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Abstract: Clostridium difficile infection (CDI) is an increasing global health threat and major worldwide
cause of hospital-acquired diarrhea. The development of novel therapies to effectively treat this
bacterial pathogen is an unmet clinical need. Here, we describe an image processing and classification
algorithm that automatically identifies toxin-induced cytotoxicity to host cells based on characteristic
morphological changes. This efficient and automatic algorithm can be incorporated into a screening
platform to identify novel anti-toxin inhibitors of the C. difficile major virulence factors TcdA and
TcdB, and contains the following steps: image enhancement, cell segmentation, and classification.
We tested the algorithm on 504 images (containing 5096 cells) and achieved 93% sensitivity and 91%
specificity, indicating that the proposed computational approach correctly classified most of the cells
and provided reliable information for an effective screening platform. This algorithm achieved higher
classification results compared to existing cell counter and analysis programs, scoring 92.6% accuracy.
Compared to visual examination by a researcher, the algorithm significantly decreased classification
time and identified toxin-induced cytotoxicity in an unbiased manner. Availability: Examples are
available at home.agh.edu.pl/jaworek/CDI.

Keywords: Clostridium difficile; image analysis; pattern recognition; classification; screening system;
anti-toxin inhibitors

1. Introduction

Clostridium difficile infection (CDI) is an increasing global health threat and major cause of
hospital-acquired diarrhea [1–3]. The development of novel therapies to effectively treat this bacterial
pathogen is an urgent unmet clinical need evidenced by increasing infection rates, high incidence of
recurrence, and rising antibiotic resistance [4,5]. An alternative therapeutic strategy to antibiotic
treatment is the development of anti-toxin compounds that neutralize the toxin mediators of
disease—toxins A and B (TcdA and TcdB) of C. difficile [6]. Here, we describe a computer application
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based on image processing and classification algorithms to rapidly screen and identify anti-toxin
inhibitors of TcdA and TcdB activity based on characteristic morphological changes to host cells upon
toxin-mediated cytotoxicity. Representative images of cells before (a) and after (b) toxin treatment are
shown in Figure 1. This technology can be applied to the screening of novel anti-toxin compounds for
use as monotherapy or in combination with antibiotics to treat CDI.

Figure 1. Cell-rounding assay to identify anti-toxin inhibitors of TcdB. (a) Fluorescence image of human
foreskin fibroblast (HFF) cells before toxin challenge. Adherent HFF cells are stained with cytosolic cell
tracker dye. (b) Fluorescence image of HFFs after challenge with TcdB. Adherent HFFs round upon the
addition of toxin, indicating actin cytoskeletal dysfunction following intracellular toxin activity against
host Rho/Rac GTPases.

1.1. Clinical Definition and Motivation

C. difficile is a Gram-positive anaerobic bacterium that is a major cause of hospital-acquired
infections [1–3]. The incidence of CDI has been rising in hospitals and long-term health care facilities
during the past several years (see Figure 2) [7]. Additionally, infections are becoming more severe with
more complications, deaths, and higher healthcare-associated costs [2]. This increased morbidity and
mortality requires a change not only in management and treatment, but also in early diagnosis.

Figure 2. Increases in C. difficile infection over time. Graph includes patients aged 65 years and older
who were either hospitalized with CDI or who acquired C. difficile during a hospital stay. Rates for
1996–1999 were based on U.S. Census Bureau civilian population estimates adjusted for the net
underenumeration in the 1990 census. Rates for 2000–2009 were calculated using U.S. Census Bureau
2000-based postcensal civilian population estimates [7].

Infection by C. difficile usually occurs when patients are placed on broad-spectrum antibiotics
for an unrelated condition, altering the microbiome in the gastrointestinal tract and allowing this
opportunistic pathogen to thrive. CDI causes a range of symptoms from diarrhea and abdominal pain
to pseudomembranous colitis, toxic megacolon, and death [8,9]. Even though antibiotics are a main
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risk factor for the development of CDI, the antibiotics vancomycin, metronidazole, and fidaxomicin
are the gold standard and first-line treatments for CDI. Initial cure rates with these antibiotics range
from 72.7–81.1%, and 15–25% of patients will have recurrent infection [10,11]. Further, after the first
recurrence, patients have approximately a 50% chance of subsequent recurrences [11]. In addition to
rising rates of infection and recurrence, antibiotic use contributes to increasing antibiotic resistance and
precludes the recovery of a healthy microbiome. An alternative or complementary treatment strategy
for CDI is to target the exotoxin mediators of clinical disease with anti-toxin strategies [12,13].

