
applied  
sciences

Article

Effects of Crop Leaf Angle on LAI-Sensitive
Narrow-Band Vegetation Indices Derived
from Imaging Spectroscopy

Xiaochen Zou 1, Iina Haikarainen 2, Iikka P. Haikarainen 3, Pirjo Mäkelä 2 ID , Matti Mõttus 4 ID

and Petri Pellikka 1,5,*
1 School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and

Technology, Nanjing 210044, China; zouxiaochen902@126.com
2 Department of Agricultural Sciences, University of Helsinki, FI-00014 Helsinki, Finland;

iina.haikarainen@gmail.com (I.H.); pirjo.makela@helsinki.fi (P.M.)
3 Institute for Atmospheric and Earth System Research, University of Helsinki, FI-00014 Helsinki, Finland;

Iikka.haikarainen@helsinki.fi
4 VTT Technical Research Centre of Finland, FI-02044 VTT Espoo, Finland; matti.mottus@gmail.com
5 Earth Change Observation Laboratory, Department of Geosciences and Geography, University of Helsinki,

FI-00014 Helsinki, Finland
* Correspondence: petri.pellikka@helsinki.fi; Tel.: +358-50-4154701

Received: 6 July 2018; Accepted: 20 August 2018; Published: 22 August 2018
����������
�������

Abstract: Leaf area index (LAI) is an important biophysical variable for understanding the radiation
use efficiency of field crops and their potential yield. On a large scale, LAI can be estimated with
the help of imaging spectroscopy. However, recent studies have revealed that the leaf angle greatly
affects the spectral reflectance of the canopy and hence imaging spectroscopy data. To investigate
the effects of the leaf angle on LAI-sensitive narrowband vegetation indices, we used both empirical
measurements from field crops and model-simulated data generated by the PROSAIL canopy
reflectance model. We found the relationship between vegetation indices and LAI to be notably
affected, especially when the leaf mean tilt angle (MTA) exceeded 70 degrees. Of the indices used
in the study, the modified soil-adjusted vegetation index (MSAVI) was most strongly affected by
leaf angles, while the blue normalized difference vegetation index (BNDVI), the green normalized
difference vegetation index (GNDVI), the modified simple ratio using the wavelength of 705 nm
(MSR705), the normalized difference vegetation index (NDVI), and the soil-adjusted vegetation index
(SAVI) were only affected for sparse canopies (LAI < 3) and MTA exceeding 60◦. Generally, the effect
of MTA on the vegetation indices increased as a function of decreasing LAI. The leaf chlorophyll
content did not affect the relationship between BNDVI, MSAVI, NDVI, and LAI, while the green
atmospherically resistant index (GARI), GNDVI, and MSR705 were the most strongly affected indices.
While the relationship between SR and LAI was somewhat affected by both MTA and the leaf
chlorophyll content, the simple ratio (SR) displayed only slight saturation with LAI, regardless of
MTA and the chlorophyll content. The best index found in the study for LAI estimation was BNDVI,
although it performed robustly only for LAI > 3 and showed considerable nonlinearity. Thus, none
of the studied indices were well suited for across-species LAI estimation: information on the leaf
angle would be required for remote LAI measurement, especially at low LAI values. Nevertheless,
narrowband indices can be used to monitor the LAI of crops with a constant leaf angle distribution.
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1. Introduction

Leaf area index (LAI) is an important biophysical variable that indicates the radiation absorption
and photosynthetic capacity of a crop canopy [1,2]. LAI is defined as one half of the total green leaf
area per unit of horizontal ground area [3]. It is a unitless measure, although units of m2/m2 are
often quoted. The typical LAI values of field crops depend on the species and cultivar, but LAI also
varies within species depending on the planting density and the phenological stage of the plant [4–6].
The determination of LAI, or its temporal course, allows an understanding of ongoing biophysical
processes and the prediction of plant growth and, ultimately, crop productivity. Unfortunately, in situ
measurement of LAI is time consuming and cannot be operationally applied to large areas.

Remote sensing techniques enable crop LAI to be estimated over large areas. In particular,
imagining spectroscopy (IS) methods have been developed for agricultural applications [7]. IS divides
the optical spectrum into hundreds of contiguous narrow wavebands, allowing a detailed study
of vegetation absorption and reflectance characteristics. In the visible wavelengths (400–700 nm),
vegetation exhibits strong absorption with reflectance minima in the blue (450 nm) and red (650 nm),
and strong reflectance in the near infrared (NIR, 700–1100 nm) spectral region. The sharp increase in
vegetation reflectance between red and NIR (690–730 nm) is known as the red edge [8]. Vegetation
reflectance in the red edge is strongly related to the chlorophyll content [9]. Additionally, many spectral
indices based on this narrow spectral interval have been successful in estimating the LAI of crops [10].

