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Abstract: Modern fault location methods are robust; however, they depend strongly on the availability
of the measurements given by Distributed Energy Resources (DER). If the communication or
synchronism of this information is lost, the fault location is not possible. This paper proposes
an adaptive impedance-based fault location algorithm for active distribution systems. The proposal
combines information provided by Intelligent Electronic Devices (IEDs) located at the substation,
the knowledge of the network topology and parameters, as well as the distributed power sources,
to estimate the fault location. Its adaptive feature is given by the use of a Distributed Energy Resources
(DER) electrical model. This model is used to estimate the DER current contribution to the fault,
in case the information provided by a local IED is not available. The method takes two types of
DER technologies into account: Inverter non-interfaced DER (INIDER) and Inverter-interfaced DER
(IIDER). The proposed method is validated on a modified IEEE 34-node test feeder, which was
simulated with ATP/EMTP. The results obtained using the IEDs information, presented a maximum
error of 0.8%. When this information is not available, the method’s performance decreases slightly,
obtaining a maximum error of 1.1%. The proposed method showed better performance when
compared with two state of the art methods, indicating potential use for real-life applications.

Keywords: impedance-based fault location; active distribution networks; distributed energy
resources

1. Introduction

Fault location (FL) is one of the most important tasks in the supervision and management of
electrical networks with self-healing features. This task plays an important role on the fast maintenance
and restoration of the electricity supply for the costumers [1,2]. However, despite technological
advancements, the FL process is still based on the calls from customers who provide useful information
for identifying the fault region. This procedure proves to be inefficient, since it requires the maintenance
team to visually inspect a potentially large region to locate the fault point. Currently, there are several
techniques that are based on mathematical formulations proposed for FL estimation. They use
information such as the system topology, its electrical parameters, and recorded voltage and currents
at the substation [3,4]. Among them, there are methods based on traveling waves, artificial intelligence,
and impedance-based methods. Traveling-wave methods for FL have been presented previously [5,6].
These techniques present some limitations, such as the requirement of high sampling rate [3]. On the
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other hand, artificial intelligence-based methods present a high performance. Still, they need large
databases to perform their learning process, and their accuracy depends on the database information
quality [3,6–8].

The impedance-based methods are one of the most successful techniques for FL [3]. These methods
are easy to implement in real life applications, have good precision, and a high cost/benefit
relationship [9–12]. However, these techniques present some limitations like the estimation of
multiple FL. This problem can be reduced by artificial intelligence-, traveling waves-, or circuital
analysis-based strategies [4,13,14]. Additionally, with the development of smart grids and the use of
renewable energy, distribution grids are being transformed from passive to active networks. With this,
including the effect of Distributed Energy Resources (DER) on the formulation of the FL problem
becomes necessary; DER comprise Distributed Generation (DG) technologies and energy storage
technologies [15]. Most DER require a power electronic based interface—defined in this paper as
Inverter-interfaced DER (IIDER)—to connect them and ensure their synchronization with the Power
Distribution System (PDS). The remaining DER are connected directly to the network, and are defined
as Inverter non-interfaced DER (INIDER).

Some strategies to consider the DER effect on FL have been proposed in the technical literature [16–27].
In [16,17,25] the DER effect is considered by using a model of the synchronous machine, which is
only valid for INIDER [28]. In [26,27] the DER effect is considered by using a model of the inverter,
which is only valid for IIDER. Further, the methods exposed in the literature [18–24] are formulated
using synchronized current and voltage phasors, provided by Intelligent Electronic Devices (IED),
in order to consider the DER effect on the FL. These methods are robust, but depend strongly on the
availability of measurements given by IED, which are installed in DER. If the IED communication or
its synchronization with the Distribution Management System (DMS) is lost; the FL is not possible.
In this context, it is most important to create models that allow the FL estimation without relying on
the availability of measurements on DER location.

Considering such, the main contribution of this work is the development of an adaptive
impedance-based FL algorithm for active distribution networks. It combines the information provided
by IEDs, located at the substation, and the DER to estimate the FL. Nevertheless, if the information
provided by the IED is not available, the DER effect is considered by the use of its equivalent
linear analytical models. Two DER electrical models are considered: the approximate model of
the synchronous machine for considering the INIDER effect, and the inverter model operating in
limiting current to consider the IIDER effect. These models are used to estimate the current contribution
from DER units to the fault point. In this work, the fault resistance was considered to be constant over
time, and the problem of multiple estimation of FL was not addressed.

