
Learning. In Proceedings of the 3rd International Conference on Information Science and Control Engineering
(ICISCE 2016), Beijing, China, 8–10 July 2016.

41. Xu, K.; Li, Y.; Deng, R.H. ICCDetector: ICC-Based Malware Detection on Android. IEEE Trans. Inf. Forensics
Secur. 2016, 11, 1252–1264. [CrossRef]

42. Shehu, Z.; Ciccotelli, C.; Ucci, D.; Aniello, L.; Baldoni, R. Towards the Usage of Invariant-based App
Behavioral Fingerprinting for the Detection of Obfuscated Versions of Known Malware. In Proceedings
of the 10th International Conference on Next Generation Mobile Applications, Security and Technologies
(NGMAST 2016), Cardiff, UK, 24–26 August 2016.

43. Ban, T.; Takahashi, T.; Guo, S.; Inoue, D.; Nakao, K. Integration of Multi-modal Features for Android Malware
Detection Using Linear SVM. In Proceedings of the 11th Asia Joint Conference on Information Security
(AsiaJCIS 2016), Fukuoka, Japan, 4–5 August 2016.

44. VirusTotal, About VirusTotal. Available online: https://virustotal.com/en/about/ (accessed on
20 August 2018).

45. Spreitzenbarth, M.; Schreck, T.; Echtler, F.; Arp, D.; Hoffmann, J. Mobile-Sandbox: Combining static and
dynamic analysis with machine-learning techniques. Int. J. Inf. Secur. 2014, 14, 141–153. [CrossRef]

46. Tomak, L.; Bek, Y. Operation Characteristics Curve and Comparison of Regions under Curve. J. Exp. Clin. Med.
2009, 27, 58–65. [CrossRef]

47. University of Nebraska Medical Center. The Area under an ROC Curve. Available online: http://gim.unmc.
edu/dxtests/roc3.htm (accessed on 20 August 2018).

48. Accord.NET Framework. Accord.Statistics.Analysis Namespace. Available online: http://accord-
framework.net/docs/html/N_Accord_Statistics_Analysis.htm (accessed on 20 August 2018).

49. Apkleecher.com. Available online: http://apkleecher.com/ (accessed on 20 August 2018).

http://dx.doi.org/10.1007/s10207-016-0343-z
https://apkpure.com/
https://www.sec.cs.tu-bs.de/~danarp/drebin/
https://www.virustotal.com/en/documentation/public-api
https://www.virustotal.com/en/documentation/public-api
http://dx.doi.org/10.1109/TIFS.2016.2523912
https://virustotal.com/en/about/
http://dx.doi.org/10.1007/s10207-014-0250-0
http://dx.doi.org/10.5835/jecm.omu.27.02.008
http://gim.unmc.edu/dxtests/roc3.htm
http://gim.unmc.edu/dxtests/roc3.htm
http://accord-framework.net/docs/html/N_Accord_Statistics_Analysis.htm
http://accord-framework.net/docs/html/N_Accord_Statistics_Analysis.htm
http://apkleecher.com/

Appl. Sci. 2018, 8, 1622 19 of 19

50. APKBucket. Available online: https://apkbucket.net/ (accessed on 20 August 2018).
51. Wu, S.; Wang, P.; Li, X.; Zhang, Y. Effective Detection of Android Malware Based on the Usage of Data Flow

APIs and Machine Learning. Inf. Softw. Technol. 2016, 75, 17–25. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://apkbucket.net/
http://dx.doi.org/10.1016/j.infsof.2016.03.004
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Studies
	Static Analysis Method
	Dynamic Analysis Method
	Hybrid Analysis Method

	Web-Based Android Malicious Software Detection and Classification System
	Obtaining of Application Information
	Malicious and Benign Application Assessment Process
	Web Application

	Results and Discussion
	Conclusions
	References

