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Abstract: An accurate electrocardiogram (ECG) beat classification can benefit the diagnosis of the
cardiovascular disease. Deep convolutional neural networks (CNN) can automatically extract valid
features from data, which is an effective way for the classification of the ECG beats. However,
the fully-connected layer in CNNs requires a fixed input dimension, which limits the CNNs to
receive fixed-scale inputs. Signals of different scales are generally processed into the same size by
segmentation and downsampling. If information loss occurs during a uniformly-sized process, the
classification accuracy will ultimately be affected. To solve this problem, this paper constructs a new
CNN framework spatial pyramid pooling (SPP) method, which solves the deficiency caused by the
size of input data. The Massachusetts Institute of Technology-Biotechnology (MIT-BIH) arrhythmia
database is employed as the training and testing data for the classification of heartbeat signals into
six categories. Compared with the traditional method, which may lose a large amount of important
information and easy to be over-fitted, the robustness of the proposed method can be guaranteed by
extracting data features from different sizes. Experimental results show that the proposed architecture
network can extract more high-quality features and exhibits higher classification accuracy (94%) than
the traditional deep CNNs (90.4%).

Keywords: ECG beats; classification; feature extraction; convolutional neural networks; spatial
pyramid pooling

1. Introduction

1.1. Present Situation for Electrocardiogram Pattern Recognition

An electrocardiogram (ECG) is a pattern in which various forms of potential changes are extracted
from the body surface via an electrocardiograph. Moreover, the ECG also has an important reference
value for basic cardiac functions and related pathological research, and an experienced cardiologist
can easily tell the arrhythmia according to the morphological pattern of the ECG signals. However, the
computer-aided approaches to the morphological pattern recognition of the ECG signal are difficult
to realize. It is due to the time-varying dynamics and various profiles of the ECG signals that make
the precision of the classification vary from patient to patient [1]. Nevertheless, computer-aided
approaches can improve the efficiency of diagnosis, and thus freeing physicians from cumbersome
pattern recognition tasks. Additionally, the development of pattern recognition of an ECG signal and
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real-time diagnosis of cardiovascular [1] requires further exploration for the E-home health monitoring
device [2] in the future.

1.2. Computer-Aided Method for Pattern Recognition and Preprocessing of Heartbeat Signals

Artificial intelligence and machine learning have been widely used in heartbeat recognition and
classification. Current methods include the support vector machine (SVM) [3], least squares support
vector machine (LS-SVM) [4], particle swarm optimization support vector machine (PSO-SVM) [5],
particle swarm optimization radius basis function (PSO-RBF) [6], and neural networks (NN) [7].
In addition, the pre-processing method like the Fourier transform (FT) [8] and the principle component
analysis (PCA) [9] have also been explored for the accurate identification of the ECG signals. In Ref. [10],
a Stationary Wavelet Transform (SWT) algorithm was deemed suitable for de-noising of the ECG
signals judging from a comparison of three de-noising algorithms based on wavelet packet transform
(WPT), lifting wavelet (LW), and an SWT.

1.3. Feature Extraction Method for an ECG

However, the ECG signal identification technology is limited by noise reduction and feature
extraction, which complicates the improvement of effective ECG signal recognition. The ECG feature
extraction is a key technique for heartbeat recognition. Feature extraction selects a representative
feature subset from the raw ECG signal. These feature subsets have better generalization capabilities
and can improve the accuracy of the ECG heartbeat classification. Underlying feature extraction
mainly revolves around the extraction of the time-domain features, frequency-domain features,
or morphological features of the signal, such as by FT [11], discrete cosine transform (DCT) [12],
and wavelet transform (WT) [13]. Some high-level feature extraction methods are also available,
including dictionary learning [14] and CNNs [15,16]. With the increase of the number of patients, the
accuracy of the classification will be decreased due to the large pattern variations of the ECG signals
among different patients, and the preprocessing methods like PCA [9] and Fourier transform [8] may
increase the complexity and the time of the computing as well. To enhance the heartbeat classification
performance, selecting a suitable feature is of paramount importance.

