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Abstract: With the use of glauberite mineral (GM) and sodium hydroxide (SH) alkaline catalysts to
stimulate slag powder’s internal cementation activity and incorporate the two fine-grained solid
wastes, such as quicklime (Q) and desulfurized ash (DA), a new cementitious material suitable for
mine tailings was developed to replace traditional ordinary Portland cement (OPC) for reducing
cement-related costs. A series of uniaxial compressive strength (UCS) tests were carried out on
cemented tailings backfill (CTB) samples containing different activators. The results showed that
(1) the highest UCS values of 14-day and 28-day cured CTB samples were 1.259 MPa and 2.429 MPa,
respectively, and the effect of different activator types was in the order of SH > GM > DA > Q and
SH > GM > Q > DA; (2) the relationship between UCS and activator dosages followed the function
y = ax3 − bx2 + cx − d. Compared with the OPC 32.5 R cemented samples, the minimum strength
growth factor was 1.45, and the maximum reached 2.03; (3) the optimal proportion of DA slag formula
was 4.5% or 5.0% Q, 19% DA, 2.5% GM, and 0.7% SH. The aforesaid new cementitious materials met
the mine’s UCS requirements with a relatively low cost (17.04–17.20 €/ton) and solved the stacking
problem of solid wastes on the surface well. Ultimately, this study provides a useful reference for the
development of mineral binders.

Keywords: cemented tailings backfill; desulfurized ash; alkali-activated slag; uniaxial compressive
strength; curing time; neural network prediction

1. Introduction

The underground mining methods with cemented backfill have key advantages in controlling
ground pressure, realizing the absence of waste mining, and the efficient utilization of mineral
resources [1,2]. However, the high cost of cementitious materials used in the mine backfill operations
has exerted tremendous economic pressure on the mining industry [3]. Indeed, cemented tailings
backfill (CTB) or cemented paste backfill (CPB) represents nearly 50–85% of the total operating costs
when considered for a cement content of 3.5–9% used in the backfill mix. CTB allows mining companies
to extract more ore in a secure manner, while simultaneously improving working and environmental
conditions [4,5]. As a result, the use of solid wastes is an effective approach to reduce mining costs,
improve operational safety, and develop a new type of cementitious material with a relatively low cost
and high mechanical strength.

CTB is a composite matrix of the total filtrated processing tailings (containing 70–85 wt% solid
content), hydraulic binder, and mixing water. The physicochemical and mineralogical properties of
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these ingredients (tailings, binder, and water) have a key influence on strength, stability, transport,
curing, and placement performance of CTB materials [6–15]. Binders are used to ensure the strength
and durability of CTB mass. The most commonly used binder type in the mine sites is ordinary Portland
cement (OPC), which is costly and prone to acid and/or sulfate attacks when sulfide-rich processing
tailings are used for the manufacture of CTB mass [16]. For that reason, utilization of efficient cost
control and highly durable alternative cement types is required for the CTB mixes containing such
tailings [17]. Ercikdi et al. [18] demonstrated that the use of pozzolanic mineral and chemical additives
as an alternative binder in CPB drastically prevented the mechanical strength losses, even at lower
cement contents. It is well known in the concrete industry that alkali-activated slag cement provides
a high mechanical strength and stability under aggressive conditions [19]. Some researchers also
reported that the cost of alkali-activated slag cement could be as little as a half of that of OPC, ensuring
its potential as an alternative binder to be used within CTB or CPB samples containing sulfidic mine
tailings [20,21].

