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Featured Application: The proposed method is used in biometric feature recognition of people.

Abstract: Image-based age estimation is a challenging task since there are ambiguities between the
apparent age of face images and the actual ages of people. Therefore, data-driven methods are popular.
To improve data utilization and estimation performance, we propose an image-based age estimation
method. Theoretically speaking, the key idea of the proposed method is to integrate multi-modal
features of face images. In order to achieve it, we propose a multi-modal learning framework,
which is called Multiple Network Fusion with Low-Rank Representation (MNF-LRR). In this process,
different deep neural network (DNN) structures, such as autoencoders, Convolutional Neural
Networks (CNNs), Recursive Neural Networks (RNNs), and so on, can be used to extract semantic
information of facial images. The outputs of these neural networks are then represented in a low-rank
feature space. In this way, feature fusion is obtained in this space, and robust multi-modal image
features can be computed. An experimental evaluation is conducted on two challenging face datasets
for image-based age estimation extracted from the Internet Move Database (IMDB) and Wikipedia
(WIKI). The results show the effectiveness of the proposed MNF-LRR.

Keywords: age estimation; multi-modal features; deep learning; low-rank representation

1. Introduction

Image-based age estimation tries to compute the age or age group with facial images. It can be
widely used in many applications such as biometric feature recognition, human–computer interaction
(HCI), and so on. Although a number of studies have been conducted [1–3], image-based age estimation
is still a challenging task due to the following aspects. First, it often lacks sufficient training samples
since each person may be captured by several images in a wide range of ages. Second, facial appearance
may not indicate the age accurately since some people may look younger than they actually are and
some people may look older. Third, facial images are often captured in wild conditions so they are
influenced by large variations such as occlusion, lighting, shadow, and complex backgrounds.

Similar to many other applications of computer vision, most existing image-based age estimation
approaches focus on two key stages: feature description and feature mapping. Feature description
tries to represent facial images without losing details. Traditional methods usually uses texture
features or shape features, such as the active appearance model (AAM) [4], holistic subspace
features [5,6], local binary patterns (LBPs) [7], Gabor wavelets [4], bio-inspired features (BIFs) [8],
and so on. However, most of them make use of hand-crafted features. In this way, strong prior
knowledge is required. To solve this problem, learning-based feature descriptors [9,10] have been
proposed to compute descriptive features directly from images. Recently, neural networks have
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been efficient in exploring descriptive representations in natural images, such as autoencoders [11],
Convolutional Neural Networks (CNNs) [12], and so on. Among these methods, Liu et al. proposed
group-aware deep feature learning (GA-DFL) to estimate ages with facial images [13]. Different from
most previous methods using hand-crafted features for facial image description, GA-DFL uses a deep
CNN framework to compute a discriminative feature descriptor per image automatically from raw
pixels of facial images. Although a large number of feature descriptors have been proposed, most of
them can only describe a part of the information inherent in images. Therefore, researchers look into
representing images with multiple features. Traditional methods make use of multiple features by
directly concatenating them, which is oversimplified. To solve this problem, researchers also apply
manifold learning to combine different types of features [14,15].

On the other hand, feature mapping tries to learn the mapping relationship from face images
to age labels. With descriptive representations of facial images, age estimation is usually considered
as a regression or classification problem [5,16]. Linear regression and twin Gaussian processes are
also used for pose estimation [17,18]. Tian et al. proposed conducting age estimation by taking
both ordinality and locality into consideration [19]. Previous approaches made an over-simplified
assumption that the mapping from images into poses is linear. To tackle this nonlinear issue,
methods based on deep learning have been applied. They can train a series of nonlinear mapping
models [20–24]. However, these models cannot explicitly define the ordinal relationship between facial
images and chronological ages, because they usually suffer from insufficient and unbalanced training
data. In this way, they still cannot be used in practical scenarios.

Although many methods for age estimation with images have been proposed, they usually use
only a single type of feature. Even with popular neural networks, they apply only a single structure of
neural networks, which still suffers the so-called “semantic gap”. Currently, multiple types of features
have been used in many applications. Inspired by it, we proposed a Multiple Network Fusion with
Low-Rank Representation (MNF-LRR) for the age estimation method. The contributions of this paper
can be summarized by the following:

• The first and key contribution is a novel framework that estimates ages with a single image by
fusing multiple deep neural networks. This framework is flexible and the hidden representations
are computed independently. In this way, different types of neural networks, different network
structures, and different features can be used in this framework.