The remaining of this paper is organized as follows. Section 2 presents the proposed fault location
equations for ground and phase faults. Section 3 presents the proposed adaptive impedance-based
fault location algorithm for active distribution systems. Section 4 presents the case study, and Section 5
the results. Section 6 presents the discussion of the results and finally, in Section 7, the main conclusions
of this work are presented.

2. Proposed Generalized Fault Location Equations

This work proposes an Adaptive Impedance-Based fault location algorithm for active distribution
networks. The proposed method is an extension of the mathematical formulation presented in [11].
Ref. [11] considers typical features of distribution systems for its formulation, such as the unbalanced
operation; capacitive effect; single, two-phase, and three-phase laterals; making it a robust fault
location method. However, it does not consider the presence of DER.

Consider the power distribution system illustrated in Figure 1. This system has a fault between
nodes k and k + 1.

The main objective of a fault location formulation is to estimate the distance d from the substation
up to the fault point. Therefore, considering that the fault section is unknown, all sections of the system
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are assumed in fault and a distance x is estimated for each section. This estimation is made until a
convergence criterion is achieved. For this reason, the fault location analysis is reduced to a particular
line section.

Consider now a distribution line under fault, which is represented by its exact line segment model,
as shown in Figure 2. Different types of faults can be obtained from the combination of switches
s1, s2, s3, and s4.
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Figure 1. Power distribution system model with a fault between nodes k and k + 1. DER: distributed
energy resources.
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Figure 2. Distribution line model for different types of fault.

2.1. Ground Faults

Consider the generalized model of a fault illustrated in Figure 2. By modifying the states of the
switches s1, s2, s3, and maintaining switch s4 closed, any phase-to-ground fault type is obtained.

Using this model it is possible to derive [11]: VFa

VFb

VFc

 =

 ZFa + ZFg ZFg ZFg

ZFg ZFb + ZFg ZFg

ZFg ZFg ZFc + ZFg

·
 IFa

IFb

IFc

 (1)

In Equation (1), only the faulty phases have fault currents that are different from zero. From
Figure 2, an expression for the fault point voltage is obtained, depending on the fault distance.

VF = dx·Vk − bx·Ik,F (2)



Appl. Sci. 2018, 8, 1563 4 of 21

where,
dx = I + 0.5·x2·Zabc·Yabc (3)

bx = x·Zabc (4)

Replacing Equation (2) in Equation (1), splitting into its real and imaginary parts, and considering
ZFw and ZFg as pure resistances, a generalized expression for phase-to-ground faults is obtained,
as shown by Equation (5).

x2·
[

0.5· ∑
w∈Ωw

=
{

Mw·I∗Fw

}]
− x·

[
∑

w∈Ωw

=
{

Nw·I∗Fw

}]
+

[
∑

w∈Ωw

=
{

Vkw ·I
∗
Fw

}]
= 0 (5)

The variables M and N are defined as: Ma

Mb
Mc

 =

 Zaa Zab Zac

Zba Zbb Zbc
Zca Zcb Zcc

·
 Yaa Yab Yac

Yba Ybb Ybc
Yca Ycb Ycc

·
 Vka

Vkb

Vkc

 (6)

 Na

Nb
Nc

 =

 Zaa Zab Zac

Zba Zbb Zbc
Zca Zcb Zcc

·
 Ik,Fa

Ik,Fb

Ik,Fc

 (7)

2.2. Line-To-Line (LL) Faults

Consider the generalized model of a fault illustrated in Figure 2. By modifying the states of the
switches s1, s2, and s3, and maintaining switch S4 open, any line-to-line (LL) fault type can be obtained.
According to this model, voltages at the faulted location are estimated according to Equation (9).

