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Abstract: Optical absorbers have been a topic of intense research due to their importance in many
applications. In particular, multi-band and perfect absorption features in a desired frequency range are
essential in broadband applications. In this work, we numerically studied the absorption properties
of subwavelength metallic gratings coated with a dielectric layer. Here, the structure is considered to
be an integration between a resonant cavity and a subwavelength metallic grating. Two appropriately
designed structures can exhibit multi-band absorption properties. In addition to the numerical
simulation results, we elaborate on determining the appropriate structural parameters that yield the
desired spectral absorption profile in the visible range. We also numerically identify critical coupling
conditions for perfect absorption.

Keywords: optical absorber; resonant cavity; subwavelength metallic grating; perfect absorption

1. Introduction

Optical absorbers are an essential optical component that can be fabricated by using various
materials and structures [1–5]. Absorbing structures have been used in a number of diverse
applications, including solar-energy harvesting [6–10], light modulation [11–15], and optical sensing
and detection [16–19]. There are several principles and methods used to fabricate electromagnetic
wave absorbers, such as stacked metal-dielectric-metal (MIM) structures [20–23], metamaterials and
metasurfaces [1–4,10,24–30], asymmetric Fabry–Pérot (FP) cavities with ultrathin high-absorption
dielectric layers [12,31,32], and subwavelength metallic gratings [1,9,14,15,17,18,33–37].

Among them, reflection-type subwavelength metallic gratings have been widely adopted due
to their relatively simple geometry and practical applicability. It is interesting that visible light can
be strongly confined in deep-subwavelength scale grating grooves with width and depth of a few
nanometers [34]. Incident waves are absorbed due to coupling in the metallic grating as a gap
surface plasmon (GSP) mode [1,18,33–45]. Light is subsequently trapped within the grating cavity,
thereby being absorbed due to metallic Ohmic loss. These types of structures have advantages in
that they are capable of perfect absorption, and they are robust in terms of their angular dependence.
For these reasons, many studies have focused on effective use of these structures in specific frequency
ranges. In addition to absorber applications, it was recently shown that reflection-type spatial light
modulation can be implemented by using appropriately designed subwavelength gratings and tunable
materials [14,15].

In this paper, we numerically studied the absorption properties of a subwavelength metallic
grating coated with a lossy dielectric layer. The roles of the grating and coated dielectric in overall
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absorbance are analyzed by regarding the subwavelength grating as a homogeneous semi-infinite
effective medium. Moreover, we show that subwavelength grating reflectors can be used to create
critically coupled perfect absorption conditions. Although these kinds of grating-related structures
have been actively studied, detailed numerical studies on the absorption characteristics of lossy
dielectric coated subwavelength metallic gratings have not been reported to the best of our knowledge.
The presented results can provide a useful platform for understanding and designing structures that
include reflective subwavelength gratings.

2. Absorption Characteristics of a Subwavelength Metallic Grating Covered with a Lossy
Dielectric Layer

A subwavelength metallic grating covered with a dielectric layer is illustrated in Figure 1a.
This structure contains stacked dielectric resonant cavity, metallic subwavelength grating, and metal
substrate layers. Since the subwavelength grating reflects light without generating higher-order
diffraction peaks, the grating and substrate can be equivalently replaced by a semi-infinite effective
medium substrate, as shown in Figure 1b. In this model, which is an asymmetric FP resonant cavity,
the reflection coefficient between the dielectric resonant cavity and effective medium substrate can
be obtained by numerically calculating the modulated amplitude and phase profiles created by the
grating. We note that the magnitude of the reflection coefficient is associated with absorption due to
localized GSP modes within the grating cavities.
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Figure 1. (a) A subwavelength metallic grating coated with a dielectric layer. The thicknesses of
the upper dielectric layer and grating are td and tg, respectively. (b) The optically equivalent model,
in which the grating and substrate are replaced by a semi-infinite effective medium.

Calculation of the reflection coefficient for the semi-infinite effective medium can be implemented
with the model shown in Figure 2a. The one-dimensional grating in this model is periodic along
the x-axis and is embedded in a background dielectric medium. The period and thickness of the
grating are labelled p and tg, respectively, and w is the width of the grating cavity. Aluminum (Al)
and indium tin oxide (ITO) are used as the metal and lossy dielectric, respectively. We note that lossy
dielectric materials other than ITO are also applicable, which may result in more desirable absorption.
The metal substrate is 100 nm thick, thus we can assume there is no transmission of visible light.
Transverse magnetic (TM) plane waves are incident with angle θ. Here, we only consider TM polarized
incident plane waves since this is necessary to generate GSP modes in the grating cavity at normal
incidence (θ = 0).