Numerous researchers have conducted extensive research on the activation of slag powder and
new filling materials. Cihangir et al. [22] reported that the cement-related costs were significantly
reduced (35%) to achieve an equal strength of 1 MPa for 28-day cured CPB samples, increasing the
corresponding mechanical strength gain. Kermani et al. [23,24] also reported that the addition of a
proper amount of an alkali activator such as sodium silicate could improve the backfill’s strength,
drainage, and microstructural properties. Addition of sodium silicate to the CTB mix can reduce the
total porosity and the required setting time of the backfill, contributing to an increase in the backfill
strength and ore production. In addition, Manjunath et al. [25] developed concrete mixtures with
granulated blast furnace slag as an aggregate, and their results demonstrate that alkaline solution can
activate slag effectively. Gebregziabiher et al. [26] believed that the hydration process and mechanical
properties of slag cement are highly dependent on type and dosage of alkaline catalysts. Sodium
hydroxide (SH) and sodium silicate are the most commonly used activators. Sodium silicate is indeed
a viscous material that is usually used to activate pozzolanic materials such as slag and fly ash.
The chemical compound has many applications, namely, in waste treatment [27], mine tailings [28–31],
sand fill [32], and other construction materials [33–35].

Moreover, Thomas et al. [36] analyzed the micromechanical properties of slag binder and found
that the strength of sodium hydroxide-active slag cement is higher than that of the surrounding
non-reacted slag cement. SEM microscopic morphology and energy spectrum analyses revealed that
the slag particles hydrated under an alkali-excited environment are relatively enough [37]. Li et al. [38]
studied the hydration mechanism of composite cementitious materials containing pulverized fly ash
as a substitute for cement and slag powder. Ren et al. [39] discussed the influence of pulverized
coal ash on the comprehensive performance of filling paste. Yao et al. [40] effectively developed slag
aluminum-based gel-forming material with mine-graded tailings and whole tailings as aggregates,
and they achieved the expected technical and economic indexes of fillings. Wang et al. [41] proposed
a joint cementation and filling program for mine gravel and phosphogypsum as filling aggregates,
and they found that the addition of phosphogypsum effectively improves the fluidity of the slurry
mix. Guo et al. [42] replaced OPC cement with slag powder or desulfurization gypsum to some extent.
As a result, the dense microstructure formed was found to increase the compressive strength gain and
reduce the drying shrinkage of cement mortar and concrete.

Given that desulfurization products and components such as fly ash are unstable in the nature,
most of the desulfurized ash (DA) slag is stored and discarded, which can give rise to environmental
pollution and limit the desulfurization process and large-scale industrial use [43,44]. Wang et al. [45]
replaced fine aggregates with desulphurization slag. The mechanical strength acquisition of mortar
samples decreases when increasing the replacement rate of desulfurized ash. Li et al. [46] used solid
wastes such as quicklime and desulfurized slag to stimulate the rod milling sand for Jinchuan Mine,
and the authors obtained a new type of cemented backfilling material. Wang et al [47] activated
the cementing properties of DA with the active agent, active mineral admixture, and temperature,
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and analyzed the early hydration process and its products. Using a variety of experiments such
as dynamic creep, three-point bending, retained Martens’ stability, and the tensile strength ratio,
Chen et al. [48] found that the desulfurization residue can partially improve the moisture resistance
and crack resistance of the asphalt mixtures.

According to the experimental study of the pre-mine tailings powder excitation formula, a new
type of cementitious material composed of quicklime (Q), desulfurized ash (DA), glauberite mineral
(GM), and sodium hydroxide (SH) was developed by using GM and SH to stimulate the intrinsic
activity of slag powder. The originality of this paper consists of the evaluation of the effects of four
different activators (Q, DA, GM, and SH) on the uniaxial compressive strength of cemented tailings
backfill. To better determine the optimal proportion of activator dosages, some regression equations
were established. The Matlab software was also used to predict the mechanical strength gain of CTB
samples. Combined with the results of the quadratic polynomial regression and the improved neural
network prediction, the optimal ratio of DA formula was finally determined.