1.4. CNN and Spatial Pyramid Pooling (SPP)-Net for Pattern Recognition

In recent years, CNN algorithms have proven particularly effective in language and image
recognition [17]. The network structure of the CNN algorithm includes many hidden layers, and it
also has an unmatched feature-learning level compared with the traditional machine learning methods.
A traditional classification method like SVM needs to conduct the feature extraction alone before
feeding the data into the classifier. For example, Khorrami and Moavenian employed three feature
extraction methods (i.e., DCT, continuous WT, and discrete WT) to realize the feature extraction before
the classification [12]. It is noteworthy that the selection of the mother wavelet is very important to
the feature selection. In addition, it is better to pre-compute the basic function of the DCT offline
to improve the computational efficiency. As mentioned in Ref. [12], the selection of the best feature
extraction method depends on the substantial value considered for the training time, and the training
and testing performance. Therefore, the feature extraction is generated automatically, and such a
feature extraction method has a better effect on classification for complex tasks. The CNN itself is a
feature extractor, and its convolutional layer works as a series of filters that are deployed for feature
extraction. Moreover, the other layers, such as the pooling layer and the fully-connected layer, are
used to reduce the number of the parameters to be learned and retains the most useful information for
a classifier.

However, the existing CNNs mandate that the input data should have the same size and such
a fixed-size constraint comes from the fully-connected layer and requires a fixed-length vector for
the input. This artificial operation may result in loss of image information, which also affects the
classification accuracy. A new structure of the CNNs called SPP-net [18] has solved these problems for
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pattern recognition by adding an SPP layer on top of the last convolutional layer. The SPP layer pools
the features and generates fixed-length outputs, which are subsequently fed into the fully-connected
layers (or other classifiers). The SPP-net allows CNN to accept inputs of any scale, which increases the
scale invariance of the model, suppresses overfitting, and enables extraction of local features of the data
at multiple scales [18–20]. The SPP-net is implemented by switching from one network size (224 × 224)
to another (180 × 180) and training each full epoch on one network. After that, the network size
should be switched to the other (while retaining all weights) for the next full epoch. Accordingly, most
fixed-size pictures are trained on a single network, whereas different-sized pictures are trained on a
separate network. The weights of different networks cannot be shared under such network switching.

1.5. Goal and Arrangement of This Paper

In this study, the size of heartbeats divided from the ECG is not equal and thus unsuitable
for SPP-net training. To avoid the network switching, a new SPP-net based CNNs model has been
constructed in this paper for the heartbeats classification. This model retains the advantages of the SPP
and allows different-sized heartbeats to be sent to the same network for training, thus reducing the
complexity of the network. This approach also avoids the complexity of data reconstruction during
feature extraction and classification. The SPP structure is employed for the classification of heartbeats,
and such a structure can guarantee heartbeat signals with different heartbeat durations, and it also
enables the adaption of the CNN structure without cropping or warping the original heartbeat signal.
In addition, the input of the SPP structure is simplified into one-dimension (1-D), which is suitable for
the heartbeat classification with less of a computational burden.

Additionally, due to the non-stationary nature of the ECG signal, frequency domain filters may
distort a transient interval of the signal and important biomedical information may get lost [21–23].
However, a wavelet is simply a small wave, which enables the analyzing of the transient, non-stationary
or time-varying signals easily [24]. Moreover, due to the sparsity, locality, and multi-resolution
nature [25] of the WT, WT is therefore employed as the pre-processing method for the ECG signal.
The rest of the paper is arranged as follows: Section 2 introduces the methods and procedure adopted
in this study, including the SPP, ECG-SPP-net, pre-processing of input data to the ECG-SPP-net, feature
extraction, and classification. To validate the performance of the proposed method, the accuracies of
different network structures are analyzed in Section 3, and a conclusion is finally provided in Section 4.