IFb = −IFa (8)

VFa = Vka + x2·0.5·Ma − x·Na = Vkb
+ x2·0.5·Mb − x·Nb + ZF·IFa (9)

Making the same procedure as for phase-to-ground faults, a generalized expression for line-to-line
(LL) faults is achieved, where u and v are faulted phases.

x2·0.5·=
{
(Mu −Mv)·I∗Fu

}
− x·=

{
(Nu − Nv)·I∗Fu

}
+=

{
(Vku −Vkv)·I

∗
Fu

}
= 0 (10)

Equations (5) and (10) are second-order polynomials in x; consequently, two solutions are
estimated. Thus, the fault distance x, which represents the physically correct solution, must be
estimated as shown in [11].

The previous analysis allows the fault distance estimation in a line section. However, it is necessary
to develop an algorithm which allows its application in each line section of the power distribution
system. An algorithm, such as the one presented previously [14], can be used. The limitation of such
algorithm is that it does not consider the presence of DER.

Consider now for INIDER, the approximate model of the synchronous machine given by an
ideal voltage source that represents the internal voltage of the generator, and the reactance of direct
axis during the subtransient period [29,30]. The choice of the subtransient period ensures that the
concatenated flows in the rotor remain constant, as well as the internal voltage of the machine between
the period of prefault and the time taken for analysis in the fault [17,29,30]. Therefore, the machine’s
prefault period internal voltage is estimated. In the case that the reactance is not known, typical values
reported in the technical literature can be used [31]. The knowledge of the internal voltage in the DG
model allows modeling its behavior in the fault period. This enables the estimation of the current
contribution to the fault point by the application of circuit reduction theorems such as the Thevenin’s
theorem [16].
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Similarly, IIDER are considered in this method by including the fault response model of the
inverter operating in current limiting mode. In this case, DER are represented as a voltage source and
an impedance, which are defined in function of the saturation current of the inverter and the filter
parameters [27].

3. Adaptive Fault Location Algorithm for Active Distribution Systems

The proposed algorithm for fault location is capable to estimate the fault current with the DER’s
available information. The generalized algorithm for estimating the fault distance is divided in 5 steps,
as illustrated in Figure 3. The algorithm is explained in detail in the following.Appl. Sci. 2018, 8, x FOR PEER REVIEW  6 of 21 
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3.1. Step 1: Processing Information of Power Distribution System and Substation Fault Records

In this step the information of the power distribution system is added, such as its topology and
the electrical parameters of loads and distribution lines. Also, the substation fault voltage and current
phasors are estimated by the application of the Fourier transform [3].

3.2. Step 2: Processing of DER Information

In this step the DER available information is processed, in order to consider its effect on the
fault location algorithm. For the adaptive feature, the proposed method has two options: using
DER electrical models or using the information provided by IEDs installed at the DER location.
The algorithm was developed considering one DER. Nevertheless, multiple distributed generators can
be considered by using the superposition and Thevenin’s theorem.

3.2.1. Using the Information Provided by IEDs Installed at the DER

First, fault voltage and current phasors in DER are estimated. Then, the system parameters,
line currents, and nodal voltages are estimated. Consider the power distribution system illustrated in
Figure 4.
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With the DER fault voltage and current phasors, a backward-sweep process from DER to
substation can be performed, using Equations (11) and (12).[

Vp, f
DERk

Ip, f
DERk

]
=

[
dl −bl
−cl al

]
·

 Vp, f
DERk+1

Ip, f
DERk+1,k

 (11)

Ip, f
DERk−1,k

= Ip, f
DERk

− Ip, f
Lk

(12)

where,
al = dl = I + 0, 5·Zk,k+1·Yk (13)

bl = Zk,k+1 (14)

cl = Yk + 0.25·Yk·Zk,k+1·Yk (15)

Superscripts (p) and ( f ) indicate that prefault or fault period measurements are used. Moreover,
for each line section under study between the substation and the DER illustrated in Figure 4, the current
I f

F,k+1 is assumed to be equal to I f
DERk−1,k

. This is in order to estimate the fault current, as it will be
shown in step 3.
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3.2.2. Using the Approximate Model of the Synchronous Machine for INIDER Model

If the DER parameters are known, the approximate model of the synchronous machine is used.
This model is suitable for INIDER, given that their main element is a synchronous generator.

