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Featured Application: This paper provides a solution to anti-swing control for overhead cranes
for outdoor use. This contribution can also be used for other kind of underactuated systems.

Abstract: The payload swing of an overhead crane needs to be controlled properly to improve
efficiency and avoid accidents. However, the swing angle is usually very difficult to control to zero
degrees or for it to even remain within an acceptable range because the overhead crane is a complex
nonlinear underactuated system, especially when the actual working environment is accompanied by
strong disturbances and great uncertainty. To resolve this, a real-time anti-swing closed-loop control
strategy is proposed that considers external disturbances. The swing angle is measured in time and it
functions with the load displacement as feedback inputs of the closed-loop system. The nonlinear
model of the crane is simplified by a linear system with virtual disturbances, which are estimated by
the equivalent input disturbance (EID) method. Both simulation and experimental results for a 2-D
overhead crane system are investigated to illustrate the validity of the proposed method.

Keywords: overhead crane system; anti-swing closed-loop control; swing angle measurement;
equivalent input disturbance

1. Introduction

Overhead cranes play an important role as one of the tools of heavy cargo transportation in
seaports, steel plants, and other workplaces [1]. As a typical underactuated system, an overhead crane
is easily affected by various external disturbances so that the load is frequently swinging in the process
of transportation, which seriously affects the positioning accuracy of the load and brings many unsafe
possibilities while at the same time of reducing the efficiency of the system [2,3]. Avoiding the swing of
the upload and improving safety and efficiency are the main concerns for the study of cranes. Hence,
the control objective of an overhead crane generally includes two parts: fast and accurate positioning
and effective swing suppression, especially considering external resistance (such as wind resistance,
stochastic collision) during the transportation of uploads.

Recently, much research has been done to solve the abovementioned problems. The most common
and direct control is input shaping, by which suitable trajectories are planned for the trolley by
thoroughly analyzing the coupling between the trolley motion and the payload swing [4–8]. A modified
composite nonlinear feedback strategy has been proposed to improve the transient performance and
eliminate the steady-state errors in path-following control considering the tire force saturations [9].
To simplify the controller design, partial feedback linearization operations were used in [10–12]. As the
solution to the existence of uncertainties in the crane system, an adaptive control method was proposed
in [13–15]. In addition, more intelligent methods have been followed to increase the robustness of
these methods. A particle swarm optimizer in [16] was applied to determine the optimal sequence of
control increments in the presence of constraints on input and output variables. The control scheme
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was successfully tested on a laboratory-scale overhead crane for different constraints and operating
conditions. An error tracking control method was used in [17], for which the error trajectories of the
trolley and the payload swing can be prespecified. Some other new complexity control methods have
also been put forward to guarantee fast and accurate positioning and effective swing suppression,
such as passivity-based control schemes [18–21] and sliding mode control (SMC) methods [22–24].
Regarding unknown inputs, the state and the output vectors of a system can be reconstructed [25].
Also relevant are the complete Lyapunov-based stability analysis in [26], genetic-algorithm-based
control [27], and fuzzy logic-based methods [28–30].

However, most of the above methods are based on some harsh assumptions, for example, the
initial payload swing angle should be zero, the accurate real-time angle of the payload swing can be
known a priori, or velocity sensor measurements can be taken without noise. In fact, the payload
easily swings within an unacceptable range in actual working environments, where some external
disturbances such as wind resistance and stochastic collision frequently occur. Therefore, these above
methods are weak in disturbance suppression and poor for real applications because they belong
to open-loop control structures. A closed-loop control system with the feedback of real-time angle
measurement values of the payload swing is the most effective way to tackle the anti-swing problem.
Further, overhead cranes are usually linearly modeled, which ignores their nonlinear characteristics and
thus cannot guarantee a crane’s practical performance. Therefore, an anti-swing closed-loop control
strategy is proposed in this paper. This control system has two feedback quantities of trolley moving
displacement and swing angle, which are both measured in real time. The nonlinear characteristics
hidden in the crane system are transformed into an equivalent input disturbance, which can be
estimated by a disturbance predictor.