• The second contribution of the proposed method is multiple-network fusion with low-rank
learning. Low-rank representation is naturally sparse. Besides, different types of features are
extracted by different networks and their distributions can be observed clearly. To improve
traditional low-rank learning, we introduce a hypergraph manifold. In this way, samples can be
represented in a unified low-rank space and the process of fusion can be achieved in this space.

• The third contribution is that the performance of the proposed method is verified on datasets from
the Internet Movie Database (IMDB) and Wikipedia (WIKI). They are challenging datasets since
the images are collected in natural scenarios and not all of the faces are frontal. The performance
on this dataset indicates that the proposed MNF-LRR is suitable for practical and complicated
applications.

2. Multiple Network Learning with Low-Rank Representation

2.1. Overview of the Proposed Method

The process of the proposed method (MNF-LRR) can be summarized in Figure 1. To get rid of
the influences of background, we should extract faces in images first. This process depends on the
definitions of different datasets. In some datasets, such as IMDB and WIKI, the positions and sizes are
provided and they can be used directly. However, in some other datasets or real scenarios, we need
face detection or face tracking to determine the face area. We then utilize different networks to extract
deep features of facial images. Finally, we use manifold learning based on low-rank representation
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to integrate the outputs of these networks. In this way, a unified multi-modal representation can
be obtained.

Figure 1. The flowchart of the proposed method (Multiple Network Fusion with Low-Rank
Representation (MNF-LRR)).

2.2. Definitions

In age estimation with regression, given a set of images X = {x1, x2, ..., xn} and the corresponding
labels Y = {y1, y2, ..., yn} with n pairs of samples, we try to learn a model that minimizes the loss:

argmin
δ

|Y−F (X)| (1)

where F is the regression function, δ is the regression parameter, and X is the feature representation of
X. Therefore, to minimize Equation (1), we need a descriptive X and a reasonable F . In the proposed
method, we focus on X.

2.3. Multiple Network Learning

As mentioned in the introduction, multiple feature fusion has been proved to be effective in
image representation. In this way, to compute X, we propose feature learning by fusing multiple
neural networks, which compute features with different neural networks and integrate them to form
new features. Neural networks [25,26] have been widely used to explore hidden representations of
images and the effectiveness has been proved. Generally speaking, neural networks compute hidden
representation by minimizing the loss function:

n

∑
i
‖ xi − xi ‖2 (2)

where xi = Wxi is the hidden representation by mapping xi with weight W. The key to neural
networks is optimizing W, which is defined differently by different neural networks. However,
they depend on a large number of training data. Usually, age estimation with a single image is
achieved with insufficient training samples or classification information. Therefore, we adopt different
types of neural networks to extract different types of features and fuse them to improve the descriptive
power with a small number of training samples. In MNF-LRR, we use the following neural networks
to represent face images.
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• Autoencoders (AE). Autoencoders are unsupervised to learn the hidden representation. To solve
Equation (2), people usually use denoising autoencoders (DAE). In DAE, inputs x1, ..., xn are
corrupted by randomly removing some features. After corruption, xi is converted to x̂i and
W : Rd → Rd is denoted as the transform matrix to reconstruct xi with x̂i. In this way, the squared
reconstruction loss can be defined as

1
2n

n

∑
i=1
‖ xi −Wx̂i ‖2 . (3)

The solution to Equation (3) depends on corrupted features of each input. To lower the variance,
Marginal Denoising Autoencoders (MDA) [27] utilize multiple epochs with the training set,
each epoch with different corruption settings. In this way, the overall squared loss can be
transformed to

loss(W) =
1

2mn

m

∑
j=1

n

∑
i=1
‖ xi −Wx̂i,j ‖2 (4)

where x̂i,j represents the jth corrupted features, and m is the number of epochs.