CDI is mediated by two large multi-subunit clostridial toxins: TcdA and TcdB. Epidemiologic
studies show that only C. difficile expressing toxin are able to cause clinical disease [14,15]. Each toxin
contains a glucosyltransferase domain (GTD), a cysteine protease domain (CPD), a translocation
domain, and a receptor-binding domain [1,16]. The toxins are taken up into host enterocytes by
endocytosis, where acidification of the endosome mediates conformational changes that allow the
translocation domain to extrude the GTD and CPD into the host cell cytosol [16]. The cytosolic,
mammalian-specific sugar 1D-myo-inositol hexakisphosphate (IP6) activates the CPD to cleave off the
GTD, where it exerts its toxigenic effects via monoglucosylation of members of the Rho/Rac family of
small GTPases [16]. Glucosylation of Rho/Rac GTPases causes actin cytoskeletal disruption in the host
cell that can be seen by a characteristic cellular shrinking and rounding morphology [1] (see Figure 1).

Due to the essential function of the toxins in mediating disease, strategies that neutralize
toxin activity could treat CDI as a monotherapy or in combination with antibiotics. Efforts to
identify small-molecule inhibitors of the CPD and GTD domains have demonstrated the feasibility
of this strategy to effectively treat CDI in situ and with in vivo animal models [12,17–21]. However,
these proof-of-concept inhibitors have yet to advance to clinical trials. To identify compounds that are
non-toxic to host cells and neutralize toxin function, a medium-throughput screen that can rapidly
read out the characteristic rounded cell morphology compared to healthy cells would significantly
increase the number of compounds that could be screened (see Figure 3).

Figure 3. Characteristic morphology changes with TcdB challenge. (a) Adherent HFFs without
toxin treatment exhibit diffuse cytosolic staining with a cell tracker dye. Upon TcdB treatment,
actin cytoskeletal disruption leads to a progression from (b) partial to (c) complete cell rounding.

1.2. Related Works

The cell-rounding assay was adapted from an approved clinical test used to diagnose C. difficile in
human patients. In this clinical test, evaluation and differentiation between adherent and rounded
cells is performed by visual examination. Therefore, adaptation of this assay into a screen to identify
potential anti-toxin compounds in a library composed of thousands of molecules is limited in its
throughput due to the necessity of manually analyzing each image. Additionally, when including
the replicates needed to achieve statistically reliable data, the resulting set of images cannot be
easily analyzed manually within a reasonable time frame. To improve the high-throughput potential
of this assay, we developed an algorithm to automatically count and classify cells according to the
morphological changes seen upon toxin challenge. To the best of our knowledge, there is no commercial
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software to analyze and classify such images in an unsupervised way, but some existing software can
be adapted for counting or classification functions. For cell counting, ImageJ—an open source image
processing program designed for scientific multidimensional images—contains a derivate (Fiji) released
in 2003 to manually count cells [22–25]. Icy, a JAVA plugin, is another interactive counter [26]. For cell
classification, the shape parameter circularity in ImageJ classifies detected cells based on a function of
the perimeter P and the area A [27]. However, classification of adherent cells with irregular borders
remains a challenge. If circularity is not a sufficient exclusion criterion, the BioVoxxel Toolbox [28] is
an advanced particle analyzer. However, solutions are based on a permanent interaction with the
user, and the detection and classification parameters are chosen manually [28]. Therefore, use of this
technology does not significantly decrease the time required to analyze images.