The main objective of this stage is to estimate the internal voltage of the synchronous generator
model, using the prefault period substation voltage and current phasors (Vp

Se and Ip
Se). Therefore,

considering Figure 5, a backward-sweep process from the substation to the DER node is implemented
using Equations (16) and (17). [

Vp
k+1

Ip
k+1

]
=

[
dl −bl
−cl al

]
·
[

Vp
k

Ip
k,k+1

]
(16)

Ip, f
k+1,k+2 = Ip

k+1 − Ip
Lk+1

(17)Appl. Sci. 2018, 8, x FOR PEER REVIEW  8 of 21 
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In this process, the load is modeled as a constant impedance, which is appropriate in the
subtransient fault period [31].

Once Vp
G and Ip

G are known, the synchronous machine internal voltage is estimated by
Equation (18).

E = Vp
G − ZDER·I

p
G (18)

This process eliminates the use of a load flow, as it is proposed previously [16,17,32]. Knowledge of
the internal voltage in the DER model allows determining its behavior in the fault period, which allows
the estimation of its current contribution to the fault point. The last is done by application of circuit
reduction theorems such as Thevenin’s theorem, as it is presented in step 5 [16,32].

3.2.3. Using the IIDER Model in Current Limiting Mode

For IIDER, as for the inverter-based ones, the model will work well if the fault enables the DER to
work on the current limiting mode. Thus, this study is focused on the model shown in Figure 6 as it is
presented previously [27].
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Making some algebraic manipulations, the circuit can be represented by a voltage source EDER
and a reactance XDER, which is a similar model to the synchronous generator model as shown in
Figure 7.

Where, EDER and XDER are given by Equations (19) and (20).

EDER =
1

jωC f
·Isat (19)

XDER = jωLc +
1

jωC f
(20)

The previous analysis allows estimating the fault current contribution from DER to the fault
point. The voltage EDER is known, since the saturation current Isat is typically twice the nominal
current of the inverter. The inverter parameters are generally provided to the utilities when access
to the distribution system is requested. However, if these parameters are not available, appropriate
values may be obtained from technical catalogues by using the rated power and operating voltage of
the inverter.
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3.3. Step 3: Estimation of the Fault Current

The estimation of the fault current depends on the location of the DER relative to the line section
analyzed. The two possible conditions are illustrated in Figure 8.
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A fault between the substation and the DER is represented in Figure 8a. In this case the DER
effect is considered in the current feeding the fault from the downstream circuit. For this condition,
the strategies of Sections 3.5.1 and 3.5.2 are used. For the second condition, the DER effect is considered
in the current feeding the fault from the upstream circuit. Therefore, the fault current is estimated on
the basis of the fault distance x; as in the original formulation proposed previously [11]. Therefore,
the fault current is given by Equation (21).

IF = I f
k,F + I f

F,k+1 (21)

Given that the fault current is a function of x, it is necessary to perform an iterative process to
determine a precise value for the current I f

F,k+1, as shown in Figure 3. The initial value adopted for

I f
F,k+1 is given by Equation (22).

I f
F,k+1 = Ip

k,F (22)

3.4. Step 4: Estimation of the Fault Location for Each Section

Given the fault current, the fault distance in each section is calculated by means of Equation (5)
if it is from a ground-phase fault, or by means of Equation (10) if it is from a line-line fault,
as presented previously.

3.5. Step 5: Iterative Process to Determine the Fault Current

The iterative process to determine the fault current can be carried out in two different ways:
by using the information provided by IEDs or by using the DER electrical model.

3.5.1. Estimation of the Fault Current by Using the Information Provided by IEDs

When the information provided by IEDs is available, the estimation of the fault current is
straightforward. For this case, the current feeding the fault from the downstream circuit I f

F,k+1

is assumed to be I f
F,k+1 = I f

DERk−1,k
, where I f

DERk−1,k
is the current estimated in step 2.

3.5.2. Estimation of the Fault Current by Using the DER Model

When the information provided by the IEDs is not available, the DER model is used. In this case,
the DER contribution current to the fault point is calculated by the application of Thevenin’s theorem.

Considering the power distribution system illustrated in Figure 8a, it is reduced to the circuit
shown by Figure 9.
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The Thevenin’s voltage is estimated from the internal voltage vector of the synchronous generator
calculated in the step 2 for INIDER, or from the current saturation and DER filter parameters for
IIDER. The Thevenin’s admittance matrix is estimated by short-circuiting the internal generator
voltage, and calculating the equivalent admittance of the system downstream from the DER to node
k + 1. I f

F,k+1 is estimated from the fault voltage vector VF, the Thevenin voltage vector VTh, and the
Thevenin’s admittance matrix YTh, as shown by Equation (23).