To represent features with the matrix form, X = [x1, ..., xn] ∈ Rd×n is denoted as the data matrix,
while the m-epochs repeated version of X is denoted by X = [X, .., , X] and the corrupted version
of X is denoted by X̂. Equation (4) can then be reduced to

loss(W) =
1

2mn
tr[(X−WX̂)T(X−WX̂)]

=
1

2mn
tr[XTX− XTWX̂− X̂TWTX + X̂TWTWX̂]

. (5)

We can clearly figure out that Equation (5) is a convex problem, and the global optimal solution to
it can be computed by setting its partial derivative for W to 0. We then need to compute partial
derivative of loss(W), which is defined as

arg min
W

loss(W). (6)

∂loss(W)
∂W = 0 is set, and the close form to compute optimal W is

W = XX̂T(X̂X̂T)
−1

. (7)

• Convolutional Neural Networks (CNNs). CNNs are constructed by alternatively stacking
convolutional layers and spatial pooling layers. Convolutional layers are key to CNNs since
they generate feature maps by linear convolutional filters. The feature maps are then activated
by nonlinear functions, which are called activation functions. Different activation functions are
defined, such as rectifier, sigmoid, tanh, and so on. Taking the Rectified Linear Units (ReLUs) as
an example, the feature maps can be computed by

F(X; W) = R(xi) = max(0, wxi) =

{
0 , xi < 0
wixi , xi ≥ 0

. (8)

In computational networks, given an input or set of inputs, the activation function of a neuron
defines the output of that neuron with these inputs. In the scenario of the deep neural network,
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activation functions project xv
i to a higher level hidden representation step by step with a sequence

of non-linear mappings, which can be defined as

(xi)
0 R−→

W
(xi)

1 R−→
W

... R−→
W

(xi)
l (9)

where l is the number of layers, andR is the mapping function from input to estimated output.

To optimize the weighted matrix W, which contains the mapping parameters, we use
a back-propagation strategy. For each echo of this process, the weighted matrix is updated
by ∆W, which is defined by

∆W = −η
∂E
∂W

. (10)

η is the learning rate, and we can define

∂E
∂W

= (yi −R(xi))(xi)
T . (11)

In this way, we try to train a model that minimizes the differences between the groundtruth yi
and the estimated outputR(xi). The back-propagation strategy can be modeled by

(xi)
0 R←−

W
(xi)

1 R←−
W

... R←−
W

(xi)
l . (12)

• Recursive Neural Networks (RNN). RNNs process a structured input with the same set of weights
recursively. In this way, we can traverse the given structure into topological order and obtain
a structured output or a scalar prediction on it. Different from CNNs, nodes in RNNs are
integrated into parents with a weight matrix. This matrix is shared across the whole network.
Besides, a non-linearity such as activation functions mentioned above is used. Taking tanh as
an example, if xi and xj are n-dimensional features of nodes, their parent must be an n-dimensional
feature, too. It can be computed by

pi,j = tanh(W[xi; xj]) (13)

where W is a learned n× 2n weight matrix, which is usually computed with Stochastic Gradient
Descent (SGD). The gradients are calculated using back-propagation through structure (BPTS).
BPTS is a variant of the aforementioned back-propagation through time for RNNs.

In the proposed MNF-LRR, by combining Equations (7), (11), and (13), Equation (2) can be
rewritten as

α
n

∑
i
‖ xi −Waexi ‖2 +β

n

∑
i
‖ xi −Wcnnxi ‖2 +γ

n

∑
i
‖ xi −Wrnnxi ‖2 (14)

where Wae, Wcnn, and Wrnn are weighting parameters learned by autoencoders, CNNs, and RNNs,
respectively. α, β, and γ are switches to turn on or off the corresponding neural networks. In this way,
we can compute multi-modal feature representation.

2.4. Fusion with Low-Rank Representation

As mentioned before, multi-modal feature fusion by computing semantic relationship is more
reasonable than simple concatenation. The key to learning the semantic relationship is how to define
and compute affinities among data. Many existing methods can be used, such as subspace learning and
manifold learning. Recently, low-rank learning attracts plenty of attention. In low-rank representation,
assume the data is clean and is drawn from independent subspaces, then there exists Q∗, which is
block-diagonal, and the rank of each block equals the dimension of the corresponding subspace. Given
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the i-th modal X(i), computed in the previous sub-section, we can compute the affinities among feature
vectors by solving the minimization problem:

min
Q0,E0

‖ Q0 ‖∗ +λ ‖ E0 ‖2,1

s. t. X(i) = X(i)Q0 + E0
(15)

where ‖ • ‖∗ denotes the trace norm, and ‖ • ‖2,1 is the `2,1-norm to characterize noise. λ > 0 is the
parameter to balance the influences of the two parts. The optimal solution to Equation (15), which is
denoted as Q∗0 , naturally defines an affinity relationship that implies the pairwise similarities between

features. In this way, the similarity S(i)kl between two features x(i)k and x(i)l can be computed by

