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Abstract: Data transmission of electroencephalography (EEG) signals over Wireless Body Area
Network (WBAN) is currently a widely used system that comes together with challenges in terms
of efficiency and effectivity. In this study, an effective Very-Large-Scale Integration (VLSI) circuit
design of lossless EEG compression circuit is proposed to increase both efficiency and effectivity of
EEG signal transmission over WBAN. The proposed design was realized based on a novel lossless
compression algorithm which consists of an adaptive fuzzy predictor, a voting-based scheme and
a tri-stage entropy encoder. The tri-stage entropy encoder is composed of a two-stage Huffman and
Golomb-Rice encoders with static coding table using basic comparator and multiplexer components.
A pipelining technique was incorporated to enhance the performance of the proposed design.
The proposed design was fabricated using a 0.18 µm CMOS technology containing 8405 gates
with 2.58 mW simulated power consumption under an operating condition of 100 MHz clock speed.
The CHB-MIT Scalp EEG Database was used to test the performance of the proposed technique
in terms of compression rate which yielded an average value of 2.35 for 23 channels. Compared
with previously proposed hardware-oriented lossless EEG compression designs, this work provided
a 14.6% increase in compression rate with a 37.3% reduction in hardware cost while maintaining
a low system complexity.

Keywords: EEG; lossless compression; VLSI architecture; wireless body area network

1. Introduction

The electroencephalogram (EEG) [1,2] signal has always been considered an inherent and crucial
reference for the neurologist to diagnose any brain disorder. EEG is a technique used to record electrical
activity generated by the human brain [3]. Other problems associated with the abnormal functioning
of the brain which can be diagnosed by using EEG signals include coma, confusion, stroke, and tumors.
Among various modalities available, ambulatory or portable EEG is expected to emerge as a potentially
viable area for data compressions in EEG devices. This is attributed to the ease of accessibility and
high patient comfort offered during the EEG signal acquisition procedure.

Traditional EEG monitors and recorders transmit EEG signals via cables. In recent years,
the Wireless Body Sensor Network (WBSN) technology is being widely developed since it can greatly
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enhance the way people live in terms of comfort and convenience [4–6]. WBAN is also being developed
due to its high potential to replace the use of batteries for portable devices [7–9]. Most portable wireless
devices in the market, however, is limited to their onboard battery capacity as their main constraint for
the long-term use of the device. One of the approaches to improve the efficiency of current wireless
EEG recorders is making use of a lossless compression technique to reduce the power consumption
during the transmission of EEG data.

In this paper, a novel dynamic voting prediction methodology is proposed in order to adaptively
choose the optimal prediction function. In addition, a fuzzy decision unit is incorporated to improve
the accuracy of prediction. A novel dynamic voting scheme is combined with the adaptive fuzzy
prediction methodology for the EEG compression. Moreover, a novel tri-stage entropy encoding
method is combined with the adaptive fuzzy and voting-based prediction. The comparators and
multiplexer components were used to replace the complex computing components to achieve hardware
sharing. A pipelining technique is used to improve the performance of this design. Simulation results
showed that the proposed algorithm significantly improved the compression rate with a relatively low
complexity in its VLSI implementation.

This paper is organized as follows: Section 2 presents a literature review of several lossless
compression algorithms. Section 3 discusses the methodology of the proposed novel lossless EEG
compression algorithm. This includes dynamic voting prediction, tri-stage entropy coding and its
VLSI architecture. Section 4 lists and discusses the results of the proposed lossless EEG compression
algorithm and its performance. A comparison with previous studies in terms of compression rate and
VLSI design performance is also presented. Conclusions were summarized in Section 5.

2. Literature Review

A Chaotic Compressive Sensing (CCS) algorithm was proposed in [10] to solve both problems
of energy saving and data security. A combined compression algorithm [4] provided different
biomedical signals that showed a significant improvement in the compression ratio with a small
maximum error for optimizing the network resource usage over Wireless Sensor Networks (WSN).
A lossy compression algorithm based on online dictionaries provided a quantitative assessment
for compression, reconstruction and energy consumption of wearable Internet of Things (IoT) was
presented in [11].