I f
F,k+1 = YTh·[(1− x)·Zk,k+1·YTh + I]−1·(VF − VTh) (23)

Voltage and current vectors are estimated from the circuit parameters, current, and voltage
measurements at the substation. Therefore, the fault current is given by the same Equation (21).

3.6. Step 6: Update the Voltage and Current Vectors, and Distance from the Substation Up to the Fault Point

In this step, one of the following two actions are taken: the update of the voltage and current
vectors, or the calculation of the distance from the fault point. If the first action is taken, the algorithm
goes back to step 3 and continues with a new line section. On the other hand, if the second action
is taken, the algorithm determines the fault distance and finishes. The two actions are detailed
to continue:

3.6.1. Update the Voltage and Current Vectors

As shown in the algorithm presented in Figure 3, the fault is estimated downstream of the first
system section and then, the values of voltage and current measured at the local terminal are updated
to the next system buses by Equations (24) and (25).[

Vp, f
k+1

Ip, f
k+1

]
=

[
dl −bl
−cl al

]
·
[

Vp, f
k

Ip, f
k,k+1

]
(24)

Ip, f
k+1,k+2 = Ip, f

k+1 − Ip, f
Lk+1

(25)

Equation (25) is used for all system nodes, except for the node where the lateral of the DER is
connected. For this node, the current Ip,f

k+1,k+2 is updated by Equation (26).

Ip, f
k+1,k+2 = Ip, f

k+1 − Ip, f
Lk+1

+ Ip, f
g,k+1 (26)

where Ip, f
g,k+1 is the current contribution from the DER to the node k + 1, as shown in Figure 10.
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The proposed fault location algorithm considers that the DER can be allocated in any node of
the system. Therefore, the current contribution from the DER to the node k + 1 is calculated from the
nodal admittance matrix of the lateral of the DER, as shown by Equations (27) and (28).

V f
LG1

V f
LG2

V f
LG3
...
...

V f
LGk


=



Ylg11 Ylg12 0 0 · · · 0
Ylg21 Ylg21 Ylg23 0 · · · 0

0 Ylg32 Ylg33 Ylg23 · · · 0

0 0 0
. . . · · · 0

...
...

...
...

. . .
...

0 0 0 0 Ylgk,k−1
Ylgk,k



−1

·



yDER·E
0
0
...
...

ylgk,k+1
·V f

k+1


(27)

I f
g,k+1 = ylgk,k+1

·
(

V f
LGk
− V f

k+1

)
(28)

with,

Ylgii
=

k

∑
jΩi

ylgij
(29)

Ylgij
= −ylgij

(30)

3.6.2. Calculation of Distance from the Substation to the Fault Point

After estimating the fault point, distance d from the substation to the fault point is also estimated.
This is made by means of Equation (31),

d =
nt−1

∑
i=1

Li + x·Lnt (31)

4. Case Studies

The proposed method was validated with a modified IEEE 34-node test feeder [33]. This feeder is
located in the state of Arizona (USA) and operates at a voltage of 24.9 kV. Figure 11 presents the IEEE
34-node test feeder.
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The relevant characteristics of the test feeder are the presence of single, two-phase, and three-phase
laterals, multiple wire sizes, and unbalanced loads of concentrated and distributed nature. This system
is simulated with the software EMTP-ATP, and modified by inserting a DER. This test feeder has been
widely used for fault location studies in distribution networks [13,20–23]. Two considerations for
validation of the algorithms are made. The first consideration is to assume that IEDs have been installed
in the substation and the DER location. It is also assumed that the information gathered is sufficient
to determine the voltage and current phasors during the prefault and fault periods. The second
consideration assumes that there is no available information collected by IEDs at the DER location;
therefore, the electrical model of the DER is used. Under these conditions, the method is validated by
considering three scenarios:

Scenario 1: This scenario considers only the influence of the fault resistance and the fault type.
Table 1 presents the description for this scenario.

Table 1. Simulation data for scenario 1. DER: distributed energy resources; IED: intelligent
electronic devices.