This paper consists of the following four parts: a simplified model of a 2-D overhead crane system
is given in Section 2. The controller design is described in detail in Section 3. The control strategy is
verified by simulation and experiments in Section 4. The conclusion is presented in Section 5.

2. Mathematical Model

Usually, an overhead crane consists of a hoist, load, and transport trolley, as shown in Figure 1.
Its corresponding two-dimensional simplified physical model is shown in Figure 2.
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Assuming that the length of hoisting rope l does not change during transportation and the friction
between the trolley and the platform µ is negligible, that is

.
l =

..
l = 0, µ = 0, the dynamic equation of

the 2-D overhead crane system is obtained as follows:[
ml2 ml cos θ

ml cos θ M + m

][ ..
θ
..
x

]
+

[
0 0

−ml
.
θ sin θ 0

][ .
θ
.
x

]
+

[
mgl sin θ

0

]
=

[
0

F(t)

]
(1)

where M, m is the mass of the trolley and the hoist, respectively, x(t) is the horizontal displacement, θ(t)

is the vertical direction angle of the upload, and F(t) is the driving force. M(x, θ) =

[
m11 m12

m21 m22

]
=[

ml2 ml cos θ

ml cos θ M + m

]
is the inertial matrix of the system (1).

Known from [31], although a 2-D underactuated system cannot be fully state-feedback linearized,
..
x can be implemented as a system input, and the driven state quantity part [x,

.
x] can be linearized.

Inspired by this, the model of the 2-D overhead crane can be transformed by homeomorphism
coordinate transformation:

Γ


z1 = x + α(θ)

z2 =
∂L(x, θ)

∂
.
x

= m11
.
x + m12

.
x

z3 = θ

z4 =
.
θ

(2)

where L(x, θ) is the Lagrange equation of the 2-D overhead crane system.
Simultaneously from (1), (2) is obtained:

.
z = f (z) + Bu (3)

where:

f1(z) = [
z2

m11
+ (

dα(θ)

dθ
− m11

m12
)z4]

∣∣∣
ζ=Γ−1(z)

f2(z) = [
1
2
[

.
x,

.
θ]

T ∂M(x, θ)

∂x
−mgl sin θ]

∣∣∣
ζ=Γ−1(z)

f (z) = [ f1(z), f2(z), z4, 0]T

B = [0, 0, 0, 1]T

ζ = [x, θ,
.
x,

.
θ]

T

The value of the costate coefficient α(θ) is set 0 in this paper to ensure the conciseness of the
transformed system structure. It is proved later that the controllability and observability of the system
is not affected by the choice of the value of α(θ).

Define:
σ = f (z)− Az (4)
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The system (1) is equivalent to the following mathematical model:{ .
z = Az + Bu + σ

y = Cz
(5)

where:

A =
∂ f (z)

∂z
|z=0 =


a11 a12 a13 a14

a21 a22 a23 a24

0 0 0 1
0 0 0 0

, aij =
∂ fi(z)

∂zj
|z=0, i = 1, 2, j = 1, 2, 3, 4

C =

[
1 0 0 0
0 0 1 0

]

From mathematical description (8), a conclusion can be made that the nonlinear crane system (1)
can be equivalent to a linear combination of a linear subsystem and a nonlinear term. The nonlinear
term σ can be treated as a virtual disturbance. For the linear subsystem, it can be controlled and
observed if and only if the following inequality is satisfied:[

m12

m11

∂(mgl sin θ)

∂x
− ∂(mgl sin θ)

∂θ

]
|x,θ=0 6= 0, − 1

m11 (x = 0)
< 0 (6)

3. Controller Design and Analysis

A dual-loop feedback control system was proposed to realize the swing attenuation of the payload.
The swing angle and displacement were measured in real time and were used as a feedback into the
model predictive controller (MPC), as illustrated in the block diagram of the proposed control system
in Figure 3. The MPC method was adopted to find future control input changes to reduce errors
caused by the load swings. The desired swing angle with reference trajectories was also the input of
the controller. A disturbance predictor was used to estimate the real-time value of the equivalent input
disturbance σe.
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Figure 3. The block diagram of the proposed closed-loop control system. 