2. Materials and Methods

2.1. Material Characterization

The raw materials used in this study were total tailings, and the moisture content was less than
10% through drying in the open air and a drying oven. Particle size distribution (PSD) of the tailings
sample was analyzed using a LS-POP (VI) powerful laser diffraction particle sizer (Figure 1) under
dry conditions appropriate for the ASTM D421 standard procedure [49]. The LS-POP (VI) (OMEC,
Zhuhai, China) is a centrifugal particle size analyzer which combines particle sedimentation with
photometric detection. Particle sizes can be measured over a very wide range from 2 nm to 500 µm,
depending on the particle density, dispersant density, and viscosity. By using a single light source
(power 2 mW) and eliminating the requisite for laser switching, one-second measuring intervals
can be achieved, allowing for real-time monitoring of the particle size. Sample concentration in the
dispersant is lower than 0.01 wt% (differs with sample). Sample particles are settled in any of four
modes: The gravimetric sedimentation mode, the centrifugal sedimentation mode, the multi mode
(combining gravitational sedimentation and centrifugal sedimentation), and the centrifugal lift mode.
The main reasons behind why the centrifugal sedimentation mode is used for PSD analyses are that:
(i) it increases the sedimentation speed of fine particles by several orders of magnitude, and (ii) it
greatly moderates the effect of Brownian motion.
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Figure 1. Photo of the LS-POP (VI) laser particle sizer.

Moreover, the particle size distribution and fractal fitting curves of the studied tailings sample
are shown in Figure 2. Combined with Figure 2a and the interpolation calculation of the grading
curve, the amount of fine mud less than 0.1 mm reached 21%, the weighted average particle size was
0.361 mm, and the unevenness coefficient was 53.4, which far exceeded the optimum grading range
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of 4 to 5 in the Thabo equation. As shown in Figure 2b, the fractal dimension of the studied tailings
sample was 2.527, and the fitting correlation coefficient reached 96.35%, which could replicate the
real PSD of the whole tailings. In general, a greater fractal dimension led to the fine tailings particles
used in experiments. In conclusion, the particle size distribution of the whole tailings sample was
not uniform, the content of fine mud was high, and the filling material of the tailings demonstrated
seriously poor grading.
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Figure 2. Particle size distribution curve (a) and fractal fitting curve (b) of the tested tailings sample.

Desulfurized ash (DA) is grayish with a fine grain size, and the average particle size is 17.5 µm.
Desulfurization through a gas-solid reaction at a certain temperature has been proven advisable as it
yields effective results and oaths that the ash content does not increase. The most direct and effective
means of desulfurization is calcination at a temperature between 850 ◦C and 900 ◦C, which proposes
a good desulfurization rate and a relatively low cost [50]. Note that a high temperature leads to a
high desulfurization rate. However, the relatively high-temperature calcination results in a low yield
and diseconomy.

After the calcination process, the mineral components were effectively improved, while the
hydration process was facilitated. X-ray diffraction (XRD) of the powder samples was evaluated
using a MXP21VAHF diffractometer (MAC Science, Tokyo, Japan) over the range of 10–80 degrees
2θ at a scanning speed of 0.5 deg/min. The tube anode was copper, and the Kα radiation (0.15 nm)
was monochromatized with a graphite crystal. The pattern was collected using a tube voltage of
21 kV and a 500 mA tube current. The pattern was scanned by using a step scan mode (step size
0.02 degree, counting time 1 s per step). XRD is a rapid analytical system principally used for the
phase identification of a crystalline material. Both XRD and semi-quantitative analyses showed that
the sulfur-containing phase in DA was dominated by CaSO3, and its mass fraction reached 10–50%.
By contrast, the calcium sulfate content was relatively very small. The result of X-ray diffraction for
the tested tailings sample is shown in Figure 3.
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Quicklime (Q) is produced by Tangshan Yongshun Lime Plant, and its chemical composition is
also measured using a MXP21VAHF diffractometer in accordance with the GB/T 176-1996 Chinese
standard procedure, as shown in Table 1. The quantitative analysis of the sample should usually be
about 45 microns. It can be seen from Table 1 that the CaO content of Yongshun lime is only 39.02%
and the MgO content is 8.52%, but the content of Ca(OH)2 is as high as 35.54%. Compared with the
chemical composition of the Tangshan Yinshui high calcium lime, the Q used in the experiments is
ordinary lime, which is not in the category of high calcium ash. Please also note that GM and SH are
all purchased industrial production additives.

Table 1. Chemical composition of the tested quicklime sample.