Parameters Information Available
of IEDs Factors Located Faults

DER penetration level: 10% Yes Faults resistance between: 0–100 Ω in steps of 5 Ω 5481

Load condition: Nominal NO
DER type: INIDER

Fault types: A-g, B-g, C-g, AB, BC, CA, AB-g, BC-g,
CA-g, ABC, and ABC-g 5481

Total faults 10,862

Scenario 2: This scenario considers only the influence of the load. Three ranges of nominal load
are considered, according to the information given in Table 2. For each of these ranges, a uniformly
distributed value is used as the system load.

Table 2. Simulation data for scenario 2.

Parameters Information Available
of IEDs Factors Located Faults

DER penetration level: 10% Yes

Random load variation: 30–60%,
60–100%, 100–140%

129

Fault resistance: 10 Ω. NO
DER type: INIDER 129

Fault type: Three phase faults NO
DER type: IIDER 129

Total faults 987

Scenario 3: This scenario considers only the influence of the DER penetration level. Three different
values of penetration level are considered in Table 3.

Table 3. Simulation data for scenario 3.

Parameters Information Available
of IEDs Factors Located Faults

Load condition: Nominal Fault
resistance: 10 Ω.

Fault type: Three phase faults

Yes

DER penetration level:
10%, 20%, 30%

129

NO
DER type: INIDER 129

NO
DER type: IIDER 129

Total faults 987
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5. Results and Analysis

The results obtained with the proposed method are given in terms of a percentage error, which is
calculated by means of Equation (32).

%Error =
dreal − destimated

dtotal
·100% (32)

In the following, the results are analyzed for each simulated scenario.

5.1. Scenario 1: Fault Resistance Effect

The FL errors are classified for each fault type. At the same time, the errors of each fault type are
presented in five different ranges of fault resistance with 20 Ω intervals. Average and maximum errors
are also identified in Figure 12a,b.
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Figure 12. Percentage errors as a function of the fault resistance for the proposed method: (a) using
the Intelligent Electronic Devices (IEDs) information, (b) using DER electrical model instead of
IEDs information.

The results obtained using the information of IEDs show a maximum average error of 0.16% and
a maximum error of −0.46%. It is worth noticing here that both errors occurred for the single-phase to
ground fault. These errors correspond to 90 m and 270 m, considering a feeder with 58 km of length.
On the other hand, when the DER electrical model is used, the method’s performance decreases,
obtaining a maximum average error of 0.55% and a maximum error of 1.04%. These errors were also
obtained for the single-phase to ground fault. As expected, the lowest location errors are found with
the model that uses the information of the IEDs.
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5.2. Scenario 2: Load Variation Effect

The results for this scenario are presented in Figure 13, which shows the estimated error of the
fault distance calculated by Equation (32), and the actual distance to the fault.

For this scenario, a small difference of the method’s performance is observed, especially from
the substation to the middle of the feeder. When IEDs information is used, the method presents a
performance with errors below 0.2%. However, when IEDs information is not available, the proposed
method presents a better performance. The errors are below 0.05% for both models of DER
(INIDER and IIDER). On the contrary, for faults located after 30 kms, and using IED information,
the method presented better performance than using the DER model. However, the maximum error
for these cases is of about 0.8%. Additionally, the test results show a small correlation between
the method’s performance and the load value. This behavior occurs because in this work, no load
compensation strategy was implemented. Nevertheless, a compensation strategy can be used as
proposed previously [34].
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Figure 13. Performance curve for Scenario 2: (a) using the IEDs information, (b) using INIDER model
instead of IEDs information, and (c) using the Inverter-interfaced DER model in limiting current mode
instead of IEDs information.

For the nominal-high load condition, the behavior of the method is of subestimation. In other
words, the method tends to estimate a distance lower than the real distance to the fault. In contrast, for
scenarios where the load decreases, the method tends to overestimate the distance to the fault. This is
explained because as the load increases, the method observes a lower impedance of the system and
estimates a lower distance to the fault. Nevertheless, test results show very low error values. This is
because the use of Thevenin models, decreases the impact of individual model parameter errors.
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5.3. Scenario 3: DER Penetration Level Effect

Figure 14a–c presents the performance for the proposed method using the IEDs information and
using the DER electrical model.