Due to the polarization selectivity of plasmonic resonance [46], one-dimensional plasmonic
gratings have unique applications, such as controlled thermal emitters and polarimetric
detectors [47–50]. To implement polarization-insensitivity, the structure should be extended to
two-dimensional configurations with four-fold rotational symmetry [18,37]. This is because both TM
and TE (transverse electric) polarized light can be coupled to GSP modes in grating cavities arranged
along two orthogonal directions. Polarization insensitivity based on geometric symmetry can be found
in other types of two-dimensional plasmonic structures, e.g., in patterned MIM absorbers [20,21].
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Figure 2. (a) Calculation geometry for determining reflection and phase shift characteristics in the
subwavelength Al grating covered with ITO. (b) Spectral reflectance and (c) phase shift of the metallic
grating for normally illuminated visible light (θ = 0) with respect to grating thicknesses ranging from
0 to 70 nm.

The simulated spectral reflectance and phase shift maps are shown in Figure 2b,c, where the
effect of the upper ITO layer is not considered. The optical response of the grating is calculated using
the transfer matrix method (TMM) [51]. In order to reduce the number of design variables, we set
the pitch and width of the grating to p = 160 nm and w = 40 nm throughout this work, respectively.
Although we only investigated the effect of grating thickness, it is notable that the resonance condition
in reflective gratings is also closely related to its period and width, as can be found in relevant previous
studies [14,18,37]. As shown in Figure 2b, reflection dips in the visible spectrum can be tuned by
selecting the proper grating thickness. Since we can ignore the transmitted components, these reflection
dips directly correspond to absorption peaks. Thus, the grating thickness can be chosen in accordance
with an absorption band of interest. It is expected that these absorption properties will be maintained
when the grating is coated with an ITO layer with finite thickness.

Absorption in the Al grating coated with ITO of finite thickness can be calculated using the
reflection results at the interface between the Al grating and ITO. Figure 3a shows the reflection
and transmission coefficients at two interfaces of the structure in which the grating and substrate
layers are equivalently replaced by the semi-infinite effective medium. Here, we take tg = 30 nm,
and the corresponding magnitude and phase profiles of the reflection coefficient from ITO to the
effective medium (reff) are shown in Figure 3c,d. Figure 3e–h show the magnitude and phase profiles
of the Fresnel reflection and transmission coefficients at the interface between air and the ITO layer.
Optical constants for ITO and Al used to calculate the coefficients are presented in Figure 3b and were
determined experimentally from ellipsometry measurements.

The analytical expression for reflectance from the structure shown in Figure 3a can be calculated
using [52].

R =

∣∣∣∣r12 +
t12t21reff exp(i2k0ñITOtd)

1 − r21reff exp(i2k0ñITOtd)

∣∣∣∣2 (1)

where k0 = 2π/λ is the free-space wavenumber, λ is the free-space wavelength, ñITO is the complex
refractive index of ITO, and reff, r12, r21, t12, and t21 are the coefficients presented in Figure 3c–h,
respectively. Figure 4a shows a spectral absorption map calculated using Equation (1) as a function of
the upper ITO layer thickness. The red-colored vertical dashed line indicates a wavelength of 590 nm,
at which point the grating is highly absorptive. The corresponding spectral absorption map without
the grating (w = 0) is presented in Figure 4b for comparison. We find from the two results that the
spectral absorbance shown in Figure 4a has both the absorption characteristics of the Al grating as well
as that of the ITO resonant cavity on the flat Al substrate. In particular, as can be seen from Figure 4a,
strong absorption in the Al grating around 590 nm is preserved, albeit there are slight shifts in the
resonance frequency due to the effect of the finitely thick ITO layer. Figure 4c,d show the absorption
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profiles of the two structures at td = 270 nm, as denoted by the dashed lines in Figure 4a,b. There are
absorption peaks near 470 nm in both cases, while the absorption peak at 585 nm can only be found
when the grating exists. It is clear from these results that the absorption peak at 470 nm primarily stems
from the optical losses in the coated ITO layer. On the other hand, most of the light with wavelength
near 585 nm is absorbed by the subwavelength grating.Appl. Sci. 2018, 8, x FOR PEER REVIEW  4 of 10 
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Figure 3. (a) Diagram showing the reflection and transmission coefficients for calculation of the optical
response of the metallic grating coated with a lossy dielectric using the numerical effective medium
approach. (b) Experimentally measured optical constants of ITO and Al. (c) Magnitude and (d) phase
profiles of the reflection coefficient at the interface between ITO and effective medium. (e) Magnitude
and (f) phase profiles of the Fresnel reflection coefficients, and (g) magnitude and (h) phase profiles of
the Fresnel transmission coefficients at the interface between air and ITO. All coefficients are calculated
for normally incident light at visible frequencies.

Visualizing field distributions in the actual structure provides an intuitive confirmation of the
relative contributions of the coated lossy dielectric layer and subwavelength grating. Figure 5 shows
the simulated distributions of the magnetic field with respect to normally incident light with two
different free-space wavelengths of 470 and 585 nm. In Figure 5a, for incident light with 470 nm
wavelength, the magnetic field is primarily confined in the coated ITO layer and at the upper interface
of the grating. On the contrary, as shown in Figure 5b, illumination with 585 nm light results in strong
localization within the subwavelength grating cavity. It is notable that nearly perfect absorption of
TM polarized light can occur at a specific wavelength due to strong confinement of the GSP mode in
the grating, and the target wavelength can be tuned at will by tailoring the thickness of the grating
cavity (tg).