S(i)kl = |(Q∗0)lk|+ |(Q∗0)kl | (16)

where (•)lk is the (l, k)-th element of a matrix.
In previous methods, the above low-rank learning process can be used with only a single type

of feature vectors. Therefore, we extend it to the multi-modal scenario and apply it to feature fusion.
We define the multi-modal low-rank learning by

min
Q(1) , ..., Q(m)

E(1) , ..., E(m)

m
∑

i=1
(‖ Q(i) ‖∗ +λ ‖ E(i) ‖2,1) + α ‖ Q ‖(i)2,1

s. t. X(i) = X(i)Q(i) + E(i), j = 1, ..., m

(17)

where α > 0 is a balanced parameter and m is the number of modals. In this way, we can infer a set
of matrices Q(1),Q(2), ..., Q(m)). In this set, each n× n matrix Q(i) corresponds to the i-th modal X(i).
The global solution defined by m× n2 matrix Q is constructed by arranging Q1,Q2, ..., Qm as follows:

Q =


Q1

11 Q1
12 ... Q1

nn
Q1

11 Q2
12 ... Q2

nn
...

...
. . .

...
Qm

11 Qm
12 ... Qm

nn

 . (18)

Q1
∗, Q2

∗, ..., Qm
∗ is defined as the optimal solution to Equation (18). A universal affinity matrix can

then obtained by quantifying the columns of Q:

S(i)kl =
1
2
(

√
m

∑
i=1

(Q(i)
lk )

2 +

√
m

∑
i=1

(Q(i)
kl )

2). (19)

In manifold learning, the key to solving the manifold is computing the affinity matrix. Therefore,
with the affinity matrix computed by Equation (19), we can construct the manifold in low-rank space to
obtain fused feature descriptors. Specifically, we use affinity matrix Q to construct Laplacian matrix L.
There are a number of solutions to this problem. In the proposed method, we follow the spectral
hypergraph clustering method [28] and use it in the low-rank space. In this way, we consider each
feature vector as a vertex v in the low-rank feature space. If some vertices share the same property,
they are connected by a hyperedge e. In this method, L is defined as

L = I − C (20)

where I denotes an n × n identity matrix. Combined with LRR, C in our proposed framework is
defined by

C = D−
1
2

v UQD−1
e UT D−

1
2

v . (21)
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In this equation, U is the matrix that indicates when a vertex belongs to a hyperedge if Ui,j = 1.
De and Dv are diagonal matrices, which contain degrees of hyperedge e and degrees of vertex v,
respectively. Degrees of hyperedge are defined as the numbers of vertices that hyperedges connect,
while degrees of vertex are defined as the sum of hyperedge weights connected to this vertex.

To compute U, we define that the vertices within a certain distance σ from a vertex form
a hyperedge with this vertex. Therefore, U can be computed by

U(i)
lk

{
1, if ‖ X(i)

k − X(i)
l ‖≤ σ

0, if ‖ X(i)
k − X(i)

l ‖> σ
. (22)

With U(i) for the i-th modal, we use logistic OR to compute a unified U for all modals:

U = U1|U2|...|Um. (23)

Then, we can compute De directly with U by summing each row:

Dell =
n

∑
k=1

Ulk. (24)

Dv can be computed with Q by summing the items within d:

Dvll =
n

∑
k=1

Qlk if Ulk 6= 0. (25)

With L, we apply the standard eigen-decomposition and obtain the eigenvectors corresponding to
the d smallest eigenvalues. Finally, we can obtain the multi-modal features X with d× n dimensions.

3. Implementation of Age Estimation

In our implementation of age estimation, we use autoencoders, a CNN, and an RNN to extract the
hidden representations. Among the activation functions, we use Rectified Linear Units (ReLUs) since
ReLUs are inherently sparse and pretraining can be avoided. Then, their low-rank representations are
computed and fusion is embedded in the low-rank space. With the unified affinity matrix, we compute
L and use eigen-decomposition to obtain the fused features. Finally, the results are computed by
softmax regression, which is mentioned as F in Equation (2). The developed system is implemented
based on DeepLearnToolbox, which contains autoencoders and the CNN [29]. We then add the RNN
and low-rank learning to it. The settings of three neural networks are shown in Table 1. To make it
possible to solve practical issues, TensorFlow version is under construction.

