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Abstract: The research presented in this article aims to demonstrate how acoustic emission (AE)
monitoring can be implemented in an industrial setting to assist with part qualification, as mandated
by related industry standards. The combined structural and nondestructive evaluation method
presented departs from the traditional pass/fail criteria used for part qualification, and contributes
toward a multi-dimensional assessment by taking advantage of AE data recorded during structural
testing. To demonstrate the application of this method, 16 composite fixed-wing-aircraft spars
were tested using a structural loading sequence designed around a manufacturer-specified design
limit load (DLL). Increasing mechanical loads, expressed as a function of DLL were applied in a
load-unload-reload pattern so that AE activity trends could be evaluated. In particular, the widely
used Felicity ratio (FR) was calculated in conjunction with specific AE data post-processing, which
allowed for spar test classification in terms of apparent damage behavior. To support such analysis
and to identify damage critical regions in the spars, AE activity location analysis was also employed.
Furthermore, recorded AE data were used to perform statistical analysis to demonstrate how AE
datasets collected during part qualification could augment testing conclusions by providing additional
information as compared to traditional strength testing frequently employed e.g., in the aerospace
industry. In this context, AE data post-processing is presented in conjunction with ultimate strength
information, and it is generally shown that the incorporation of AE monitoring is justified in such
critical part qualification testing procedures.

Keywords: part qualification; structural design; composites; acoustic emission; nondestructive
evaluation (NDE)

1. Introduction

Current aircraft structural design and qualification methodologies require large amounts of
testing in bottom-up type approaches that typically start at the coupon level and extend to full
aircraft evaluation [1–7]. The prescribed assessment process is, therefore costly and time consuming,
which additionally makes the adoption of new materials or design modifications difficult. This is
especially challenging in the case of composite materials for which slight changes in manufacturing
parameters can invalidate prior test data and require re-qualification of the material performance [8,9].
Typically, once extensive coupon testing is completed, design limit loads are computed for specific
critical components. In this process, safety factors are added to account for reliability and uncertainty
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effects. Furthermore, pass/fail qualification criteria are implemented during component testing.
This approach, however, limits the information that engineers can gather during full-scale part
qualification testing that can be related to material performance.

In an effort to gather supplemental data, prior research has explored nondestructive evaluation
(NDE) methods, including acoustic emission (AE), thermography, shearography, X-ray computed
tomography (XCT), and ultrasonic testing (UT), for use during composite end-item qualification
testing [10,11]. NDE data can, in general, augment existing structural test protocols by providing
additional datasets, while also offering insight into damage initiation and progression. Modern NDE
tools, however, have not yet been fully integrated into legacy aircraft qualification testing protocols,
partially due to a lack of expertise, equipment, and knowledge on the usefulness of such methods,
or even confidence that NDE could assist in this process. In this context, the U.S. Federal Aviation
Administration has only recently proposed that the use of NDE tools for on-board structural health
monitoring (SHM) could provide more confidence in complex aircraft designs while decreasing risk
and maintenance costs [12].

AE is a NDE tool with the immediate potential to augment existing airframe strength test protocols,
which is the focus of this investigation. Specifically, AE is a versatile, passive NDE method that senses
pressure waves emitted from a variety of sources, predominantly linked to damage, across length
scales and materials [13–16]. A physical analogue for AE is seismic activity resulting from tectonic plate
motion of the Earth’s crust. Provided that the appropriate sensing equipment and data-processing is
applied, AE can provide real time volumetric information about dynamic changes related to damage.
Based on this method, material damage processes at the coupon [17–20], component [21–24], and
structural [25–27] scales have been reported. AE datasets can be further leveraged for advanced
analytics such as data-driven models and machine learning [28–32], which may lead to a validated
SHM methodology with potential even to be applied on-board, e.g., on aircraft [33].

Structural monitoring using AE is most commonly found in civil infrastructure [34–37], where
it can be employed to passively collect data while a structure remains in use. The AE method has
also been applied in wind turbine applications to prevent catastrophic failure of the large composite
blades [38–41]. In addition, there have been some attempts to use AE in aircraft structural monitoring
and component testing. Both military and civilian aircraft examples have been reported [42]. Other
aircraft-focused investigations have used AE to examine damage localization and ultimate failure in
landing gear [43], assess skin-spar bond-line integrity [44], evaluate impact damage locations [45,46],
assess damage modes in composite fuselage under complex loading [47], determine the failure
modes in composite airframe parts under quasi-static and cyclic loading [48], and assess rotorcraft
composite fuselage durability and damage tolerance [49]. However, more progress is needed to gain
the confidence required to integrate AE into structural qualification test standards [50,51].