So far, normally incident light has been assumed when studying the basic absorption
characteristics of the structure. However, absorption depending on the illumination angle, and the
angular characteristic of a specific absorption band relies on the corresponding dominant absorption
mechanism. Hence, we can expect that absorption bands can show different angular dependencies.
Figure 6 shows the simulated spectral absorption map when the incident angle θ varies from 0 to 80◦.
The calculation has been conducted by using the TMM. The simulated structure is the same as that



Appl. Sci. 2018, 8, 1445 5 of 10

shown in Figure 5. The absorption band is centered at 470 nm, which is primarily caused by optical
loss within the coated lossy dielectric, and the band starts to shift slightly from its original position as
the angle of incidence increases beyond 20◦. For incident angles greater than 40◦, this absorption band
is overlaid by new absorption modes that emerge for incident angles greater than 20◦. These modes
redshift as θ increases, which are denoted by the dashed oval and green-colored arrows in Figure 6a,b,
respectively. On the other hand, the absorption band centered at 585 nm maintains its profile at
normal incidence up to approximately 60◦. These results suggest that light absorption based on strong
localization of GSPs in the grating exhibits a wider acceptance angle.Appl. Sci. 2018, 8, x FOR PEER REVIEW  5 of 10 
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Figure 5. Distributions of the magnetic field within the structure when (a) 470 and (b) 585 nm transverse
magnetic (TM) polarized plane waves illuminate the structure at normal incidence. The structural
parameters are p = 160 nm, w = 40 nm, tg = 30 nm, and td = 270 nm. The calculation domain includes
two unit cell elements, and the color scale is properly normalized to compare the field magnitudes.
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From an experimental perspective, fabrication of the investigated structures would demand
sophisticated techniques. The subwavelength grooves on the metal surfaces can be patterned by
electron-beam lithography or, alternatively, by exploiting the spacer patterning technique, which is
compatible with CMOS (complementary metal-oxide-semiconductor) processes. The ITO coating,
including filling of ITO in very tiny spaces with a size of several tens of nanometers, would be possible
via atomic layer deposition. Deposition should be followed by planarization of the top surface by
chemical mechanical polishing.

3. Conditions for Complete Optical Absorption by Critical Coupling

Examining the critical coupling behavior can be useful for obtaining perfect absorption at a
desired frequency. Perfect absorption occurs when the overall reflectance of the structure is zero,
which can be derived from the Equation (1) as

r12 = reff(r12r21 − t12t21) exp(i2k0ñITOtd) (2)

To find the conditions satisfying the Equation (2), we define the function D(td,λ) as follows:

D(td, λ) = (reff/r12)(r12r21 − t12t21) exp(i2k0ñITOtd). (3)

In Equation (3), the critical coupling condition is satisfied for td and λ that forces the magnitude
and phase of D(td,λ) to be 1 and the integer multiples of 2π, respectively. Figure 7a,b show the
magnitude and phase plots of D(td,λ). In Figure 7a, the white-colored and red-colored dashed lines
indicate where the magnitude and phase of D(td,λ) are 1 and 2πm(m being an integer), respectively.
The points where two dashed lines cross correspond to the unity absorption. These points are
distributed near 590 nm, at which the magnitude of the reflection coefficient between the ITO and
grating (reff) is minimized. For comparison, the magnitude and phase of D0(td,λ) for a flat Al reflector
(w = 0) are presented in Figure 7c,d, respectively. Here, D0(td,λ) can be achieved by replacing reff as
r0 = (ñITO − ñAl)/(ñITO + ñAl) in Equation (3), where ñAl represents the complex refractive index of
Al. As can be seen from the plots, perfect absorption is unattainable in our calculation range without
the subwavelength grating reflector since the unity magnitude condition on D0(td,λ) cannot be fulfilled.
By exploiting this tendency, we can determine the structural parameters of visible light absorbers with
desired absorption profiles.
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case of a flat Al reflector without the grating structure (w = 0). In (a,c), white- and red-colored dashed
lines indicate where the magnitude is 1 and the phase is 2πm (m is an integer), respectively.

4. Conclusions

We numerically investigated light absorption in metallic subwavelength gratings covered
with a lossy dielectric medium. TMM was used to simulate the structure, where ITO and Al
were chosen for a lossy dielectric and metal, respectively. The results show that subwavelength
grating reflectors can be considered as semi-infinite homogeneous effective media whose optical
responses can be obtained through numerical calculation. Based on these results, light absorption in
dielectric-coated subwavelength gratings was calculated using an analytic expression for the reflectance
of an asymmetric FP resonant cavity. Comparative numerical simulations allow us to determine how
the coated dielectric film and subwavelength grating contribute to overall absorption. In addition,
perfect absorption conditions were studied, revealing that the subwavelength grating structure can
support critical coupling by acting as a dispersive absorbing substrate, which can be artificially
engineered. We are convinced that our numerical study will provide a useful reference for designing
subwavelength grating-based optical devices.
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