Table 1. The structures of different networks implemented by the proposed method.

Network Structure

Autoencoders Stacked denoising autoencoders with 0.3 corruption level and 5 layers
CNN CNN with 3 convolutional layers and 2 fully-connected layers
RNN RNN with 3 layers

4. Experimental Evaluation

4.1. Settings and Datasets

Images in traditional face datasets are low-resolution and ages are not labeled. Therefore,
Rothe et al. collected a large dataset of face images with age information [30], which has been made
available for academic research purposes (Available at https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-
wiki/ (accessed on 8 May 2012)). To achieve this, they crawled the data of popular actors on the IMDb

https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/
https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/
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website and fetch their date of birth, name, and gender in their profiles. Besides, they crawled the
same meta information and profile images of these people on the Wikipedia website. In this way,
460,723 face images were collected from 20,284 celebrities on IMDb, and 62,328 on Wikipedia were
obtained. Sample images of these two datasets are shown in Figure 2. In our experiments, we used the
two datasets individually. When we used IMDB, we randomly chose 100,000 images as the training
samples and the rest as testing samples. When we used WIKI, we randomly chose 10,000 images
as the training samples and the rest as testing samples. This process was repeated 20 times. Then,
average performance and standard deviation were recorded. The evaluation was conducted on a
desktop with NVIDIA 1080Ti.

(a) (b)

Figure 2. Sample images from datasets from the Internet Movie Database (IMDB) and Wikipedia
(WIKI). (a) IMDB; (b) WIKI.

For evaluation, we used mean absolute errors (MAEs), which was computed by

MAE = means(|Ŷ−Y|) (26)

where Ŷ is the estimation results. For regression methods, results can be directly computed.
For classification methods, we simply treated the age estimation problem as a classification task of
100 classes. Y is the ground truth.

4.2. Optimization of Settings

As mentioned before, activation functions may influence the performance of neural networks.
They define the mapped output of a node in different ways. In this way, different activation functions
may influence the performance. Therefore, we have tried ReLUs, Sigmoid, and Tanh. The results of
these three datasets are shown in Figure 3. Among the three activation functions, ReLUs achieved the
best performance among all datasets, which matches recent publications.

(a) (b)

Figure 3. Different activation functions. (a) Results of IMDB; (b) Results of WIKI.
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In the proposed framework, autoencoders, CNNs, and RNNs can be used. Different combinations
of them are tested and results are shown in Figure 4. When we integrate the outputs of all neural
networks, the performance is the best, which indicates the effectiveness of combining different
neural networks.

(a) (b)

Figure 4. Different combinations of networks. (a) Results of IMDB; (b) Results of WIKI.

4.3. Comparison of Multi-Modal Fusion Methods

We used different methods to integrate outputs of multiple neural networks. The following
methods were used:

• Low-Rank Representation (LRR): The proposed method using multiple neural network fusion
and low-rank representation.

• Concatenating Different Features (CON): For CON, features from different modals are simply
concatenated to construct long features. Principle Component Analysis [31] is then used for
dimensionality reduction.

• Multiview Spectral Embedding (MSE) [32]: This method calculates a low-dimensional embedding.
In this embedding, the distribution of each modal is sufficiently smooth. The complementary
properties of different modals are then explored to obtain a fused representation.

• Multi-View Hypergraph Learning (MHL) [33]: In this method, hypergraph learning is combined
with the patch alignment framwork [34]. A multi-view hypergraph Laplacian matrix is
constructed, and fused features are computed by solving the standardeigen-decomposition of the
multi-view hypergraph Laplacian matrix.

We computed the performance under different dimensions, and the results of different
multi-modal fusion methods are shown in Figure 5. According to the figures, all these methods
achieved optimal performance among [400, 600]. However, optimal performance was not achieved on
the same dimensionality. The proposed method uses LRR, and the best performance was achieved on
400 on IMDB and 500 on WIKI. Therefore, these settings were used in the other experiments.
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(a) (b)

Figure 5. Different feature fusion methods. (a) Results of IMDB; (b) Results of WIKI.

4.4. Comparison of Different Methods for Age Estimation

For age estimation, we compared the following methods, including the proposed Multiple
Network Fusion with Low-Rank Representation (MNF-LRR):

• Multiple Network Fusion with Low-Rank Representation (MNF-LRR): The proposed method
using multiple neural network fusion and low-rank representation.