In general, AE analysis and post-processing can leverage the recorded waveforms and a number
of useful parameters extracted from them. Common AE waveform parameters are described in
Shull [13] and ASNT’s NDT Handbook [52]. Certain AE patterns can provide information about the
test specimen’s structural integrity, beyond pass/fail load criteria. For example, AE activity may not
be observed until load levels are reached that previously induced damage. Specifically, if a structure
is progressively loaded, new damage may not be initiated until the prior maximum load has been
exceeded. This observation is known as the Kaiser effect [13,53], which, however, may not hold for
composite materials similar to those evaluated in this manuscript [54,55]. In cases where AE activity
is detected at loads that are lower than the previous maximum, then a specific number is computed
called the Felicity ratio (FR)—defined as the load at which significant AE reinitiates, divided by the
previous maximum load. Materials that consistently emit AE at loads below their previous maximum,
thus, have a FR value of less than one, and investigations have shown that they exhibit progressive
damage behavior. In fact, changes in observed Kaiser and FR effects as well as other AE activity
patterns have been correlated with the presence of damage [56–59].
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Based on this introduction, this research seeks to evaluate the progressive failure of full-scale,
composite aircraft spars using AE during structural testing, and associate such information with
ultimate failure prognosis. The insight gained from AE is intended to augment current test
methodologies in order to capitalize on readily-available data and decrease the time taken to
qualify novel airframe materials. The overall approach described includes the following parts:
(1) characterization of damage progression by examining AE activity trends; (2) identification of
probable damage regions; (3) ultimate failure load prognosis; and (4) statistical evaluation of the spar
static strength requirements using AE data.

2. Technical Approach

2.1. Experimental Setup

The testing methodology applied generally follows the MIL-A-8867C(AS) protocol [1], and it is
similar to the wind turbine blade qualification testing approach [60]. Sixteen composite spars were
tested to bending failure while instrumented with AE sensors. Load was applied to a cantilevered spar
in a stepwise repeated (pseudo-cyclic) loading manner while test samples were monitored by an AE
sensing network. All tests were performed with flight hardware bushings installed. Slack was taken
out of the loading apparatus before the load was applied to a spar. A given load was applied with a
load rate of approximately 200 lbf/s. Once the target load was reached, it was held for approximately
150 s and then released before the spar was loaded to the following load level. Care was taken to
apply the load slowly and steadily, to avoid imparting sudden impact loading. The applied load was
distributed in the spar using the “whiffle-tree” device shown in Figure 1; a concentrated crane-load
applied at the top of the loading apparatus was distributed through a series of beams and connectors
to the eight ribs on the spar test bed. The load was distributed along the spar at the locations indicated
by yellow boxes in Figure 1. The spar was pinned in two locations at the root, and laid along the test
bed. By loading in this manner, the highest shear stress and moments occurred at the spar root, while
gradually reducing toward the spar tip, to accurately represent the load distribution observed by the
component during flight. Four target crane-load levels were tested for each spar (identified in the text
as LL1, LL2, LL3, and LL4). After the final target crane load was achieved, loading continued at a rate
of 200 lbf/s until part failure.
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Figure 1. Schematic of the “whiffle-tree” loading apparatus to simulate distributed loading. Load cell
locations are indicated by yellow boxes, while acoustic emission (AE) sensor locations are indicated as
red circles.

Acoustic emission activity was recorded using eight to 10 commercially available R15I resonant
piezoelectric sensors (operating frequency range of 50–400 kHz, manufactured by Physical Acoustics,
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Princeton Junction, NJ, USA), distributed along the top of the spar from root to tail. Sensors were
placed on the top surface of the spar since the top surface showed less attenuation in pre-testing and
the mounting surface was relatively flat. The approximate sensor locations along the length of the
spar measured as a distance from the spar root are given in Table 1 for each of the 16 tests. It should
be noted that sensor locations varied by several inches from test-to-test, while no data was recorded
during the first test, which was used to validate the loading method.

Table 1. Sensor locations along the length of each spar.