For this scenario, a clear difference is observed in the performance of the method. When IEDs
information is used, the method exhibits an excellent performance with errors below 0.02%
(approximately 10 m in a feeder with 58 km of length). Also, its performance is quasi-invariant for
different DER penetration levels. When the DER electrical model for INIDER is used, the performance
of the method decreases significantly in relation to the performance obtained with IEDs information.
For this case, a clear tendency to overestimate the fault distance as DER penetration level increases
are observed; reaching an error of 0.5% for a penetration level of 30%. This behavior is due to the
increasing penetration, which increases the error in the estimation of the current supplied to the fault
point from the DER. On the other hand, the method presents errors lower than 0.06% when using
the DER electrical model for IIDER. A tendency to underestimate the fault distance when the DER
penetration level increases, is observed. However, its performance is better than when the INIDER
model is used. This occurs because the contribution of the current from the IIDER to the fault point is
lower than in the case of the INIDER, and this current is estimated by an iterative process.
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Figure 14. Performance curve for Scenario 3: (a) using the synchronous machine model, (b) using the
Inverter-interfaced DER model in limiting current mode, and (c) using the IEDs information.

5.4. Comparison Test

Two state-of-the-art methods were implemented and compared with the proposed analytical
methodology: Nunes et al.’s method [16,17] and Bedoya et al.’s method [21]. These methods were
validated and compared using scenario 1.

The method proposed by Nunes et al. uses the synchronous machine model to consider the DG
effect on the fault location. Therefore, it was compared with the method of this paper, using also the
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INIDER electrical model. Because of the large number of results, they are presented in a bar graph
using the average and maximum errors obtained for each fault type, as shown in Figure 15.

The test results show the better accuracy of our method when compared with the method proposed
by Nunes et al. Nunes et al.’s method presents errors of up to 11% and an average error of 2% for faults
with fault resistances between 0 and 100 ohms. While for our method, the errors in estimating the fault
distance are lower than 1.1%, and the average error is 0.6%. This difference in accuracy between both
methods is caused mainly because of the capacitive effect, which is not considered in the formulation
of Nunes et al.

Similarly, the method proposed by Bedoya et al. was compared with our method. For this
comparative test, our method used information from the IED located at the DER, since the
Bedoya et al.’s method uses synchronized measurements at the DER terminal. Figure 16 presents the
results obtained for Bedoya et al.’s method and our method.
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Figure 15. Fault error comparison: Nunes et al.’s method [16,17] and the proposed formulation using
the electrical model of the DER. DG: distributed generation.
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The results obtained show the better accuracy of our method when compared with the method
proposed by Bedoya et al. This better accuracy is observed in the maximum errors obtained for each
fault type. Nonetheless, for some fault types (A-g, B-g, C-g, C-A, and ABC) the average errors are very
low and are comparable to those obtained with the method of this paper.

Figure 17 compares two state-of-the-art methods with the one proposed in this paper; the last one
considering IED information, or the DER electrical model. This comparison is made for one case of the
scenarios evaluated in the comparison tests. The figure allows to understand why the Nunes method
presents a low performance: it depends on the fault resistance and the location of the fault. The figure
also shows that the performance of the method proposed in this paper, using the DER electrical model,
is comparable with the performance of Bedoya et al.’s method. This is relevant because it shows the
robustness of our method, even when the IED information is not available.Appl. Sci. 2018, 8, x FOR PEER REVIEW  18 of 21 
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Figure 17. Performance curve for the proposed method and comparison with Nunes et al.’s [16,17] and
Bedoya et al.’s [21] methods. Single-phase faults with resistance of 50 Ω.

6. Discussion

The fault location method proposed in this paper showed to be robust for the validation scenarios.
The effect of the fault resistance, random variation of the load, level of penetration of dispersed
generation sources, and the location of the fault, were analyzed.

The performance of the method is adequate, with errors lower than 1.1%. The factor that
produces the highest error is the fault resistance. This effect is significantly intensified with the
type of fault; the single-phase faults the ones that affect the location accuracy the most. This is
expected, since being shown previously [35], with the increase of the fault resistance, the impedance
seen by the impedance-based fault location methods tends to be greater than the real impedance of the
power system.