Several varieties of EEG compression algorithms have been proposed in literature. Srinivasan
et al. [12] proposed a high performance wavelet-based EEG compression while Sriraam et al. [13]
presented an adaptive error modeling scheme. Shaw et al. [14] presented an excellent algorithm for EEG
signals in high dimensionality. Shaw et al. proposed a compression method for multichannel EEG data
with improved storage capacity and efficiency in transmission. A lossless and near-lossless algorithm
of EEG compression was presented in [15]. The literature proposed two modes of compression
for different platform with individual capability. An algorithm for classifying multichannel EEG
data through a promising tool called the fuzzy multichannel EEG classifier was proposed in [16].
This supports different EEG signals that were collected at different time instants.

The previously proposed algorithms were able to attain a high performance in terms of
both compression rate and complexity in their VLSI architecture. Chua et al. [17] proposed
a VLSI implementation of a mixed bio-signal lossless data compression together with its EEG
signal compression. The said work presented a detailed figure of merits for the different
compression methodologies.

On the other hand, several compression techniques were also proposed for electrocardiography
(ECG) signals. Chen et al. [18] developed a slope prediction based algorithm while Chen et al. [19]
proposed a novel adaptive trending prediction with Huffman coding architecture that was extended
by implementing a fuzzy decision technique for a more efficient and precise signal prediction [20].
These 3 previously proposed methods in literature provided a reliable reference for EEG compression in
VLSI implementation. Recently, an adaptive resolution control [21] and a fuzzy resolution control [22]
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techniques for body signals have been proposed. Although these variable resolution control techniques
can improve the compression rate efficiently, there is significant information that was lost in the
body signal.

3. Methodology

3.1. Lossless EEG Compression Algorithm

The proposed novel lossless EEG compression algorithm consists of a predictor and an encoder.
The result of the predictor is used as the input to the encoder. The predictor implements a voting-based
scheme operating with the fuzzy decision technique that is designed to improve the efficiency of the
entropy coding. The entropy encoder is a tri-stage design that involves pre-processing of data through
the use of a two-stage Huffman encoder and a Golomb-Rice encoder. The following subsections discuss
each of these components.

3.1.1. Dynamic Voting Prediction

Biomedical signals are by nature chaotic and fluctuate rapidly. As such, there is no single generic
prediction function that is capable of accurately predicting a biomedical signal while maintaining a low
system complexity. As opposed to designing several prediction algorithms for each and every kind of
biomedical signal, this study proposes a dynamic voting prediction algorithm that is independent to the
type of body signal in order to enhance the overall performance of the signal prediction. The dynamic
voting prediction scheme proposed in this study is composed of the following steps: the first-stage
prediction, second-stage prediction, and the voting prediction stage.

First-Stage Prediction

This preliminary step ensures that the data distribution will converge. This step made use
of three ECG signal prediction functions that were proposed in previous studies namely linear,
slope, and adaptive trending functions by Chen et al. [6], Chen et al. [18] and Chen et al. [23],
respectively. These functions were simulated and tested to predict a given ECG signal. Table 1 lists
the prediction functions and their respective compression rate on the ECG signals provided by the
MIT-BIH arrhythmia database [24]. The adaptive trending function had the highest compression
rate achieved.

Table 1. Compression rate on ECG signals of previously-proposed prediction functions.

Prediction Function Compression Rate

Linear [6] 1.90
Slope [18] 2.38

Adaptive Trending [20] 2.56

Second-Stage Prediction

The second-stage prediction involves a fuzzy decision component [20]. This step organizes the
results of the first-stage prediction according to the two slope values diff_1 and diff_2 as shown in
Figure 1. The values of diff_1 and diff_2 are equivalent to the absolute differences of X(n − 1) and
X(n − 1), and X(n − 1) and X(n − 2), respectively.
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picked by one of the six modules M1–M6 in the voting prediction stage. Given the compression rate 
of the different prediction functions in Table 1, the adaptive trending method shows higher 
performance than the linear and slope functions for ECG signal. Hence, the use of the fuzzy decision 
rule is selected as the base prediction scheme for the proposed prediction methodology for EEG 
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Figure 1. Slope prediction using diff_1 and diff_2.