Manufacturer CaO (%) MgO (%) CaCO3 (%) Ca(OH)2 (%) Others (%)

Yongshun 39.02 8.52 15.84 35.54 1.08
Yinshui 73.05 9.88 8.27 8.79 0.01

The slag powder was S95 blast furnace slag (water-quenched slag) produced by Tangshan Iron and
Steel Plant (China), and its active component CaO + Al2O3 + MgO = 38.16% + 16.23% + 10.10% = 64.49%.
The mass coefficient was 1.91, and the weighted average particle size was 18.13 µm. Several works [51–54]
have shown that particles of slag powder with a diameter of less than 30 µm play a beneficial role in
filling strength. Therefore, the slag powder belonged to the category of high-quality slag and could be
easily activated to prepare cementitious materials.

2.2. Sample Preparation and Curing Process

The new cementitious material was composed of slag powder, Q, DA, GM, and SH. First,
the above-mentioned raw materials were respectively ball-milled to a certain degree of fineness.
After evenly stirring, they were poured into 7.07 cm × 7.07 cm × 7.07 cm standard cube molds, shaken,
and placed under a temperature of 20 ± 1 ◦C and a relative humidity of no less than 95% of the YH-40B
standard curing box. During demolding, the upper and lower surfaces of the hardened CTB samples
were polished in order to meet the flatness requirements, to eliminate the effect of end effects during
the compression test. The sample preparation and curing conditions of the tested CTB mixtures are
shown in Figure 4.
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2.3. Uniaxial Compressive Strength Testing

Uniaxial compressive strength (UCS) can directly reflect the cementation performance of the new
cementitious materials under different test parameters or combinations. The CTB sample used for UCS
testing is a cube with a side length of 7.07 cm appropriate to the ASTM C109/C109M-16a standard
procedure [55]. To determine the CTB’s strength gain based on the GB/T1767-1999 Chinese standard
procedure, the WDW-100 electronic universal testing equipment (having a maximum pressure of
100 kN) was used at a loading rate of 0.5 mm/min. To reduce the experimental errors, at least three
measurements were conducted to determine an average UCS value of CTB samples, and only the
average values were considered. Figure 5 shows the used UCS test device and broken CTB sample
after UCS testing.
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3. Result and Analysis

3.1. Experimental Scheme and Results

Given the low content of CaO in DA, it was mostly packed with dense sulfate material. The total
hydration time was prolonged, and only the weak base environment was generated. The micro power
from the Tangshan Iron and Steel Company showed weak acidity. When the slag powder has potential
self-activity, it can more easily stimulate hydraulic activity in an alkaline environment than in acidic
conditions. Consequently, a typical alkaline activator SH was added to the experiment in order to
adjust the acid and alkaline range of the hydration environment which obtains the best excitation effect
during the experiments.

The tests used an orthogonal test design of four factors (Q, DA, GM, and SH) and three levels,
with a cement-to-sand ratio of 1:8 and a slurry density of 73%. The dosage of GM and SH activators
is determined based on the research and development results. At present, we have related patents
for the preparation of gelling materials for desulfurization ash to replace gypsum. Due to the use of
whole tailings and Q, the amount of individual activator is solemnly adjusted. To compare this with
the new type of cementitious material, samples with the same glue-sand ratio and the slurry density
were prepared by OPC 32.5R early strength cement. The test samples of DA residue formula were
labeled as DA-1, DA-2, DA-3, and so on. Table 2 shows a summary of the experimental scheme and
strength results.

Table 2. A summary of the experimental scheme and UCS test results.