2. Method

2.1. Spatial Pyramid Pooling Method

As mentioned above, SPP guarantees fixed eigenvector output by using multiple different-sized
pool operations to achieve input at any scale. Specific pooling operations include max pooling, average
pooling, and stochastic pooling [26]. Ref. [27] found that stochastic pooling and max-pooling were more
robust than average pooling. In this paper, the SPP method is combined with a deep CNN [18]. An SPP
is placed as a layer in the network between the convolutional layer and the fully-connected layer
(Figure 1). The input of the SPP layer is the total number of the feature maps of the last convolutional
operation, which is denoted as Mcon_2, and each feature vector is denoted as Ncon_2. The pyramid level
can be expressed as 1 × n bins. It is assumed that one feature vector has a size of 1 × a (e.g., 1 × 13),
and a pooling level with 1 × n bins can be implemented with a sliding window size da/ne and stride
ba/nc, where d·e and b·c denote the ceiling and flooring operations, respectively [18]. A three-level
pooling (1 × 1, 1 × 2, and 1 × 4) for one feature vector (a size of 1 × 13) is shown in Figure 2. Then, a
fixed feature-vector output can be achieved as the input of the fully-connected layer regardless of the
size of the feature maps.
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2.2. Electrocardiogram-Spatial Pyramid Pooling-Net Method

In this study, an ECG-SPP-net for the classification of heartbeats is developed, and such a network
consists of alternate convolutional layers and subsampling layers. The detailed structure of the
ECG-SPP-net is shown in Table 1. Each convolutional layer can be considered a fuzzy filter, which
enhances the original signal characteristics and reduces noise. In the convolution layer, the feature
vector of the upper layer is convoluted with the convolutional kernel of the current layer. The result of
the convolution operation passes through the activation function and then forms the feature map of
this layer. The convolution output can be expressed as

xl
j = f (z) = f

∑
Mj

W l
ij × xl−1

i + bl
j

 i ∈ Mj (1)

where xl
j denotes the feature-vector corresponding to the first convolution kernel of the j convolutional

layer, and Mj represents the accepted domain of the current neuron and denotes the i-th weighting
coefficient of the j-th convolutional kernel of the first layer. bl

j denotes the offset coefficient
corresponding to the j-th product of the first layer. The activation function is

f (z) =
1

1 + e−z (2)

The pooling can be considered as a special kind of convolution. The pooling layer subsamples data
using the principle of local correlation and retains useful information while reducing data dimensions.
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The pooled operation is used to maintain features, so they possess displacement and zoom invariance.
The pooling layer serves the function of secondary feature extraction, and its calculation formula is

xl
j = f

(
W l

j × down
(

xl−1
j

)
+ bl

j

)
(3)

where down(•) is the subsampling method, W l
j is the weight coefficient, and bl

j is the bias coefficient.

Table 1. The detailed overview of ECG-SPP-net structure.

Layers Type No. of Neurons
(Output Layers)

Kernel Size for Each Output
Feature Map Stride

1 Convolution_1 Ncon_1 × 6 5 1
2 Max pooling Ncon_1/2× 6 2 2
3 Convolution_2 Ncon_1 × 12 5 1
4 SPP 7 × 12 [Ncon_2/2, Ncon_2/4, Ncon_2/8] [Ncon_2/2, Ncon_2/4, Ncon_2/8]
5 Fully connected 84 – –