Fuzzy Decision Rules

Figure 2 illustrates the fuzzy decision rule of the proposed EEG prediction methodology with
threshold values of low, medium and high. The first-stage prediction outcomes are matched and
picked by one of the six modules M1–M6 in the voting prediction stage. Given the compression rate of
the different prediction functions in Table 1, the adaptive trending method shows higher performance
than the linear and slope functions for ECG signal. Hence, the use of the fuzzy decision rule is selected
as the base prediction scheme for the proposed prediction methodology for EEG signals.
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Dynamic Voting Scheme

The dynamic voting scheme component is developed to dynamically choose the optimal function
during signal trend fluctuations. For every prediction session, one of the six modules will be activated
to receive the data coming from the fuzzy decision module. Each of the modules contain five
second-stage prediction functions, as shown in Figure 2. The following lists the constant and/or
preset values: eij is a constant where 1 ≤ i ≤ 6 and 1 ≤ j ≤ 6. Each fuzzy module contains 5 prediction
equations, where each prediction equation has its own eij value. eij denotes the jth e value of the ith
fuzzy module. A preset coefficient eij value was used that is from the distribution of the difference
value between the sampling points in the EEG dataset. The parameter S is determined by getting the
absolute value of diff_2 over diff_2. The number of votes for each function is monitored using five
registers. The number of votes for each function is equal to the number of times that that particular
function has the closest prediction among the five prediction functions. The function with the most
number of votes will be executed with its resulting value stored in register PD2 of the said voting
prediction stage. The same procedure is performed for all the other four functions.

Figure 3 shows the dynamic voting procedure. PD1 is the subtractor output with inputs X(n)
and X(n − 1). The upper flow shows that given PD1, the optimal function is selected according to the
highest number of votes where its value is to be stored in PD2. The lower flow of data acquires the
current result of the prediction module. The current prediction result will be used as a vote to change
the numbers of the corresponding function and contribute to the next prediction session. Register PD2

stores the resulting value of the function with the highest number of votes.
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Figure 3. Dynamic voting process.

Figure 4 shows a sample prediction session. Figure 4a shows the result of each function together
with the number of votes for each corresponding function. As can be seen, function 2 has the largest
number of votes. Hence, the value stored in PD2 register is chosen as the output of function 2. However,
in this session, function 1 has a resulting function value that is closest to −1. As such, the optimal
function is function 1 rather than function 2. As such, the dynamic voting predictor will cast a vote to
function 1 as shown in Figure 4b.
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3.1.2. Tri-Stage Entropy Coding

The entropy encoder incorporates both the Huffman coding and the Golomb-Rice coding
algorithm. The Huffman coding encodes symbols that have higher probabilities with shorter code
length according to the Huffman tree. However, as the value of the EEG signal data varies in a wide
range, the Huffman tree would group up outstandingly. It is difficult to design a low-cost and a high
performing VLSI architecture that has a block circuit and implements a tree with a very large depth.
For this reason, a two-stage Huffman encoding technique [19] is applied to the data whose values have
high probabilities. For the PD2 values whose probabilities are relatively low, the absolute value is not
too large. As such, the Golomb-Rice coding technique can efficiently shorten the length of the code by
choosing an appropriate divider. This further enhances the performance of the Golomb-Rice coding.
The PD2 value can be transformed into a smaller value PD’(n) using Equation (1).

PD′(n) = 2 ∗ PD2(n)− 2k if PD2(n) ≥ 0
PD′(n) = 2 ∗ PD2(n)− 2k + 1 if PD2(n) < 0

(1)

where k is the first position in the Golomb-Rice table.

3.2. VLSI Architecture

Figure 5 shows the VLSI architecture of the proposed lossless EEG compression VLSI design.
It illustrates its components which are composed of a dynamic voting predictor, a two-stage Huffman
encoder, a Golomb-Rice encoder, pipeline registers, and their interconnections.
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3.2.1. Dynamic Voting Predictor

The predictor component in Figure 5 illustrates that the voting predictor is composed of five
registers, three subtractors, one fuzzy controller, and one voting predictor. The four registers in the
input stage are used to store the input data X(n), X(n− 1), X(n− 2) and X(n− 3). The three subtractors
provide the values for PD1, diff_1, and diff_2. Both diff_1 and diff_2 are used as inputs to the fuzzy
controller. Their output together with PD1 are used as inputs to the voting predictor. The fifth register
PD2 holds the final output value of the adaptive voting predictor. Register PD2 is interconnected to
both of the two-stage Huffman and Golomb-Rice encoders and is also used as the pipeline register to
improve the performance of the proposed design.