1) Estimation of Equivalent Input Disturbances  

Figure 3. The block diagram of the proposed closed-loop control system.

(1) Estimation of Equivalent Input Disturbances

.
ẑ = Aẑ + Bu f + L(y− Cẑ) (7)
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L is the observer gain. Define ∆z = ẑ− z, σ = B σe, we have

.
ẑ = Aẑ + Bu + Bσe + (∆

.
z− A∆z) (8)

Suppose there exists a ∆σ satisfying

∆
.
z− A∆z = B∆σ (9)

Combine (8) and (9):
.
ẑ = Aẑ + B(u f + σ̂e) (10)

where σ̂e = σe + ∆σ, combine (8) with (10):

B(u + σ̂e − u f ) = L(y− Cẑ) (11)

At the same time on both sides, multiply by BT:

σ̂e = B+L(y− Cẑ) + u− u f (12)

Take the value of σ̂e as the predicted value of the equivalent input disturbance σe, where B+ =(
BT B

)−1BT . In addition, in order to ensure the accuracy of the equivalent input disturbance prediction,
we introduced a low-pass filter F(s) to adjust the predicted frequency segment:

F(s) =
1

Ts + 1
(13)

where T is a time constant.

(2) Control Algorithm

The sampling period was selected as Tm, and the linear part system can be discretized as follows:{
zm(k + 1) = Apzm(k) + Bpu(k)
y(k) = Cpzm(k)

, Cp = I4×4 (14)

where zm(k) and y(k) denote the system state and the output at time k, respectively, and Ap∈R4 × 4,
Bp∈R4 × 1 represent the discrete system parameter matrices. I4 × 4∈R4 × 4 is the 4 × 4 identity matrix,
which can be calculated as

AP = exp(ATm), BP = A−1 (AP − I4×4)B

where exp(∗) represents the natural exponential function. Next, we proposed a proper MPC formula
to control this discrete system (14).

For the crane system, our purpose was to transport the payload to the desired position without
residual oscillation, with the desired transportation distance defined as xd, while the target of the
output vector y(k) was defined as

y f =
[

xd 0 0 0
]T

To calculate the optimal input, a cost function is defined as

J(ki) = ‖wp(ki)− y(ki) ‖2
Q + ‖∆u(ki)‖2

R (15)

where Q, R are the error weight matrix and control weight matrix, respectively, and wP(ki) is the
reference output value, which are defined as
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wP(ki) =
[

w(ki + 1) w(ki + 2) · · · w(ki + P)
]T

Q = diag
(

q1 · · · qP

)
R = diag

(
r1 · · · rP

)
At each sampling time, the trolley needs to track a proper trajectory to reach the target position.

The reference trajectory with the soften factor is designed as follows:

r(•) = wp(k) = f (y(k− 1), y f ) (16)

4. Simulation and Experiment

Simulations in the environment of MATLAB/Simulink and experiments based on a
laboratory-scale overhead crane were implemented to validate the performance of the proposed
control strategy as shown in Figure 4. As for the simulation, a Luenberger full-dimensional state
observer was used to estimate the real-time swing angle.
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(1) Simulation

The simulation parameters of the overhead crane were as follows: m = 50 kg, l =3 m and M = 70 kg,
g = 9.8 m/s2. The control strategy was validated under the different conditions of expected horizontal
move distance xd and expected arriving time tf.

Simulation 1. Expected horizontal move distance and expected time was xd = 5 m, tf = 30 s.

Simulation 2. Expected horizontal move distance and expected time was xd = 10 m, tf = 30 s.

Simulation 3. Expected horizontal move distance and expected time was xd = 10 m, tf = 30 s.

During the transportation process, a duration of 1 s of white noise disturbance was added at t1 = 5 s,
t2 = 15 s, and t3 = 25 s.