Additionally, without image processing and machine learning knowledge, cell counting, analysis,
and classification steps can contain high error rates for large datasets. To overcome the current
limitations in the automatic image analysis of phenotypic cell-based screens, we created an automated
approach for the differentiation of rounded versus adherent cells exposed to C. difficile toxins and
potential inhibitors. Moreover, this method can be easily adapted and applied to many diagnostics
and antitoxin screens for a variety of cytotoxic agents. An overall summary and comparison of the
proposed and described methods are presented in Table 1.

Table 1. Comparison of classification results for different algorithms. ACC: accuracy; SN: sensitivity;
SP: specificity.

Software Classification Algorithm SN (%) SP (%) ACC (%)

ImageJ Circularity 67 71 69

BioVoxxel Shape analysis 82 84 82Toolbox

Described algorithm Preprocessing, image enhancement, 93 91 92.6shape analysis, pixel brightness

2. Methods

2.1. Automated Classification System

We created a computer-aided analysis system to automatically classify rounded versus adherent
cells in a phenotypic screen of toxin-induced cytotoxicity. This system is designed to reproduce manual
visual classification outcomes using fluorescent images of cell nuclei (DAPI) and cellular morphology
(GFP). An outline of the methodology used to discriminate between adherent and rounded cells
is presented in Figure 4. The proposed application was implemented in MATLAB using the Image
Processing and Statistics and Machine Learning Toolboxes. The system is divided into four main stages
including: preprocessing of GFP and DAPI images, nuclei detection on DAPI images, cell segmentation
on GFP images, and classification. The automatic system based on the identification of cells on both
images (DAPI and GFP) classifies them into two classes: adherent or rounded.

2.2. Image Preprocessing

The preprocessing step improves the image quality by reducing or removing unrelated and
surplus parts in the images. GFP and DAPI images are fairly low-contrast, and therefore we applied
the contrast-limited adaptive histogram equalization method (contrast adjustment). The results are
presented in Figure 5.
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Figure 4. Fundamental steps of the analysis algorithm. For each set of images, a DAPI and a GFP image
is preprocessed and analyzed. (1) Original DAPI and GFP images are enhanced. (2) Cell nuclei are
detected and separated from each other. (3) Based on the position of nuclei, the cells are segmented
in the GFP images. (4) Based on the segmented area, each cell is analyzed and classified as adherent
(blue) or rounded (red).

Figure 5. Outcome of the preprocessing step. The image quality is improved, and nuclei and cell areas
become more visible.

2.3. Cell Detection

The cell detection step locates cells using images of Hoescht fluorescence (DAPI channel).
DAPI images contain only the cell nuclei and are used to locate each cell and, more importantly,
to quantify the number of cells. This step is fundamental for the correct separation of cells, because the
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cell nuclei and/or cytosol of adjacent cells may overlap. First, we identified cell nuclei in the DAPI
images and then applied the watershed transform to separate the nuclei.

The cell nuclei were automatically detected by implementing the Otsu thresholding algorithm [29].
As presented in Figure 6, some of the nuclei overlay or border with each other, and therefore need more
calculation to be separated properly. First, the watershed transform segments the nuclei. This method
consists of placing a water source in each regional minimum in the relief in order to flood the entire
relief from sources, and build barriers when different water sources meet. The watershed transform
returns a label matrix L that identifies the watershed regions of the input matrix A, which can have
any dimension. The watershed transform finds “catchment basins” or “watershed ridge lines” in an
image by treating it as a surface where light pixels represent high elevations and dark pixels represent
low elevations. The elements of L are integer values greater than or equal to 0. The elements labeled
0 do not belong to a unique watershed region. The elements labeled 1 belong to the first watershed
region, the elements labeled 2 belong to the second watershed region, and so on. By default, watershed
uses 8-connected neighborhoods for 2-D inputs. The implemented method uses the Fernand Meyer
algorithm [30]. A watershed definition for the continuous case can be based on distance functions.
Depending on the distance function used, one may arrive at different definitions. In this work, we used
the distance function described in [30]. Assume that the function f is an element of the space C(D) of
real twice continuously differentiable functions on a connected domain D with only isolated critical
points (the class of Morse function on D forms).