3.2.2. Entropy Encoder

The entropy encoder is composed of both the two-stage Huffman and Golomb-Rice components
as shown in Figure 5. In the two-stage Huffman encoder component, two Huffman tables were used
as look-up tables. The two-stage Huffman encoder checks the value of PD2 which stores the output
of the adaptive voting predictor. If the value is within the encoding range of the two-stage Huffman
encoder, the value of PD2 will be encoded using the two-stage Huffman encoder and will be directly
sent as the final output. Otherwise, the value of PD2 will be passed through a pre-processing stage
where Equation (1) is utilized. The pre-processing procedure ensures that the data will be passed on to
the Golomb-Rice encoder through a multiplexer, which has a range of values that will better fit what
is required by the Golomb-Rice look-up table. The resulting data of the Golomb-Rice encoder is of
a variable length code that will be the output of the proposed lossless EEG controller that is ready
for transmission.

3.3. Simulation and Dataset

The CHB-MIT Scalp EEG Database [25] was utilized to examine the proposed algorithm in terms
of its compression rate. The standard EEG pattern is recorded in European Data Format (edf) containing
one uninterrupted digitized polygraphic recording. The original EEG signals in 23 channels were
sampled at 256 samples per second with 16-bit resolution and 1 hour duration. A software program
was used to extract the information from the edf file as well as to restore the original EEG pattern.
The extracted data from the edf file was compressed into a bitstream of data by using the different
prediction and entropy encoders. The resulting encoded bitstream of data was decoded to verify that
it has the same data as that of the original data extracted from the edf file. The compression rates were
computed by getting the ratio of the size of the original data and the size of the encoded bitstream.

The proposed lossless EEG encoding algorithm was implemented using Verilog code and was
simulated using the ncverilog tool. The VLSI architecture was synthesized using a design compiler
with a TSMC 0.18 µm CMOS generic logic process technology.

4. Results and Discussion

Table 2 lists the compression rates for all four functions: linear, slope, adaptive trending and the
proposed fuzzy and dynamic voting predictors operating with Huffman and Golomb-Rice encoders.
The compression rates of the EEG signals are presented using the average compression rate using all
23 channels of the EEG signals. It is apparent that the voting prediction with entropy coding design
proposed in this study has significantly improved the compression rates. Moreover, it drastically
decreased the entropy coding size. The design of the prediction methodology is crucial since the
prediction optimizes the frequency distribution of the values by making the values closer to a certain
value that is usually 0. In addition, the prediction minimizes the absolute values which significantly
improves the performance of the entropy coding by assigning the length of the codes according to the
values of the input data.
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Table 2. Compression rates of different prediction methodologies for 23 channels of CHB-MIT Scalp
EEG Database.

Channels Linear [6] Slope [18] Adaptive Trending [20] This Study

1 1.72 1.69 1.73 1.98
2 2.00 1.88 1.96 2.27
3 2.01 1.89 1.97 2.31
4 2.32 2.13 2.27 2.65
5 1.64 1.63 1.67 1.87
6 2.14 2.07 2.15 2.48
7 2.49 2.35 2.43 2.74
8 2.21 2.08 2.21 2.56
9 1.72 1.73 1.76 1.96

10 2.36 2.27 2.35 2.67
11 2.49 2.38 2.47 2.74
12 2.00 1.83 1.97 2.44
13 1.73 1.66 1.74 2.02
14 1.85 1.75 1.84 2.18
15 2.07 1.94 2.03 2.38
16 1.91 1.79 1.92 2.35
17 2.65 2.54 2.60 2.86
18 2.68 2.58 2.63 2.87
19 2.01 1.89 1.97 2.31
20 1.87 1.77 1.87 2.18
21 1.93 1.92 1.96 2.26
22 2.08 1.95 2.04 2.40
23 2.07 1.94 2.03 2.38

Average 2.05 1.95 2.04 2.35

Table 3 shows the specification of the area, power and the gate-count of the previous lossless
compression designs in [6,17] and this work. The advantage of the proposed design in terms of area is
the use of a combinational logic that occupied most of the cell area which resulted to a reduction in the
hardware cost to at least 37.3% compared to previous designs. The proposed design of this work has
a total power consumption of 2.5867 mW at a global operating voltage of 1.62 V and a clock frequency
of 100 MHz. Even though the combinational logic occupied most of the cell area, it consumed only
one-tenth of the power with the registers consuming 89.26%. Based on the results listed in Table 4,
a limitation of the proposed design is its power consumption. Thus, minimizing the power consumed
by the registers is a major concern in future improvement.