Simulation 4. Expected horizontal move distance and expected time was xd = 10 m, tf = 30 s.Since Proportion
Integration Differentiation (PID) and its improved algorithm currently are the main approach to solve the swing
problem, the method proposed in this article (abbreviated as MPC-EID) was also compared with the classical
double-closed-loop PID (abbreviated as DPID) and fuzzy-PID (abbreviated as FPID). We also compared our
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method with the method that adopts an internal model with the equivalent input disturbance (abbreviated as
IEID) control algorithm, which is the same idea in the model establishment of the underactuated system.

It can be seen from Figures 5 and 6 that when the crane is moving horizontally, the swing angle is
always within 1 degree, and the swing angle has almost decreased to 0 degrees when the crane reaches
the target location within the expected time tf. The entire control process is more natural and smooth.
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From Figure 7, the swing angle has some fluctuations when 1 s of white noise disturbance is
added to the control system, but it can quickly return to the normal swing within a certain period
of time.
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From the simulation results of the four kinds of methods in Figure 8, we can see that the FPID
and DPID methods have quite similar results. As for the time taken to arrive at the target location, the
least time is taken by the FPID and DPID methods and the most time by the IEID method. As for the
time for the swing angle value to reach zero degrees, the FPID and DPID methods both take about 30 s
(the DPID method actually goes a little bit faster than the FPID method), the IEID method takes 35 s,
and the MPC-EID method takes 31 s. However, the maximum swing angle by the DPID method can
reach more than 0.6 degrees, and the minimum swing angle by the IEID method can reach 0.5 degrees.
The MPC-EID method has moderate performance, which is the relatively best solution for safety and
efficiency in real applications.
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(2) Experiments
A lab was specially built to validate the proposed method, as shown in Figure 9. The experimental

platform used three Alternating Current (AC) asynchronous motors to drive the trolley to move on
the track. The maximum speed was 1 m/s. Due to the limitation of the experimental site, the track
length of the crane was 5.5 m, the actual usable length was 5 m, and the maximum rope length was
3 m. The maximum payload mass was 1 t. The moving distance sensor used in this experiment could
achieve an accuracy of 1 mm. Using the aircraft attitude angle sensor, the dynamic swing angle and
the static swing angle accuracy could reach 0.01◦. The friction coefficient was 0.2. The swing angle of
the payload was required to remain within ±50 mm after the mechanism stopped in 5 s.
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Experiment 1. Expected horizontal move distance and expected time was xd = 3.83 m, tf = 15 s. The MPC-EID
method proposed in this article) was also compared with the FPID method.

Experiment 2. Expected horizontal move distance and expected time was xd = 3.83 m, tf = 15 s. In ts1 = 4 s,
ts2 = 9 s, and ts3 = 14 s, an external disturbance was exerted.

We can see that the experimental results in Figure 10 show some obvious differences. Although
the maximum swing angle controlled by the FPID method was 0.2 degrees, much larger than that by
the MPC-EID method, the swing angle by the FPID method converged faster than that of the MPC-EID
method. However, the swing angle fluctuation by the FPID method was also larger than that by the
MPC-EID method when the swing angle was controlled within a certain range. We can conclude that
the overhead crane can be controlled more smoothly and safely by the FPID method.

Though the payload was oscillating near zero degrees for about 15 s, as shown in Figure 11, the
swing angle was small within an accepted range when the trolley arrived at the designated position.
There was also a certain error and delay of the swing angle during the process of transportation because
there were a number of noises in the measurement values of the swing angles. The two problems can
be solved if a better data processing method is used. This means that the method proposed in this
paper can effectively realize the anti-rolling control of the crane when external disturbances exist.
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5. Conclusion

An anti-swing closed-loop control strategy is proposed in this paper to achieve a robust
disturbance rejection for underactuated crane systems with two-degree freedom. The proposed
method was validated by simulation and experiment. The simulation and experimental results both
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illustrate the satisfactory performance of the proposed strategy. The swing angle can be controlled
within the acceptable range and the external disturbances on the overhead crane system can be
successfully suppressed. Our future work will focus on extending the proposed method to a 3-D
overhead crane and will consider the hoisting and lowering of the payload during the transportation.
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