Test ID
Acoustic Emission Sensor ID and Location (in)

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

1 - - - - - - - - - -
2 3 9 23.5 36 48 66.5 83.5 99.5 114 130
3 1 6 25 41.5 56.5 73 83.5 - 112.5 -
4 2 6 25 42 57 74 93.5 - 114 -
5 1 7 23.5 38 55 70 86 - 101 -
6 1 7 24 39.5 55 69 84 - 100 -
7 1.5 6 25.5 40.5 56.5 74 93 - 112.5 -
8 2 6.5 26 41.5 56 72.5 93 - 113.5 -
9 1 6 27 43 61 76 93 - 113.5 -
10 1.5 6.5 24.5 40.5 56.5 73.5 93.5 - 113.5 -
11 1 6 26 41.5 57 72 88 - 105.5 -
12 1 6.5 25.5 40.5 57 73.65 90.5 - 112.5 -
13 1 6.75 23.5 38 55 70 86 - 101 -
14 2 6.5 25.5 41 56.5 79 91 - 111.5 -
15 3 13.5 26 36 48 66.5 83.5 99.5 114 130
16 1.5 7.25 25 40.5 56 70 86 - 101 -

Sensors were bonded firmly in accordance with ASTM E650 and secured with tape in order
to minimize the sensor loss during ultimate structural failure. Sensor cables were also taped, and
sufficient cable slack was left free to allow movement during loading, unloading, and failure. Sensors
were placed with sufficient spacing such that signal attenuation would not negatively impact results
and they were field-calibrated in accordance with ASTM E976/1106 using a pencil lead source.

2.2. Data Acquisition and Processesing

AE signals were monitored and recorded using a Physical Acoustics PCI8-Express data acquisition
board. Prior to testing for record, pre-tests were conducted to calibrate the AE sensors, determine sensor
placement, rehearse the test procedure, and collect noise data. Ambient noise levels and the effect of
the loading fixture (e.g., friction) were tested and adequately controlled via test procedures (e.g., slow
and steady load application, lubricated connections, etc.). In addition to the procedural controls,
the data acquisition amplitude threshold was set above the noise floor and AE hit (i.e., wave packet)
record timing parameters were set to minimize typical noise waveforms recorded during pre-testing.
AE signals were uniformly pre-amplified across all sensor frequencies using 40 dB sensor-internal
pre-amplification. Crane load-cell data was synchronously collected and correlated with AE signal
data to aid in AE activity trend observation.

As an example of the collected AE activity, Figure 2 showed representative waveforms collected
from Test 8. Specifically, Figure 2a shows a low amplitude continuous AE signal, which is representative
of noise recorded under zero load and demonstrably different compared to the burst-type signals
typically associated with damage observed in Figure 2b,c. Figure 2b is an example of the type of AE
signal recorded during the loading step, while Figure 2c shows an example of the type of waveforms
recorded during unloading. In addition, Figure 2d shows the highest amplitude signal that was
recorded at the time of final failure. Figure 2b,c both show similar wave characteristics including a
burst of energy that occurs at 150 kHz while the signal obtained under no load showed that its energy
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was distributed across many frequency values, similar to the final fracture signal, which however, had
significantly higher amplitude and broader frequency content.Appl. Sci. 2018, 8, x FOR PEER REVIEW  5 of 15 
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Figure 2. Sample AE activity observed during Test 8 at four different load points. (a) Zero load,
(b) during the first load step, (c) during the second load step, and (d) at final failure.

As mentioned in the introduction, in general, there were two main AE data analysis approaches.
The first leveraged the full recorded waveforms and the second relied on post-processing extracted
features from such waveforms. For the analysis presented herein, raw AE signals similar to the ones
shown in Figure 2 were parameterized via MISTRAS Group Inc. Noesis software (version 5.3, MISTRAS
Group Inc., Princeton Junction, NJ, USA). The authors examined extracted AE features correlated
with load data, including amplitude and absolute energy, to analyze AE activity trends and draw
conclusions. AE signal energy was conceptually represented by the area under the rectified waveform,
and was practically computed for discrete signal data by summing the square of the voltage amplitude
over the signal length. To arrive at absolute energy with appropriate units (aJ), the squared voltage
amplitude was further divided by the reference impedance over the signal duration. The cumulative
absolute energy was the sum of the absolute energy for each AE hit, across all recorded hits during a
test. The authors used this feature to characterize the test item performance, as it related to damage
accumulation and ultimate failure. Additionally, the authors calculated the FR by identifying the
load at which AE activity re-initiates during a loading cycle, divided by the previous maximum load
reached. As discussed in the introduction, FR values less than one have been correlated with damage,
and hence the authors used this parameter to further assess spar behavior.