Test No. Q/% DA/% GM/% SH/%
Slag

Powder/%
Stress/MPa 28-d Sinking

Rate/%14-d 28-d

DA-1 4.5 16 1.5 0 78 0.912 1.830 5.20
DA-2 4.5 17.5 2.0 0.5 75.5 1.222 2.056 5.12
DA-3 4.5 19 2.5 1.0 73 1.156 2.429 4.85
DA-4 5.0 16 2.0 1.0 76 1.119 2.045 4.36
DA-5 5.0 17.5 2.5 0 75 0.948 2.135 6.07
DA-6 5.0 19 1.5 0.5 74 1.005 2.245 4.21
DA-7 5.5 16 2.5 0.5 75.5 1.259 2.068 4.88
DA-8 5.5 17.5 1.5 1.0 74.5 1.053 2.087 6.17
DA-9 5.5 19 2.0 0 73.5 0.830 1.701 3.16

OPC 32.5R cement type 0.619 1.091 3.56

The mechanical strength gains of 14-day and 28-day cured DA samples were better than those
of the OPC 32.5R cement reference group under the same conditions (Table 2). The UCS values of
CTB samples at 14 and 28 days were 1.259 and 2.429 MPa, which were 2.03 and 2.23 times of CTB
samples, respectively.

The stope parameters of a single mine house during actual production were as follows: 40 m,
length; 12 m, width; 50 m, extreme height; and 12.6 m, average mining thickness. Referring to the
backfill strength design of the underground mines around the world, the 28-day strength acquisition
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of CTB samples must reach 2–2.5 MPa to meet the requirements of mine safety mining. Based on the
relationship between the self-stabilization and height of CTB samples, and the relationship between
the backfill body strength and maximum plastic zone width, the design strength of the 28-day cured
CTB exceeded 2 MPa [56–58]. Therefore, when the mining thickness was less than or equal to the
average thickness of 12.6 m, it could meet the safe and efficient mining requirements. By measuring
the volume of the test blocks before and after de-molding, it was found that the 28-day shrinkage rate
was mostly 5%, which was conducive to the realization of the roof grafting problem and the overall
stability of the filling stope.

The strength gain of DA samples significantly increased since OH− ions can promote the bond
breaking reaction of the silicon-oxygen polymerization chain and provide channels for the other
materials from the surface into the inside of the glass body [59–61]. These channels can accelerate
the hydration reaction of the slag powder. Additionally, the proportion of sulfate minerals within
the desulfurized ash was relatively high and the alkalinity of the activator decreased. The expansion
phenomenon caused by free calcium sulfite and fly ash negatively affected the mechanical strength
gain of cemented tailings backfill samples (Figure 6).
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3.2. Influence of Weight of Each Activator

The DA formulation belonged to the category of new cementitious materials for the mines,
in which slag powder was the main body of cementitious material. Q, DA, GM, and SH were used as
activators. Considering the complex nonlinear relationship between the activator ratio and backfill
strength, we should use the range and variance theory to analyze the weight of each activator on the
mechanical properties of the backfill material. The statistical results of range and variance analyses are
shown in Table 3.

The results of range and variance analyses in Table 3 reveal explicitly that each activator had a
consistent weight effect on the mechanical strength gain of CTB samples, and SH was an important
factor influencing the mechanical strength acquisition of CTB samples. The orders of the influence
of the compressive strength of activators for 14-day and 28-day cured CTB samples were as follows:
SH > GM > DA > Q and SH > GM > Q > DA, respectively. The importance of an alkaline environment
in promoting the hydration process of alkaline-activated slag cement was well verified, thus the SH
content requires further study.
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Table 3. Statistical results of the range and variance analyses.

Curing
Period

Activator Range Analysis
Weights

Variance Analysis

Sum of
Squares

Degree of
Freedom

Mean Square
Error Significance

14d

Q 1 0.0083 2 0.0041
SH > GM >

DA > Q
DA 1.37 0.0164 2 0.0082
GM 1.79 0.0257 2 0.0129
SH 3.63 0.1184 2 0.0592

28d

Q 1.32 0.0607 2 0.0304
SH > GM >

Q > DA
DA 1 0.0343 2 0.0171
GM 1.92 0.1155 2 0.0577
SH 2.07 0.1480 2 0.0740

3.3. Influence of Each Activator on Compressive Strength of Testing Piece

To obtain the overall trend of changes in the mechanical strength acquisition of cemented tailings
backfill samples under different activator dosages, the average strength values at each level of
four activators were calculated, and the polynomial function was fitted. Table 4 shows the strength
acquisition of cemented tailings backfill samples under different activator dosages, whereas Figure 7
shows the trend line of the mechanical strength gain of CTB samples containing different excitation
agents, such as quicklime, desulfurized ash, glauberite mineral and sodium hydroxide. In this paper,
the strength growth factor of the tested backfill samples was defined as follows:

K =
εi
ε0

(1)

where K is the strength growth factor of the tested backfill sample; εi is the uniaxial compressive
strength acquisition of cemented tailings backfill samples with different activator dosages, MPa; and ε0

is the uniaxial compressive strength acquisition of cemented tailings backfill samples when OPC 32.5 R
cement is used as the main activator, MPa.

Table 4. The strength gain of CTB samples under different activator dosages.

Activator 14-d
Stress/MPa K * 28-d

Stress/MPa K * Activator/% 14-d
Stress/MPa K * 28-d

Stress/MPa K *

32.5R 0.619 - 1.091 -
Q-4.5% 1.097 1.77 2.105 1.93 DA-16.0% 1.097 1.77 1.981 1.82
Q-5.0% 1.024 1.65 2.142 1.96 DA-17.5% 1.074 1.74 2.093 1.92
Q-5.5% 1.047 1.69 1.952 1.79 DA-19.0% 0.997 1.61 2.125 1.95

GM-1.5% 0.99 1.60 2.054 1.88 SH-0.0% 0.897 1.45 1.889 1.73
GM-2.0% 1.057 1.71 1.934 1.77 SH-0.5% 1.162 1.88 2.123 1.95
GM-2.5% 1.121 1.81 2.211 2.03 SH-1.0% 1.109 1.79 2.187 2.00

* K stands for the strength growth factor.

As shown in Figure 7, the mechanical strength changes of cemented tailings backfill samples
under different activator dosages basically followed the function y = ax3 − bx2 + cx − d. The multiple
correlation coefficients of the fitting results exceeded 97%, which indicated that the regression effect
for the tested cemented tailings backfill samples was significant and demonstrated a high accuracy.
Table 4 and Figure 7 showed clearly that the minimum strength growth factor of the DA formulation
samples was 1.45 and the highest was 2.03. Therefore, the formula of DA was better than that of the
cement activator.
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As Figure 7a shows, when the Q content increased from 4.5 to 5.5%, the strength acquisition
of 14-day cured CTB sample was influenced by the hydration reaction sequence of the cementitious
material used, showing an initial decrease and subsequent increase. Besides, the strength acquisition of
28-day cured CTB slightly increased and then decreased. As shown in Figure 7b, when the DA content
increased from 16 to 19%, the strength acquisition of 14-day cured CTB sample gradually decreased
and the strength acquisition of 28-day cured CTB sample gradually increased. Given that DA has
retardation characteristics, the initial condensation reaction of the whole tailings slurry slowed down,
and the early strength acquisition of CTB samples was seriously affected. However, the long-term
strength effect was not evident.

GM is a typical early strength agent that can effectively improve the early strength acquisition
of CTB samples. When the GM dosage increased from 1.5 to 2.5%, the strength acquisition of 14-day
cured CTB gradually decreased, and the strength acquisition of 28-day cured CTB decreased first and
then increased thereafter, which is shown in Figure 7c. As illustrated in Figure 7d, when the dosage
range was 0–1%, the strength acquisition of 14-day and 28-day cured CTB samples showed a gradually
increasing trend with a rising SH content.

3.4. Initial Determination of Activator Dosage

The stepwise regression analysis of the quadratic polynomials refers to a method combining
regression analysis and derives the mathematical relationship model between multiple independent
and dependent variables [62]. For the DA formula experiment, the amounts of Q, DA, GM, and SH
were used as independent variables, which were represented by X1, X2, X3, and X4, respectively.
The compressive strength of CTB samples with different curing ages was used as the dependent
variable. A quadratic polynomial stepwise regression equation was also established to initially
determine the optimal proportion of the activator dosage.