2.3. Pre-Processing

A classification system which is composed of pre-processing, feature extraction and classification,
is constructed based on the Electrocardiogram-SPP-Net, as shown in Figure 3. In the pre-processing
stage, 46 records of the MIT-BIH arrhythmia database containing 100,300 heartbeats were selected.
In this database, the ECG first marked the category label of each heartbeat. Then, the ECG signal
was cut off into segments according to the label [28]. The label was located at the R peak, which was
denoted as R1, R2, and R3 for the three peaks of an ECG signal (Figure 4). The segments, which are
segment 1 and segment 2 in Figure 4, were the ECG signals between the two peaks. Then, each segment
was broken through its middle section. The anterior of a segment was connected to the posterior of a
segment that emerged earlier (Figure 4). The resultant heartbeat contained all the information from
the P-wave to the T-wave. Then, each heartbeat was normalized into the range of values between 0
and 1 before sending the preprocessed heartbeat signal into the ECG-SPP-net. Such a large population
of heartbeats were classified into six categories, which were normal beat (N), paced beat (/), atrial
premature beat (A), premature ventricular contraction (V), left ventricular bundle branch block (L),
and right bundle branch block (R). Due to the proportion of the normal heartbeats accounts 73.3%
(n = 73,542) of the total samples of the heartbeats, 6000 normal heartbeats were randomly chosen for the
classification. The sample set that contains the six kinds of heartbeats is shown in Table 2. Moreover,
70% of heartbeats were also selected from the sample set as the training dataset of the classifier, and
the other 30% of beats were used as the test pattern for performance evaluation.

Table 2. Number of beats in the sample set.

Class N / A V L R Total

Beats 6000 3616 2480 6676 8069 5916 32,757

The WT was utilized as the de-noising method by using a db5 decomposition [25] in three scales
with Stein’s unbiased likelihood threshold estimator. Subsequently, the baseline drift and noise were
moved. Figure 5 displays a comparison of ECG signals between the original one and the de-noised
one and such a sample set was taken from the MIT/BIH arrhythmia database. Before sending the
pre-processed data into the CNN network, the normalization for all the heartbeat signals was conducted
first. The heartbeat signals were bandpass filtered at 0.1–100 Hz and digitized at 360 Hz. The function
mapminmax in MATLAB was employed as the method for the amplitude normalization, which puts
the amplitude of the sampling point into the interval of [0,1]. Then, such normalized data was fed into
the CNN network.
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Figure 4. The segmentation of the ECG signal into a heartbeat. Three peaks of the ECG signal are
represented as R1, R2, and R3. The peak to peak of the signal was regarded as one segment. The anterior
of a segment was connected to the posterior of a segment which emerged earlier. The grey area was a
complete heartbeat signal.
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2.4. Feature Extraction

CNNs can automatically generate high-level features (i.e., weights and thresholds) through
training. First, the sample was sent to the network for training, the input vector was obtained, and the
loss function was compared with the given target vector:

L =
1
2

n−1

∑
k=0

(dk − yk)
2 (4)

where L is the loss function (standard deviation), yk is the output vector, and dk is the target vector.
The weight and threshold values are updated according to L, and the update step can be expressed
as follows:

∆Wjk(n) =
α

1 + l
×
(

∆Wjk(n− 1) + 1
)
× δk × hj (5)

where α represents the learning rate, j represents the neural units of the hidden layer, k represents the
output layer unit, M represents the number of output neuron units, hj represents the output vector of
the hidden layer, W represents the adjusted weight, and δ is the threshold to be adjusted.

δk = hj
(
1− hj

)M−1

∑
k=1

δkWjk (6)

The feature extraction process is shown below.
Step 1: The ECG-SPP-net was initialized by setting the weight W as a random number within

[0,1]. The threshold value δ was set to be 0 and the learning rate α was defined as 0.1. Finally, the
training epochs was set to be 60.

Step 2: The heartbeat from the training set was sent into ECG-SPP-net. The network was trained
with one sample for each round due to various sizes of different heartbeats, and the target output
vector was set to be dk.

Step 3: Calculate the actual output vector yk with Equations (1)–(3) and conducted the pooling
with the proposed SPP algorithm in Figure 2. Then, the cost function was calculated with Equation (4).