3. Results and Discussion

3.1. Progressive Damage Characterization

Acoustic emission activity trends were used to infer progressive damage during pseudo-cyclic
loading of the composite spar test specimens. Representative AE data is provided in Figure 3 for four
different spar tests; the grey line provides the applied loading, while the red diamonds represent the
recorded AE events correlated with the corresponding load values at which they occur. In addition,
the blue markers indicate the AE activity amplitude distribution. To complement the graphical AE
data trends, FR values were calculated and are reported in Table 2. All reported cases showed some
AE activity prior to achieving the previous peak load, in accordance with the Felicity effect. However,
Figure 3a,b shows AE events at comparatively lower loads, marked by black ellipses, compared to the
test cases in Figure 3c,d. Additionally, in Figure 3b–d, it is noticeable that AE events occurred during
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the unloading portion of the second loading sequence. AE events during unloading can indicate the
presence of damage [13,33,47,54,56], and are highlighted by green ellipses in Figure 3. Furthermore,
the amplitude distributions in Figure 3a,b show relatively large spikes during the second cycle with
values greater than 95 dB, while all other activity is below 70 dB for both Test 14 (Figure 3a) and Test 8
(Figure 3b). Sudden spikes of high-amplitude AE activity can correspond to material damage initiation
or progression. In contrast, Tests 10 and 4 (Figure 3c,d) show a gradual increase in amplitude with each
loading sequence. Based on the information presented in Figure 3 and Table 2, it can be concluded
that the presented AE data visualization as a function of applied loading, in combination with the
FR analysis, can provide some preliminary assessment of test item damage progression. Specifically,
damage appears to initiate after the second target load (LL2) for most tests, as indicated by both the FR
values, as well as the appearance of significant AE activity in the unloading portion of the applied
cyclic loading. Furthermore, two distinct AE dataset classes existed among the 16 tests, including
those that showed some abrupt and high-amplitude activity starting early in the loading sequence
(e.g., Figure 3a,b) and those that demonstrated a more gradual AE activity, which was expected, as the
loading increased with time.
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Figure 3. Sample AE activity observed during four separate spar tests. (a) Test 14, (b) Test 8, (c) Test 10,
and (d) Test 4.

Table 2. Felicity ratio values calculated based on the four applied loading cycles.

File Name
Felicity Ratio

Load 2 Load 3 Load 4 Average

1 N/A N/A N/A N/A
2 1.08 0.93 0.87 0.96
3 1.09 0.73 0.86 0.89
4 1.25 0.91 0.83 1.00
5 1.46 0.96 0.75 1.06
6 1.15 0.91 0.89 0.98
7 1.28 1.03 0.99 1.10
8 0.59 0.51 0.42 0.51
9 1.13 0.61 0.56 0.77

10 1.15 1.00 0.72 0.96
11 1.06 0.82 0.80 0.94
12 1.32 0.99 0.94 1.08
13 1.08 0.72 0.93 0.91
14 1.27 0.72 0.82 0.94
15 0.97 1.02 0.99 0.99
16 0.73 1.08 1.00 0.94
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Supplemental to the AE activity trends shown in Figure 3, cumulative absolute AE energy is
plotted against crane load in Figure 4. In all loading cases observed in Figure 4, the cumulative
AE energy increases during loading, while remaining relatively constant during load holds and
unloading. Similar to the AE amplitude spikes shown in Figure 3a,b during the second loading
sequence, Figure 4a,b show corresponding jumps in AE energy. Such AE energy accumulations are
observed in subsequent loading cycles, but they are orders of magnitude lower. Note that the observed
pattern in Figure 4a,b is strikingly different from the results shown in Figure 4c,d. Accordingly,
the recorded datasets were classified as significant vs. progressive in terms of the corresponding spar
behavior. Specifically, Figure 4a,b is characterized by a sudden, dominant, discontinuous jump in
AE energy, while Figure 4c,d is characterized by a gradual AE energy accumulation that appeared to
be proportional to the load increase. Hence, the gradual cumulative AE energy profile observed in
Figure 4c,d was classified as “progressive” (damage) behavior, in contrast to the large spikes (>103)
displayed in Figure 4a,b, which were classified as “significant” behavior. Note that composite materials
are known to exhibit progressive damage behavior and, therefore, test items that depart from this
expected behavior (e.g., high intensity AE activity early in the loading cycle) may indicate design,
production, or loading conditions that could lead to an early onset of catastrophic failure (i.e., lower
ultimate load) when compared with similar parts.
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Figure 4. AE energy evolutions for the same tests shown in Figure 1. (a) Test 14, (b) Test 8, (c) Test 10,
and (d) Test 4.