However, the factor that produces a greater location error is the DER penetration level: the greater
the DER penetration level, the greater the error. However, the error decreases if the IED information
is available. Nevertheless, when IED information is not available, the DER electrical model is used,
and an iterative process is made to determine the DER contribution to the fault current. This process is
less accurate than using the current measured by the IEDs in the DER and the accuracy is affected by
the location of the fault.

On the other hand, the load variation also showed an effect on the performance of the proposed
method. This is expected for two reasons: first, the proposed method is as impedance-based method;
therefore, any variation in the load will affect the impedance of the power system. The second reason is
that the power system impedance variation due to the load variation must be compensated in the fault
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location formulation. If a compensation strategy is not used, a significant error on the estimation of the
fault distance will be introduced. For the proposed method, a compensation strategy was not used,
which produces an increase in the error with a behavior depending on the load variation features.

7. Conclusions

This work presented an adaptive impedance-based fault location algorithm for active distribution
systems. This method showed to be robust and adaptive, obtaining estimation errors lower than 1.1%
with or without available information provided by IEDs.

The proposed method showed a satisfactory performance under the effect of different features
and fault situations. In the case of the fault resistance effect, the method presented a small increase in
the estimation error, which could be increased by the faulted phases’ loading and the fault incidence
angle. However, this increase is acceptable. The load variation effect shows that when load decreases
relative to its nominal value, the proposed method tends to overestimate the fault distance. On the
other hand, when the load increases relative to its nominal value, the method tends to underestimate
the fault distance. This is justified because as the load increases, the method sees a lower impedance
from the substation to the fault point and therefore, estimates a lower fault distance and vice versa.

The effect of the DER penetration level was very small when the IEDs information was used.
However, when this information was not available, an increase in the estimated error of the
fault distance was observed and showed to be directly proportional to the DER penetration level.
This error is caused by the model used for the DER, since it corresponds to an approximate model;
the impedance-based fault location methods are very sensitive to the correct estimation of the fault
current. However, this increase was not significant, presenting errors lower than 1.1% on the estimation
of the fault distance.

Finally, the proposed method performance was compared with two state-of-the-art methods,
showing outstanding performance.
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Nomenclature

w Faulted phases
v and u Faulted phases for generalized expression of line-to-line (LL) faults
(p) Indicator of the prefault measurements
( f ) Indicator of the fault measurements
(+) Indicator of positive sequence componentes
(−) Indicator of negative sequence componentes
= Imaginary part
R Real part
VFw Fault point voltage on phase w
IFw Fault current on phase w
Vkw Voltage on phase w and terminal k.
Ik,F Three phase currents of fault from k to the fault point (F).
I Third-order identity matrix
x Calculated fault distance
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d Distance from the substation to the fault point
nt Number of sections analyzed by the algorithm
Li Length of the i-th distribution feeder
Lnt Length of the last distribution line analyzed
ZFa,b,c,g Fault impedance
Vk Three-phase voltages vector in the k-th terminal.
Yabc Line shunt impedance matrix
Zabc Line series impedance matrix
VDERk Three-phase voltages vector in the k-th terminal of the DER
IDERk Three-phase current vector in the k-th terminal of the DER
IDERk+1,k Three-phase current vector in the k + 1 terminal of the DER
Zk,k+1 Line series impedance matrix between terminals k and k + 1.
Yk Shunt admittance matrix of line between terminals k and k + 1
ILk Three-phase current vector flowing through k-th lateral.
E Internal voltage vector of the DER
VG Three-phase terminal G voltage vector of the DER
IG Three-phase terminal G current vector of the DER
ZDER Impedance matrix of the DER
yDER Admittance matrix of the DER
Isat Saturation current of the inverter
IL Reference current that crosses the filter inductor
c f Capacitance of the filter inverter
L f Inductance of the filter inverter
VTh Downstream system Thevenin’s voltage vector from the fault point
YTh Downstream system Thevenin’s admittance matrix from the fault point
Ylgii Diagonal elements of the self-admittance matrix of the DER lateral
Ylgij Off-diagonal elements of the admittance matrix of the DER lateral

V f
LGk

Fault voltage vector in the k-th terminal of the DER radial

I f
g,k+1 Fault current vector between terminals k and k + 1 of the DER radial

Ωi Set of connected elements in the i-th node including loads and shunt elements
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