Step 4: The weight W and threshold value δ were updated according to Equations (5) and (6).
Steps 2–4 were repeated 60 times and the values of W and δ were obtained as the high-level features

extracted automatically by the ECG-SPP-net. Such high-level features and heartbeat signals from the
test sets were then sent to the ECG-SPP-net for testing before sending the results to the classifier.
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2.5. Classifier

Softmax regression can solve multiple classification problems relative to the binary classification
problem solved by logistic regression. According to a different test input x, the probability value p was
estimated as the result of the classification. The hypothesis function output a k-dimensional vector
(the sum of vector elements is 1) to represent the estimated probability of k categories. The function
hθ(x) is shown below:

hθ

(
xi
)
=


p
(
yi = 1

∣∣xi; θ
)

p
(
yi = 2

∣∣xi; θ
)

...
p
(
yi = 3

∣∣xi; θ
)

 =
1

∑k
j=1 eθT

j xi


eθT

1 xi

eθT
2 xi

...
eθT

k xi

 (7)

where θ1, θ2, . . . , θn ∈ Rn+1 denote the model parameters, and ∑k
j=1 eθT

j xi
normalized the probability

distribution so that the summation of all probabilities is 1. The one with the highest probability was
used as the classification result of the test.

2.6. Experimental Setting

The ECG-SPP-net was evaluated by comparing the overall accuracies of the proposed method
and the other two methods. We used the same denoising method for the three network structures
and the same classifier (Softmax). Three network structures are shown in Table 3, where “Y” indicates
adoption and “N” indicates none.

Table 3. Three network structures.

Main Operating Method 1 Method 2 Proposed Method

Fixed-size heartbeat Y Y N
CNNs Y Y Y

SPP layer N Y Y

Method 1: Heartbeats with different sizes were unified into 300 sampling points [14]. In the
MIT-BIH arrhythmia database, the ECG signals were bandpass filtered at 0.1–100 Hz and digitized at
360 Hz. Then, a beat of ECG was resampled to 300 sample points by downsampling or upsampling
according to the duration of a heartbeat. The processed heartbeat was sent to the CNN for training.
The parameters of layers 1, 2, 3, and 5 of the network were the same as in Table 1. The SPP in layer 4
was removed and alternated to the largest pooling strategy, setting both the pooling size and the step
size to be 2.

Method 2: The unified size of this method was the same as in Method 1. The processed heartbeat
was sent to ECG-SPP-net. The parameters in each layer were the same as in Table 1.

Proposed method: The number of sample point for each heartbeat was not considered, and as
such, the heartbeat was sent to the ECG-SPP-net directly after pre-processing.

3. Results and Analysis

As aforesaid, 70% of heartbeats were randomly chosen from the sample set as the training dataset
of the classifier and the other 30% of heartbeats were used as the test pattern for performance evaluation.
Table 4 shows the confusion matrix for the testing beats of a one-time simulation. Regarding the test
dataset, the accuracy of the normal beat reached 99.7%. However, the accuracy of the atrial premature
beat was only 71.24%. The average of the accuracy of the six type of beats for one-time simulation was
calculated, and the accuracy of the classification for the proposed method reached up to 94%.
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Table 4. Confusion matrix of the heartbeat classification results for the testing beats for the
proposed method.

Ground Truth
Classification Result

N \ A V L R Accuracy

N 1794 1 1 0 0 4 99.7%
\ 0 1077 0 0 7 1 99.26%
A 43 2 530 63 37 69 71.24%
V 0 6 13 1921 31 32 95.9%
L 0 1 1 5 2402 12 99.2%
R 0 0 4 1 6 1764 99.38%