Similar trends were observed in all tested spars, and the behavior was classified as progressive or
significant based on the cumulative absolute energy patterns noted in Figure 4. For example, Figure 5
shows four additional spar tests to further demonstrate the identified data trends using the same 103 aJ
energy increase to denote the behavior as significant.
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Figure 5. Additional examples of AE activity during four tests with some progressive and some
significant behavior observed. (a) Test 5, (b) Test 3, (c) Test 15, and (d) Test 13.

Felicity ratio values for all spars at each loading step are given in Table 2. Most test specimens
resulted in FR values below 1.0 and above 0.9. Noted exceptions are Test 8 and Test 9, both of which
displayed the lowest FR values and further exhibited significant behavior during LL2. Interestingly,
the spars that had the lowest FR values still resulted in near-average ultimate load. It should be also
noted that some high FR spars failed at lower loads than those with lower FR values, potentially
suggesting that these spars may enable damage distribution that leads to higher ultimate loads.
In contrast, spars with higher FR values may potentially have less damage (which could not have been
confirmed during testing as tests were not interrupted for post mortem inspection), however given
that some of these spars failed at lower loads, damage in them is expected to be more localized and
near the actual failure zone.

It can be inferred from the parametric AE data trends presented herein that, generally, appreciable
damage initiates once the design-limit-load (LL2) is reached, which further progresses until ultimate
failure. In conclusion, the AE parametric analysis presented provided additional insight into damage
progression and sample-to-sample variation that may otherwise be undiscernible using traditional
test methodologies. For example, note the AE energy profile in Figure 4d, Test 4. This particular
spar showed progressive damage, with a higher comparable FR value averaging 1.00 over all three
loads. It may appear that something about this spar e.g., its design, production, or loading parameters,
provided an advantage in controlling damage progression that resulted in achieving a higher ultimate
load. By correlating spar-to-spar differences in damage behavior as indicated by AE data with
structural testing, production or design data, additional value can be mined from such nondestructive
evaluation, which may support design or process improvements.

3.2. Identification of Probable Damage Regions

As determined during pre-testing, AE wave propagation velocity fluctuated across the length and
among the different spar faces due to structural and material variations; therefore, a zonal technique
based on AE hit amplitude was used to identify regions along the spars related to onset of damage.
The AE sensors were distributed along the length of the spar, on the top surface, in order to achieve
sufficient “zonal” coverage from root to tip (recall Table 1). The authors examined high amplitude
AE hits recorded by certain sensors for which the locations are known. If a sensor had a relatively
high concentration of high amplitude AE hits, the sensor “zone” was considered the “critical region”
as a first order approximation to damage location. For the preponderance of the test cases, high
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AE amplitude behavior was observed in sensors near the spar root. As noted in Table 3, the most
commonly identified was Sensor 2 (S2), which was located approximately 6–13 inches from the closest
root pin. Failure near the root was anticipated, due to the loading and design of the spar. Prior testing
experience indicated that common failures may be in the form of cracking or buckling of the shear
web, and/or bending of the cap near the spar root. These types of damage matched the failure modes
observed in similar cantilevered wind turbine blade tests [39,41].

Table 3. Results summary.