(1) Results of regression analysis of 14-day cured CTB strength
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Y14d = −15.13 + 0.039X1 + 1.86X2 − 0.054X2 ∗ X2 − 0.014X3 ∗ X3 − 0.64X4 ∗ X4

+0.016X1 ∗ X4 + 0.38X3 ∗ X4

The optimum ratio was Q 5.5%, DA 17%, GM 2.5%, SH 1.0%; Y14d is 1.404 MPa.
(2) Results of regression analysis of 28-day CTB strength

Y28d = −38.27 + 10.37X1 + 1.68X2 − 0.45X1 ∗ X1 − 0.0027X2 ∗ X2 + 0.32X3 ∗ X3

−0.31X1 ∗ X2 − 0.27X1 ∗ X3

The optimum ratio was: Q 4.5%, DA 19%, GM 2.5%, SH 1.0%; Y28d is 2.43 MPa.

According to the results of the influence of each activator on the compressive strength, as well as
the stepwise regression analysis of the quadratic polynomials, the dosages of activator were determined
to be 2.5% GM and 1% SH.

4. Improved Neural Network Prediction

4.1. Model Selection

The back propagation (BP) neural network is frequently composed of an input layer, a hidden
layer, and an output layer. In this paper, the input layer was the dosage of Q, DA, GM, and SH, and the
output layer was the 28-day backfill strength. In addition, the standard BP learning algorithm was
improved by introducing additional impulse terms and adaptive learning rates [63,64].

The experimental data of the DA formulation (as shown in Table 2) and normalization theory
demonstrated that the input layer data were first normalized to the interval [0, 1], and the output
layer data were normalized to the interval [0.05, 0.95]. These values created a certain growth space for
the predicted results. Two groups of DA-8 and DA-9 were used as test samples, and the other seven
groups were used as training samples. The hidden layer’s neural transfer function was the non-linear
Tansig function, and the output layer’s neuron transfer function was the Logsig function. The learning
efficiency was 0.05, the maximum number of training was equal to 1000, and the minimum mean
square error was 10−8. The number of hidden layer nodes in this model was (3–9) based on the implicit
layer and node number theory. The neural network model after training and learning by the Matlab
software was used to predict the untrained test samples. The predicted value was compared with the
experimental value. When the error value was less than 5%, the established neural network model was
considered to meet the requirements; otherwise, the training of the learning sample was continued.
Finally, the model with the fastest error convergence curve and smallest prediction error was selected.
Figure 8 shows the convergence curve of the neural network training error and the sample function
fitting curve. Table 5 shows a summary of the experimental values and predicted values.
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Table 5 shows that the test samples errors (DA-8 and DA-9) were 1.64% and 0.89%, respectively.
The training sample errors all met the target error requirements; the maximum value was 0.19%,
whereas the minimum error value was 0. Therefore, the constructed network model showed a good
reliability and could be used to predict the strength of CTB samples and determine the relationship
between different cementitious material ratios and the CTB’s compressive strength.

Table 5. A summary of experimental values and predicted results.

Test No. Experimental Value/MPa Predicted Value/MPa Relative Error/%

DA-1 1.83 1.8297 −0.02
DA-2 2.429 2.4288 −0.01
DA-3 2.045 2.0457 0.04
DA-4 2.135 2.1346 −0.02
DA-5 2.245 2.2450 0.00
DA-6 2.068 2.0716 0.18
DA-7 1.701 1.7043 0.19
DA-8 2.056 2.0898 1.64
DA-9 2.087 2.1055 0.89

4.2. Optimization Prediction of Cementing Material Ratio

Figure 9a shows the predicted strength results of CTB samples with different DA contents.
The GM content was 2.5% and the SH content was 1%. The following conclusions could be drawn
from Figure 9a: (i) when the Q dosage was 3.5–5.5%, and the DA content was 15–21%, the mechanical
strength of CTB samples exceeded 2 MPa; (ii) with the increase of the DA content, the backfill strength
gradually increased. When the DA and Q contents were 21% and 3.5%, respectively, the maximum
strength value reached 2.4691 MPa. When the DA and Q contents were 15% and 5.0%, respectively,
the minimum strength of the backfill was 2.0468 MPa; (iii) the compressive strength of the backfill
showed a decreasing trend with the increase of the Q content.