The classification performance was influenced by the training dataset, which was randomly
chosen for the classification. To avoid the influence of randomness, the simulation for each network
structure was repeated 10 times, and the comparison of the accuracies for three network structures
is shown in Figure 6. The accuracies of Method 1 and Method 2 were reduced by nearly 3.6% and
1.5% resulting from the data loss during the sampling process. In addition, the relatively lower
accuracy of Method 1 was also derived from the removal of the SPP network structure as compared
with the accuracy of Method 2. The two-sided Wilcoxon rank sum test [29] was also employed to
evaluate whether the results between different methods had a significant difference, and the p-value
shown in Table 5 manifests that the result of the proposed method had a significant difference when
compared with the other two methods. Therefore, building an SPP structure into the traditional CNN
allowed the input of different-sized heartbeats and could extract better features and improve the
classification performance.
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Figure 6. The comparison of accuracies among the three network structures. For each method, we
repeated the simulation for each network structure 10 times. The bar is the mean of the accuracy of
each method for 10 times. The error is the standard deviation of the accuracy of each method for the
experiments repeated 10 times.

Table 5. Wilcoxon rank sum test results of each method against the proposed method.

Against to Probability of Accept

Method 1 Proposed method 1.15 × 10−5

Method 2 Proposed method 1.72 × 10−5

4. Discussion

An ECG-SPP-net was developed for the heartbeat classification in this work. Heartbeats were
filtered between 0.1 to 100 Hz and digitized at 360 Hz. Then, the ECG signals were filtered with wavelet
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denoising and segmented into heartbeats with the proposed segmentation method. Each heartbeat
contained 200 to 400 sample points. After that, the heartbeat was normalized between 0 to 1 before
entering the ECG-SPP-net. Such a preprocessing method could reserve all the information of heartbeat
without any distortion, and this was beneficial for the classification accuracy [30–32]. In addition,
the influence of the number of the feature image of each convolutional layer to the classification was
also considered. The numbers of the feature image for the first convolution layer and the second
convolution layer were set to be 6 and 12, respectively. Assuming that a heartbeat contained 300
sample points, and then a three-level pyramid pooling (1 × 1, 1 × 2, and 1 × 4) was adopted. Before
sending the input to the fully-connected layer, 84 (12 × 7 × 1) feature values were acquired, which
accounted for 28% of the input data (300 sample points). In Ref. [33], 2400 (150 × 4 × 4) feature
values were achieved, accounting for 45% of the input data (73 × 73 sample points) before entering the
fully-connected layer. Such a setting could achieve a high accuracy of classification of the heartbeats
in a relatively short running time of training. The level of pyramid pooling was also considered in
this work. For example, the four-level pyramid pooling (1 × 1, 1 × 2, 1 × 4, and 1 × 8) have been
tried in this study. Such a setting increased the training time dramatically with less improvement of
classification accuracy.

There are two merits for the proposed design. First, the network allows the entry of different-sized
data to the CNN based neural network. Such different-sized data can be trained over a single network
to enable weight sharing and avoid the complex operations of multiple network switching [18].
Second, the proposed method is designed on the basis of the CNN, which acts as a feature extractor for
simplifying the feature extraction procedure. For some traditional classification methods, the feature
extraction of the effective signal should consider many factors including the training and testing
performance [12]. In this work, the solely concerned work is the structure of the CNN based network.

Although ECG-SPP-net possesses an advantage of extracting quality features automatically, future
research is necessary to address some shortcomings. First, as different-sized heartbeats are sent to the
same network for training, the heartbeats can only be sent to the network in a single channel, which
leads to a prolonged training time. Second, training deep neural networks requires a large amount of
data while the sample set in this paper was limited and therefore not suitable for popular CNN models.
In addition, the classification system based on the ECG-SPP-net structure must still be improved in
terms of classification accuracy.

5. Conclusions

In this paper, we build an ECG-SPP-net for the classification of heartbeats. Simulation results
showed that ECG-SPP-net can extract more representative features than traditional CNNs and has a
higher classification accuracy. In the future, more effective structures and optimized parameters based
on ECG-SPP-net will be proposed to improve classification performance and reduce the training time.
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