Then, the topographical distance between p and q is the minimum of the topographical distances
along all paths between p and q:

Tf (p, q) = MINπ∈[p q]T
π
f (p, q), (1)

where the set of all paths from p to q is denoted by [p  q]. The topographical distance between
a point p ∈ D and a set A ⊆ D is defined as Tf (p, A) = MINa∈ATf (p, a).

The path with shortest Tf distance between p and q is the path of steepest slope [31].
Several definitions of the watershed transform have been proposed: an excellent review can be
found in [31], where additional details can be found.

Figure 6. Nucleus detection and segmentation of DAPI images. The watershed transform separates
nuclei from each other.

2.4. Cell Segmentation

Based on the results of the cell detection step, we calculated centroids of the nucleus that fit the
shape of nuclei in the DAPI image. We calculated centroids using the assumptions that every cell has
one nuclei and that it lies inside the cell, mostly in the center. Our method takes the coordinates of a
nucleus in the digital image and outlines a squared segment around it for the classification step.

The DAPI image with superimposed centroid locations was transformed into a set of 50× 50 pixel
images. The number of small segments depends on the number of cells in the examined DAPI image.
Each detected centroid determines the 50 × 50 pixel segment location. Although all nuclei are detected
in the previous step, only cells that do not lie on the border of the image are processed. We rejected
cells on the borders of the image because the image only captures part of the cell, preventing accurate
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classification. Squares corresponding to the 50 × 50 pixel squares identified in the DAPI image are
then identified in the GFP image as presented in Figure 7. The GFP segments are statistically analyzed
and have a crucial impact on the final classification rule.

Figure 7. Outcome of the cell segmentation step. Detected cells are outlined in square segments of
50 × 50 pixels.

2.5. Classification

The classifier generates a classification rule using information gathered based on 50 × 50 pixel
segments cut from GFP images (corresponding to 50 × 50 pixel DAPI segments), divided into two
groups: adherent and rounded cells. This procedure required the preparation of learning data.
In particular, many cells were first manually defined as adherent or rounded by an expert. The dataset
was divided into training and test sets based on the k-fold cross-validation method [32,33] with k = 10.
In k-fold cross-validation, the original sample is randomly partitioned into k equal-sized subsamples.
The k-fold cross-validation method uses all observations for both training and validation, with each
of the k subsamples used exactly once as the validation data. Then, the classifier learns (parameter
adjustment) based on the positive and negative control images and runs using new images, without any
external help. Each square GFP image segment produced in the previous step, with one cell in the
center, is classified. The distinction between adherent and rounded cells is made based on probability
density functions (PDFs) of gray-scale levels. The main difference in PDF shapes leads to a compact
thresholding method. The classifier indicates whether the cell contained in a segment is adherent
or rounded.

The proposed method is based on a naïve Bayes classifier, a classical well-known algorithm [34–38]
that is still widely applied, with satisfactory results in various applications [39–44]. The naïve Bayes
classifier assumes that boundary distributions are independent and in general multidimensional
cases (for D dimensions, feature vector is x = (x1, . . . , xD)) can be defined as the following
classification rule:

Ψ(x) = arg max
c∈{1, 2}

p(c)
D

∏
d=1

pc(xd), (2)

where p(c) is the prior probability of occurrence of class c, and pc(x) is a probability density function
(PDF) in class c. The notation c ∈ {1, 2} results from the fact that we consider a two-class problem.
In our case, the classification problem was transformed to a one-dimensional task (D = 1), because of
the use of grayscale distributions for the horizontal axis. The distributions for horizontal and vertical
axes were very similar, and this kind of symmetry can result from the huge freedom of cell rotation,
shown in the images (see Figure 6). The simplification leads to the following classifier form:

Ψ(x) =

{
1, if p1(x1) > p2(x1),
2, if p1(x1) < p2(x1),

(3)

where we assumed that rounded and adherent cell classes are equiprobable (i.e., p(1) = p(2) = 0.5).
The one-dimensional naïve Bayes classifier is in fact the optimal Bayes classifier, in terms of the lowest
classification risk [35]. The probability distributions of gray-scale illumination in both classes were
estimated in previously cut squares containing cells (for details of cell segmentation, see Section 2.4).
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The probability density functions in classes were estimated non-parametrically by histograms (see
Figure 8). In the presented case, the separation point between classes in the horizontal axis was
achieved by a naïve Bayes classifier for 69.4% of brightness.