Given that our sample size was small, our study had some limitations in predicting data results.
The quicklime content of 4.5–5.5% basically conformed to the experimental regularity. However,
when the Q content was less than 4.5%, further confirmatory experimental studies were needed.
Considering that DA has no cost as a solid waste, increasing the dosage could greatly reduce the cost of
cementitious materials without affecting the comprehensive performance of CTB samples. Given that
the low activity of the DA required excitation under good conditions, the quantity of the DA content
was 19% and the Q content was 4.5% or 5.0%.
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Figure 9b shows the predicted results of SH dosage, with 4.5% or 5.0% Q, 19% DA, and 2.5% GM.
When the Q content was 4.5% and 5.0%, the compressive strength of the CTB samples increased with
the increase of the SH content. In addition, when the SH content was greater than 0.7%, the CTB’s
strength acquisition exceeded 2.3 MPa.
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Considering the existence of certain safety and wealth coefficients, the strength of CTB samples
was greater than 2.3 MPa to meet the requirements of mine safety production. When the Q contents
were 4.5% and 5.0%, the DA dosage was 19% and the SH amount was greater than 0.7%. The costs of
cementitious material were calculated as follows:

350 × (4.5~5.0) + 900 × 2.5% + 2100 × 0.7% + 110 × (72.8~73.3) = (133.58~134.78) ¥/ton.

In summary, the developed DA excitation formula not only satisfies the actual mining intensity
requirements, making full use of DA; but also reduces the cost of backfill and mining, and improves
the economic benefits of mining. The developed formula also responded to the country’s mining policy
of green mining.

5. Conclusions

In this study, the effects of four different activator types (namely Q, DA, GM, and SH) on the
compressive strength behavior were analyzed emphatically. Various UCS tests were carried out on
laboratory-prepared CTB samples containing different activators. A quadratic polynomial stepwise
regression equation was established to determine the optimal proportion of the activator dosage. Then,
the Matlab software was used to predict the UCS value using a combination of range analysis and
polynomial stepwise regression. The following conclusions can be drawn:

(1) The compressive strength of 14-day and 28-day cured CTB samples stimulated by DA reached
1.259 and 2.429 MPa, which were 2.03 and 2.23 times that of the OPC 32.5 R cement sample,
respectively. Thus, the samples met the requirements for safe and high-efficiency mining.

(2) SH is the most significant activator that affects the strength gain of CTB samples. The order of the
influence of different activator types for both 14-day and 28-day CTB samples was as follows:
SH > GM > DA > Q and SH > GM > Q > DA, respectively. When the SH content gradually
increased to 1%, the strength gain of 14-day and 28-day cured CTB samples showed a gradually
increasing trend. DA affected the early strength of CTB samples, but it had no obvious effect on
long-term strength gains.

(3) The growth law of CTB’s strength gain at different activator dosages followed the function
y = ax3 − bx2 + cx − d. The minimum strength growth factor was 1.45, and the maximum reached
2.03. Thus, the DA formula was significantly better than the cement activator.

(4) The constructed neural network model can grasp the nonlinear mapping relationship between
CTB strength and different activator dosages, and it clearly demonstrated a certain reliability.
The optimal decision-making results for the DA formula were as follows: the number of the
hidden layer nodes of 5, Q 4.5% or 5%, DA 19%, GM 2.5%, and SH 0.7%.

The DA formula via the orthogonal design experimental scheme could meet the requirements
for the 28-day cured CTB strength, hence protecting the surface morphology, solving the technical
problems of riverbed and aquifer mining, and improving the mining recovery rate. However,
the following deficiencies were also noted. The whole tailings containing a high fine content and poor
size distribution led to difficulties in the experimental study. Consequently, this paper was limited to
the backfill strength with a cement-to-sand ratio of 1:8 and a slurry density of 73%. Meanwhile, further
analyses of other activator materials available are necessary to maximize the use of solid wastes and
adhere to solid waste recycling and green mining roads.
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