File
Name

Ultimate Crane
Load [%DLL]

Target Load [%DLL] o
First Damage Signal

Estimated Load [lbf]
@ 1st Damage Signal

Cumulative
AE Behavior Critical Region

1 N/A 115 N/A Significant S1 (N/A)

2 151 100 90 Significant S3, S5, S6, S19
(15,23.5,48,66.5 in)

3 165 100 103 Significant S2 (6 in)
4 167 150 133 Progressive S2 (6 in)
5 169 115 117 Progressive S2 (7 in)
6 170 100 69 Significant S2 (7 in)
7 178 100 101 Significant S2 (6 in)
8 180 100 85 Significant S2 (6.5 in)
9 182 100 97 Significant S2 (6 in)
10 184 150 132 Progressive S2 (6.5 in)
11 185 100 96 Significant S2 (6 in)
12 192 100 96 Significant S2, S4 (6.5&40.5 in)
13 197 115 115 Progressive S2 (6.75 in)
14 197 100 100 Significant S2 (6.5 in)
15 205 100 81 Significant S4 (36 in)
16 216 150 134 Progressive S2 (7.25)

3.3. Ultimate Failure Load Prognosis

In an effort to perform ultimate failure load prognosis, the ultimate failure crane-load for each spar
was correlated with AE activity. Extracted features from the recorded AE signals were used to compare
the progressive failure of the composite spars, and to infer similarities and differences among them.
The results for all spars were tabulated in Table 3 and ranked according to the ultimate load value.
The target crane-load for the first damage signal, the estimated load at first AE damage signal, the AE
energy behavior (classified as either progressive or significant behavior based on the cumulative
AE energy profile), and the critical region defined by AE sensor locations with high-amplitude
AE hit concentrations are given for each spar. All load values are defined as a percentage of the
design-limit-load (DLL). Significant AE energy behavior was defined as a jump in the cumulative
absolute AE energy distribution of at least 103 aJ.

Although variability is observed in all listed parameters, some patterns emerged in the information
presented in Table 3. As mentioned previously and supported by the analysis of multiple AE
parameters, the majority (10 out of 16) of the first damage signals occurred during the second target load
of 100% DLL. It appeared reasonable to observe the damage initiation and progression once the spar
limit load was reached. Notably, three of the spars did not show the first damage signal until the final
loading sequence reached the target load of 150% DLL. All three of these spars displayed progressive
damage behavior based on their cumulative AE energy profiles. Despite the apparently controlled
damage progression, this did not result in the three highest ultimate loads. The highest recorded
ultimate load resulted from delayed damage initiation and progressive damage behavior, but the
next two highest showed earlier damage initiation and significant damage behavior. This uncertainty
suggests that there are other factors that may additionally influence the ultimate load prediction.

The estimated crane load applied at the time of the first AE damage signal and the target crane load
value were given for comparison, showing that initial damage was often observed prior to reaching
the maximum load for that cycle. Moreover, 11 out of the 16 spars tested exhibited significant AE
energy behavior, rather than a progressive behavior, making the appearance of the first damage signal
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more critical than is the case for the progressive energy accumulation. Critical region examination
by AE zonal location revealed that 12 out of 16 spars experienced the majority of high-amplitude
damage signals near Sensor 2, which was located approximately 6–13 inches from the spar root—as
expected given the cantilever load profile. Only a few spars (four out of 16) showed a critical region
other than Sensor 2, and one case (Test 2) recorded multiple critical regions, indicating widespread
damage, which led to the lowest recorded ultimate load.

3.4. Statistical Static Strength Assessment

To qualify for use on specific aircraft, spars were required to support 115% of the DLL with no
permanent deformation, while being capable of supporting 150% of the DLL with no failure. For this
test, failure was defined as a 30% drop from the maximum load. Assessing a strength criteria beyond
this unidimensional pass/fail condition may provide additional feedback that can be used to evaluate
spar behavior across a sample set. For example, the traditional pass/fail test only indicates that a
group of spars meets or does not meet a threshold. In this case, the pass/fail classification may not
allow for sufficient discretization to determine that one of those spars may have exceeded the criteria
significantly. Hypothetically, that spar may have displayed certain favorable progressive damage
characteristics that would predict its higher strength. Knowing that extra information could allow for
the part production parameters to be studied, and lessons learned to be applied to the next production
lot, thus continuously improving part quality.

In order to use the proposed statistical tests, the AE data distribution was examined and verified
to follow a normal distribution using the Lilliefors test, a method employed when the population mean
and standard deviation is unknown [61]. The Lilliefors analysis was executed using MATLAB R2017a
(The MathWorks, Natick, MA, USA), and the results of the normality plot are shown in Figure 6. Both
the first damage signal load and spar ultimate load followed a normal distribution (failed to reject the
null hypothesis at a 1% significance level).
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Probabilistic assessment (e.g., hypothesis testing) can give additional part performance insight,
and the multi-dimensional AE datasets used in this research enable the use of statistical analysis
methods. As an example of how AE data could be used to evaluate composite test article performance,
a one-sided hypothesis test and lower confidence limit (LCL) was applied to assess both spar strength
requirements. Summary statistics for both datasets are listed in Table 4, and are representatively
displayed in Figure 7 for comparison.
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Figure 7. A schematic representation of the probabilistic assessment. (a) First damage AE signal
distribution, (b) ultimate load distribution.