• Linear Regression (LR) [17]: This method estimates ages directly by linear regression against
feature vectors of facial images. In this paper, HOG [35] was used as image features.
Ridge regression (RR-LR) and relevance vector machine (RVM-LR) regression were both
implemented by the authors. Their results were similar. We used RVM-LR and set ν = 1000 in the
experimental comparison.

• Twin Gaussian Processes (TGPs) [18]: This method applies Gaussian process priors on both
covariates and responses. Two Gaussian processes are then modeled as normal distributions over
finite index sets of training and testing examples. Finally, outputs can be estimated by minimizing
the Kullback–Leibler (K-L) divergence between them. The authors have provided several different
implementations of TGP, such as Twin Gaussian Processes with K Nearest Neighbors (TGPKNN),
Weighted K-Nearest Neighbor Regression (WKNNRegressor), Gaussian Process Regression (GPR),
Hilbert-Schmidt Independent Criterion with K Nearest Neighbors (HSICKNN) and Kernel Target
Alignment with K Nearest Neighbors (KTAKNN). We found that TGPKNN outperformed all
other methods. Therefore, we used HOG for image features and TGPKNN as the regressor.

• Convolutional Neural Networks (CNNs) [36]. This method uses a simple convolutional net
architecture. The network is composed of three convolutional layers and two fully connected
layers. The authors have provided the Caffe model for age classification and deployed prototext.

• Deep Expectation (DEX) [30]. The authors here treated age estimation as a classification problem
based on deep learning, which was followed by an expected value refinement with softmax.
The key to DEX for age regression contains deep learning models with a large amount of data,
a robust face alignment process, and softmax-based expected value formulation.

The results of the experimental comparison are shown in Figure 6. Based on the results, we can
make the following summarizations:

1. The performance of general mapping learning methods such as LR and TGP is not satisfactory.
They are fast and use traditional features such as HOG, but the definition of mapping relationship
is oversimplified.
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2. The methods based on neural networks such as CNNs and DEX can achieve a stable performance.
Neural networks provide descriptive features but require a large amount of training data. Besides,
previous neural-network-based methods have not considered multiple features.

3. The performance of the proposed MNF-LRR outperformed the state of the art. We made use of
multiple features from different network types and found a reasonable way to fuse them.

(a) (b)

Figure 6. Different methods of age estimation. (a) Results of IMDB; (b) Results of WIKI.

5. Discussion

According to the methodology of the developed system and the improvement of experimental
performance, the novelty of the proposed method can be shown.

First, the developed system with Multiple Network Fusion with Low-Rank Representation tackles
the problem of insufficient descriptive power with insufficient training data. To solve this problem,
two types of solutions have been considered in previous methods. One is to improve the descriptive
power of a single feature and the other is to fuse multiple features. To improve the descriptive power of
a single feature, deep learning has been proved to be effective to represent images in the past few years.
To fuse multiple features, manifold learning, low-rank learning, and so on are proposed. However,
there have been few attempts to combine the above two solutions. We successfully combine deep
learning and low-rank learning. In addition, we implement age estimation. Therefore, the proposed
method is theoretically novel.

Second, experimental performance indicates the effectiveness of the proposed method, which can
be summarized as follows:

1. We compared different activation functions and different combinations of neural networks to
determine the optimal neural network.

2. We compared different feature fusion methods to emphasize the effectiveness of choosing
low-rank learning.

3. We compared the proposed method with the state of the art in terms of age estimation to
emphasize the overall improvement of the proposed method.

It can be concluded that the proposed method improves age estimation performance.

6. Conclusions

In this paper, we propose a data-driven method for image-based age estimation.
Multiple Network Fusion with Low-Rank Representation (MNF-LRR) is designed to learn and integrate
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multi-modal features. First, multi-modal features are extracted with different neural networks. Second,
these features are represented on low-rank space and fused. In this way, a robust representation of
facial images for age estimation is computed. In addition, the fused features are connected to softmax,
and the estimation results can be obtained. Compared with state of the art, the proposed method is
based on multiple features and utilizes multiple neural networks to compute features, which improves
the descriptive power of representations. We have conducted experimental evaluation on datasets
from the Internet Movie Database (IMDB) and Wikipedia (WIKI). Performance comparison indicates
the superiority of the proposed MNF-LRR over previous methods.
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