Vegetation indices (VIs), simple functions of reflectance values in two or more spectral
bands [11–14], are designed to amplify the effect of specific vegetation characteristics while minimizing
those of the soil background and solar angle [15]. VIs are a common approach to estimate LAI from
remote sensing data by establishing a statistical relationship between field-measured LAI and a VI
for a specific time and place. A large number of VIs have been developed, such as the normalized
difference vegetation index (NDVI, [16]), the soil adjusted vegetation index (SAVI, [17]), the modified
soil-adjusted vegetation index (MSAVI, [18]), the simple ratio vegetation index (SR, [19]) and the
green atmospherically resistant vegetation index (GARI, [20]). Several new indices have been derived
from the classic NDVI, e.g., the blue normalized difference vegetation index (BNDVI, [21]) and the
green normalized difference vegetation index (GNDVI, [22]). Further VIs have been derived from SR,
e.g., the modified simple ratio index (MSR, [23]).

The reflectance signal of a canopy is formed by numerous factors, such as the number of leaves,
their biochemical composition, the canopy structure at a specific growth stage, the illumination
conditions (the state of the atmosphere and solar angle), and background (soil) reflectance. Hence,
the relationship between any single variable, such as LAI, and canopy reflectance is not unique.
Specifically, in addition to LAI, a key factor determining the spectral reflectance of a horizontally
extensive crop canopy is the leaf tilt angle distribution (LAD) [11–14]. To our knowledge, only a few
studies have examined the impact of LAD on LAI-sensitive narrow-band indices combining empirical
measurements and model simulations. The main reason for this is a lack of field measurements of leaf
angles. Recently, a photographic LAD method was applied to field crops [11], which provided a robust
and low-cost approach for in situ LAD estimation.

The leaf angle distribution for a given crop development stage is often considered to be a
characteristic of the species or variety [4,11,24,25]. Under this assumption, a small effect of the leaf
angle on an LAI-sensitive VI indicates that the index can potentially be used across many species and
development stages. However, LAI-sensitive indices may also be affected by other crop parameters,
most notably the concentration of chlorophyll, the pigment that is accountable for most absorption
in the visible part of the spectrum. Chlorophyll levels in field crops are known to vary between
species and depend on the growth conditions, e.g., fertilization rates [26,27]. Hence, we also included
information on the crop chlorophyll content in our studies to identify truly robust VIs, regardless of
the growth conditions.

The aim of this study was to fill this gap in current knowledge and to quantify the influence
of crop leaf angle effects on LAI-sensitive narrow-band indices across a realistic range of canopy
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biochemical compositions. We used in situ data on the leaf angle, LAI, and leaf chlorophyll content
measured for 162 plots with six crop species. Airborne IS was used to calculate a number of popular
LAI-sensitive indices taken from the scientific literature. Additionally, we used a physically based
vegetation reflectance model to generalize our findings to crop parameter combinations not present in
the field data.

2. Materials and Methods

2.1. Field Plots

We used field data from 162 plots with six different crop species: oat (Avena sativa L.), turnip rape
(Brassica rapa L. ssp. oleifera (DC.) Metzg.), barley (Hordeum vulgare L.), lupin (Lupinus angustifolius L.),
wheat (Triticum aestivum L. emend Thell), and faba bean (Vicia faba L.) (Figure 1). The plots were located
at the Patoniitty and Porvoontie agricultural experimental sites on the Viikki campus of the University
of Helsinki, Finland (60.22◦ N, 25.02◦ E, Table 1, Figure 2). The plots varied in soil type, planting
density and fertilization (Table 1).
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Table 1. Field plots measured in the study. Soil types: fertile luvic stagnosol and sandy clay loam (1),
haplic gleysols and silty clay loam (2), sulfic cryaquepts (3), fertile luvic stagnosol and sandy medium
clay loam (4) (WRB, 2007).

Species Cultivars No. of Plots Soil Type

Oat ‘Ivory’, ‘Mirella’ 4 3
Turnip rape ‘Apollo’ 4 3

Barley ‘Streif’, ‘Chill’, ‘Fairytale’ 10 3, 4
Lupin ‘HaagsBlaue’ 4 3
Wheat ‘Amaretto’ 99 1, 2, 3

Faba bean ‘Kontu’ 40 1, 3
Total 162

We applied the species-specific leaf tilt angle distributions determined at the same experimental
site by Zou et al. [11]. They measured the leaf tilt angle, defined as the angle between the leaf surface
normal and the zenith, from leveled photographs taken approximately 1 m from the edge of the plots
growing the crops. Leaves orthogonal to the camera viewing direction (i.e., with their normals inside
the image plane) appeared in the photos as narrow lines. Zou et al. [11] determined the directions
of these leaves (lines in photographs), thus quantifying their tilt angle distribution. Assuming that
leaves were distributed uniformly in the azimuth direction, the tilt angle distribution was taken as
representative of the whole canopy and the species in general. Finally, the leaf angle distribution was
used to calculate leaf mean tilt angle (MTA).