Figure 8. Probability density functions of pixel brightness in the horizontal axis (brightness scale from
1 to 96) for adherent cells (blue) and rounded cells (red).

The final classification result is shown in Figure 9. The rounded cells are marked with red while
adherent cells are outlined in blue.

Figure 9. Classification results. Adherent cells are marked with blue squares, while rounded cells are
indicated by red squares.

2.6. Cell-Rounding Assay

Human foreskin fibroblasts (HFFs) were cultured in Dulbecco’s modified medium (DMEM)
supplemented with 10% (v/v) fetal calf serum, 10 U/mL penicillin G, and 100 µg/mL streptomycin,
and were plated in 96-well dishes at a density of 12,500 cells/well and allowed to adhere overnight.
Cells were washed with PBS, then treated with 1 µM CellTrackerTM green 5-chloromethylfluorescein
diacetate (CMFDA) (1 mM stock in DMSO) and Hoechst 33342 nuclear stain in a final volume of
100 µL/well in serum-free DMEM for 30 min at 37 ◦C. TcdB (125 ng) or buffer control was pretreated
with 1 µL DMSO or 200× concentration of inhibitor in 14 µL buffer (20 mM TRIS, 60 mM NaCl,
pH 8.0) for 1 h at 37 ◦C. Following toxin pretreatment, 185 µL DMEM was added to the toxin/inhibitor
reaction, mixed, and applied to cells. Cells were incubated with toxin for 1 h at 37 ◦C, then imaged on
a BioTek Cytation 3 plate reader in bright field, DAPI, and GFP channels. Four sets of images per well
were taken.
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3. Results

3.1. Image Database

The complete dataset includes a DAPI and GFP image for each of 504 outcomes of the
cell-rounding assay to identify anti-toxin inhibitors of TcdB (5096 cells in total). All images were
assessed manually. The preprocessing and cell segmentation steps achieved a detection error less than
2% due to high contrast and did not affect subsequent classification analysis.

3.2. Classification Results

To compare our algorithm with popular methods for cell segmentation, we evaluated the
segmentation performance by quantifying errors in the number of cells counted. Accurate segmentation
of rounded cells can be measured with morphological cell features such as cell area. However,
the adherent cells had irregular borders, which complicated analysis. For the control of performance,
we used different types of GFP and DAPI images with various levels of noise and contrast.
While building our solution, we compared the algorithm with other segmentation methods, such as
active contour models for DAPI images or the region-growing algorithm for GFP images. Segmentation
errors of the algorithm led to mis-segmentation rates of 3% of the cells, with errors mostly caused by
rounded cells undergoing nuclear fragmentation that were therefore counted as two rounded cells.

Diagnostic exactness is often used to mean the fraction of cases on which the automated image
analysis system gave a correct answer, where correctness is determined by comparing the diagnostic
decision to some definition of “truth” [45]. There are different ways to define “truth”. In our case,
we depended on the separate gold standard, which is determination by the results of a pathology
expert. We then assessed the accuracy of the designed classification system by comparing its results
against the gold standard. The analyzed task is a binary problem, where the answer is “1” when the
cell is adherent or “0” when it is rounded. Table 2 shows the classification results obtained with the
implemented algorithm in a confusion matrix.

Table 2. List of parameters evaluated by the proposed method. FN: false negative; FP: false positive;
TN: true negative; TP: true positive.

Adherent Rounded Total(Predicted) (Predicted)

Adherent 2552 213 2765(Actual) (TP) (FP)

Rounded 164 2167 2331(Actual) (FN) (TN)

Sensitivity: 93% Specificity: 91% Total: 5096

To measure the diagnostic performance, we calculated accuracy, sensitivity, and specificity.
The fundamental definitions of these performance measures can be illustrated as follows.

The classification accuracy of a technique depends upon the number of correctly classified samples
(i.e., true negative and true positive), and is calculated as follows:

Accuracy =
#TP + #TN

N
, (4)

where TP is the true positive answer, TN is the true negative answer, and N is the total number of
samples present in the images.