Table 4. Summary statistics for the response variables of interest.

Crane-Load @ 1st Damage Signal Ultimate Crane-Load

Mean [Load/DLL] 1.03 1.82
StDev [Load/DLL] 0.19 0.17
Spread [Load/DLL] 0.65 0.65

99% LCL [Load/DLL] 0.90 1.71

The lower confidence limits serve as average predictions for the lowest probable load where
damage may initiate and the lowest probable ultimate load, respectively. They could potentially be
used as a bound in statistical process control, or as quick indications of part lot performance from a
“weakest link” perspective. Alternatively, upper confidence limits (not shown) could also be used to
identify spars that perform exceptionally well during testing.

To evaluate spar strength requirements explicitly, the hypothesized population mean was first
determined based on the requirement descriptions. Estimated crane-loads at the first AE damage
signal were used as an interpretation of the “support 115% design limit load (DLL) with no permanent
deformation” requirement, and ultimate loads were used to evaluate “support 150% DLL with no
failure”. Therefore, the null hypothesis for the first strength requirement was that the first damage
signal population mean is equal to 1.15 DLL, and the alternative was that the first damage signal
population mean is less than 1.15 DLL. In other words, the analysis was run to examine whether if
on average, the first damage signals occurred at or below 1.15 DLL for the total population of spars,
given the tested sample population. Figure 7a shows the requirement distance from the sample mean
and the sample LCL, schematically. The analysis was run in MATLAB, and the null hypothesis was
rejected at a 5% significance level (p = 0.0174). According to the results, the probability of the average
first damage signal occurring below a crane-load of 115% DLL (the third test load increment and the
first strength requirement) was 98%. This suggests that most spars will exhibit observable damage
signals at or below the second loading level (100% DLL), a conclusion confirmed by the analysis of
multiple AE parameters discussed earlier in this work.

Similarly, the ultimate load distribution can be examined (Figure 7b). The null hypothesis for
the second strength requirement was that ultimate crane load population mean is equal to 1.28 DLL
(a 30% reduction from the sample population average ultimate load) and the alternative was that the
ultimate crane load population mean is less than 1.28 DLL. The analysis was run to examine whether
on average, the average ultimate crane load could occur below a “30% drop from the maximum load”
in accordance with the requirement. The MATLAB analysis failed to reject the null hypothesis at a 5%
significance level (p = 1); there was not enough data to support the alternative hypothesis. Based on
the results presented, the probability that the average spar ultimate crane-load was less than 128% DLL
(30% less than the average ultimate load) was less than 1%. Therefore, almost all spars can withstand
the maximum load without failure. Again, this was confirmed by the summary of results presented in
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Table 3, to which the probabilistic assessment presented herein adds confidence; the lowest recorded
individual spar ultimate load was 151% DLL.

4. Conclusions

Acoustic emission (AE) was successfully applied to full-scale, composite, fixed-wing aircraft spars
during structural strength qualification testing. Correlations between AE activity and applied load
were made that allow for the in-depth structural integrity assessment beyond the data available
from pass/fail, legacy aircraft component testing. In addition to examining spar progressive
failure, a criterion based on cumulative AE energy was introduced to characterize the recorded
AE profile as indicating either significant or progressive behavior. Moreover, the criterion agreed
well with particular instances during loading, and has potential for use during real-time AE data
assessment, as there appears to be a link between AE data trends and ultimate failure loads. Using the
knowledge of sensor placement and recorded AE activity at each sensor, damage critical regions were
identified and determined to be generally concentrated at the spar root. Finally, statistical calculation
methodologies for evaluating test performance using AE data were proposed, and feasibility was
demonstrated. In summary, the presented investigation demonstrates that AE monitoring may assist
in quantifying the effect of manufacturing or design differences on structural component performance
parameters, which could lead to refined assessment criteria that are over and above the available
legacy test methodologies.
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