Looking into the cell report of this design, the gate count resulted to 8405 NAND-equivalent
gates for the entire design with the voting prediction component contributing 68.48% of the total gate
count. This is mainly due to the fact that the voting prediction component is the most complex step
in the compression algorithm. Previous studies in [6,17] showed a gate count of 13,400 and 53,900,
respectively. Compared with the previous studies, this work showed a 37.3% reduction in terms of
gate count. Moreover, this work showed an 84.4% reduction in hardware cost.

The proposed lossless EEG encoding algorithm was tested using the CHB-MIT Scalp EEG
Database and conceded an average of 2.35 compression rate. Previous studies in [6,17] showed
an average compression rate of 2.05 and 1.37, respectively. This work showed a 14.6% and
58.30% increase in the compression rate compared to [6,17], respectively. The performance of the
proposed VLSI architecture was also verified. Synthesis results recorded that the submitted encoder
design contains 8405 NAND-equivalent gate counts, which is 37.3% and 84.4% less than the previous
studies in [6,12], respectively. The core area in this design is 578,000 µm2 while its power consumption
is 2.58 mW operating at 100 MHz. The power saving of this study reaches 54.77% which is better than
51.21% and 27% in previous studies in [6,17], respectively.
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Table 3. Performance comparison of the proposed lossless EEG encoding algorithm and its VLSI
architecture with a previous work.

Performance Parameters Chen et al. [6] Chua et al. [17] This Work

Compression Rate 2.05 1.37 2.35
Process (µm) 0.1 0.065 0.18

Frequency (MHz) 100 24 100
Voltage (V) 1.80 1.00 1.80

Gate Count (k) 13.4 53.9 8.4
Area (kµm2) 134 58 84

Normalized Area 1.59 5.29 1.00
Power Save (%) 51.21 27.00 54.77

Table 4 lists the energy savings of the original data and the compressed data using both the
Bluetooth and Zigbee wireless transmitters. The Ecomp is derived using the power consumption
with a clock frequency of 100 MHz for the input data rate used in circuit simulation per bit divided.
In addition, the power has a high-positive correlation to the amount of data. Consequently, the power
consumption is reduced relative to the compression rate. The Etx_original and Etotal_original are the
energy and the total energy of the original data which are raw and uncompressed. Using the CR value
of 2.35, the energy after compression is computed as Etx_CR and Etotal_CR. It is clearly shown that
the amount of data is reduced 2.35 times by CR and thus the energy is significantly. The results show
that even though this design consumes more power than previous designs, its energy savings using
wireless transmitters can be improved.

Table 4. Energy saving for Bluetooth and Zigbee wireless transmitters.

Performance Parameters Bluetooth Zigbee

Etx_original (nJ/bit) 143 296
Etotal_original (nJ/bit) 143 296

Compression Rate 2.35 2.35
Etx_CR (nJ/bit) 60.85 125.96
Ecomp (nJ/bit) 0.005 0.005

Etotal_CR (nJ/bit) 60.855 125.965
Energy Savings (%) 57.44 57.44

5. Conclusions

This paper presented a novel lossless, high-compression-rate with a low-complexity EEG
compression algorithm that is based on a fuzzy decision, dynamic voting prediction and tri-stage
entropy coding. The proposed VLSI design had significantly increased the compression rate to
14.6% and significantly reduced the hardware cost to 37.3% compared to previously reported designs
in literatures. A limitation of the proposed design is its power consumption which can be reduced by
improving the power consumption of the registers for future works. The proposed design is suitable
for applications in WBAN, WBSN, wearable devices, as well as in Internet of Things (IoT) devices.
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