The sensitivity (also called the true positive rate—TPR) is the probability that the cell is said to be
adherent given that it is. This can be estimated by relative frequency [45,46]:
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Sensitivity =
#TP

#TP + #FN
, (5)

where TP is the true positive answer and FN is the false negative answer. The value of sensitivity
ranges between 0 and 1, where 0 and 1 mean worst and best classification, respectively.

On the other hand, we calculated specificity (also called false positive rate—FPR), which is
defined as the proportion of the true negatives against all negative results. Specificity is defined by the
following equation:

Speci f icity =
#TN

#TN + #FP
(6)

where TN is the true negative answer and FP is the false positive answer. The value of specificity
ranges between 0 and 1, where 0 and 1, respectively, meaning worst and best classification, respectively.

Another dominant technique for assessing computer classification performance is the receiver
operating characteristic (ROC) analysis [32,46–48]. A ROC curve is a plot of sensitivity versus
(1—specificity) (i.e., TPR versus FPR; see Figure 10). Area under the ROC curve is the most commonly
used accuracy index. The area under a perfect-accuracy ROC curve, when sensitivity and specificity
reach 1.0, is also 1.0.

To create the ROC curve shown in Figure 10, we used 10-fold cross-validation and a method
based on the Mann–Whitney statistic [47,49–51]. The ROC curve was not computed point-by-point,
but for those random folds in every step. Because of the use of Mann–Whitney statistic and 10-fold
cross-validation, the presented ROC curve has only 10 points connected by a staircase function.
For each data fold, we first performed the classifier training using 9/10 of the data to find the gray-scale
illumination threshold (see Figure 8) optimally discriminating classes, and then the classifier testing
was done using the remaining 1/10 of the data set.

Figure 10. Receiver operating characteristic (ROC) curve analysis (blue line) for the implemented
automatic analysis system for high-throughput screening of C. difficile anti-toxin compounds. AUC: area
under the curve.

Table 1 summarizes the classification results of the works reported in Section 1.2. The comparison
between the described applications was not easy to perform due to differences in the algorithms.
For example, the proposed algorithm automatically selects the image enhancement threshold,
the contrast adjustment parameters, and the nucleus separation values, whereas the described
toolboxes need to have an exact value chosen manually. However, we chose 200 images and compared
the results using the most relevant set of parameters.
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The algorithm we developed was comparable to the gold-standard of manual scoring
(accuracy = 92.6%, sensitivity = 93%, specificity = 91%, and area under ROC curve = 94.2%). In addition
to its high level of accuracy, this automated algorithm is much less time consuming than manual
scoring, and the results are objective and unbiased. Table 1 shows a significant improvement of the
algorithm over alternate programs such as ImageJ and the BioVoxxel Toolbox in terms of sensitivity,
specificity, and overall accuracy. Overall, these results show that cell classification can be supported by a
powerful system based on the proposed algorithms to improve phenotypic cell-based high-throughput
assays (see Figure 11).

Figure 11. MATLAB graphical user interface (GUI) of the attached software for image selection,
data processing, and statistical analysis.

4. Discussion and Conclusions

Our work presents an algorithm for the automatic discrimination of phenotypic cellular changes to
improve the high-throughput screening of structurally diverse compound libraries to identify inhibitors
of C. difficile toxins. In our system, human fibroblasts were treated with TcdB. Computer-aided
analysis of images showing morphological changes to cells was a time-efficient method to identify
toxin-mediated cell damage. Our system achieved 93% sensitivity and 91% specificity towards adherent
and rounded cells.

Although the system was designed to search for potential agents neutralizing C. difficile toxins
using a human fibroblast cell line, it could easily be applied to different cell-based assays. The algorithm
could be adapted for use in diagnostics aimed at detecting many different types of cytotoxic compounds
or toxins, or for other applications, such as screening for novel antitumor agents. Our future plans
will concentrate on expanding our database and implementing a deep neural network architecture
like convolutional neural network (CNN) or U-Net to solve the remaining problems and achieve even
better results.
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