We used the leaf chlorophyll a and b content (Cab) determined with a SPAD meter (SPAD-502,
Minolta, Japan) on 19–22 July 2011 and reported by Zou et al. [13]. After a single leaf was inserted into
the SPAD meter, the instrument determined its transmittance of red light quantified as a ‘SPAD value’.
Zou et al. [13] converted these SPAD measurements to absolute chlorophyll content using a general
relationship available in the literature [28]

Cab (µg cm−2) = 0.0893 (10SPAD0.265
). (1)

Altogether, 15−30 SPAD readings were converted (Equation (1)) and averaged for each plot [13].
The leaf area index data reported by Zou et al. [11] were applied in this study. Zou et al. [11] used

measurements with a SunScan SSI ceptometer bar (Delta-T Devices, Cambridge, UK) on 20–21 July 2011
from the study plots. The ceptometer bar determined the canopy-penetrated photosynthetically
active radiation under a clear sky using 64 miniature sensors. Within the instrument hardware,
the readings were averaged and, using data from a separate top-of-canopy sensor, converted to the
canopy transmittance of the direct solar beam. Zou et al. [11] used the standard method for converting
canopy transmittance to LAI (based on the Beer–Lambert law of radiation extinction) with extinction
coefficients determined from the leaf angle measurements described above. The mean values of LAI,
MTA, and Cab for the plots used in this study are presented in Table 1, and further details have been
reported by Zou and Mõttus [12].

We used the soil spectral reflectance measurements by Zou and Mõttus [12]. They determined
the mean soil spectral reflectance from harvested plots using a handheld Analytical Spectral Devices
spectrometer (ASD Inc., Boulder, CO, USA) and a white Spectralon reflectance panel under cloudless
skies on 7 October 2011. Zou and Mõttus [12] corrected the measured reflectance for differences in the
solar angle between the measurement times in July and October.

2.2. Remote Sensing Data

Airborne imaging spectroscopy data were acquired on 25 July 2011 using an AISA Eagle II push
broom scanner (Spectral Imaging Ltd., Oulu, Finland) with an instantaneous field of view of 0.037◦ and
a field of view of 37.7◦ [29]. The sensor produced data in 64 spectral channels with a full width at half
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maximum of 8.0–10.5 nm in the spectral range of 400–1000 nm. Data collection was performed from a
height of 600 m between 09:36 a.m. and 10:00 a.m. local time, producing a spatial resolution of 0.4 m.
The average solar zenith angle was 49.4◦ and the flight line direction was set to match the solar azimuth
to minimize the influence of scattering anisotropy [30]. The spectral imagery was radiometrically
calibrated and converted to top-of-canopy hemispherical-directional reflectance factors, as described
by Zou et al. [11]. The spectral reflectance factors for each field plot were extracted from the imagery.

2.3. Model Simulations

Simulated canopy reflectance data were generated with the PROSAIL model [24], composed of the
PROSPECT-5 [31,32] leaf optical model and the SAILH [33] canopy reflectance model. PROSPECT-5
simulates the hemispherical reflectance and leaf level transmittance by using Cab, the leaf carotenoid
content, leaf dry matter content, leaf water content, leaf brown pigment content, and the leaf mesophyll
structure parameter. SAILH additionally requires LAI, MTA, the solar zenith angle, sensor viewing
angle, azimuth angle, the fraction of diffuse solar illumination, soil reflectance, and the hot-spot size
parameter. We ran PROSAIL 100,000 times with input values drawn from the uniform distributions
given by values of field measurements and the literature. Based on field measurements, we varied
Cab between 25 and 100 µg cm−2, LAI between 1 and 5, MTA between 15◦ and 70◦, and the leaf
water content between 0.001 and 0.020 cm. The leaf mesophyll structure parameter was fixed to
1.55, the average value of various crop species [34], and the leaf dry matter content to 0.005 g cm−2,
a value suitable for the six studied species [35–38]. The leaf carotenoid content was linked to Cab
with the ratio 1:5 based on LOPEX93 data [39]. The brown pigment content was set to 0, assuming
that the leaves were green during the measurement. The fraction of diffuse radiation was calculated
with the 6S atmosphere radiative transfer model [40] using the input data derived from the image
itself and the nearby sun photometer measurements. The hot-spot size parameter had a negligible
effect on the simulation due to the observation geometry (sufficiently far from backscatter, or the hot
spot) and was set to a reasonable value for a vegetation canopy (0.01). The view and illumination
geometry parameters in the model were set to coincide with airborne measurement conditions (solar
zenith angle 49.4◦, sensor zenith angle 9◦, and azimuth angle 90◦). The soil reflectance was taken
from measurements. A detailed description of the PROSAIL inputs is given by Zou and Mõttus [12].
The PROSAIL spectral resolution was 1 nm, and it was resampled to correspond to the wavelengths
measured by AISA using a Gaussian spectral response function.

2.4. Vegetation Indices

Eight LAI-sensitive narrowband VIs (Table 2) were calculated from the spectral reflectance data
collected with the airborne sensor and the simulated dataset. The indices were calculated using AISA
bands and model-simulated AISA bands that were closest to the original wavelengths.

Table 2. Narrow-band vegetation indices used in the study.

Vegetation Index Equation Central Wavelength
Used in This Study Reference

BNDVI (R800 − R450)/(R800 + R450) R805, R452 [21]
GARI R800/R530 − 1 R805, R533 [20]

GNDVI (R800 − R530)/(R800 + R530) R805, R533 [22]

MSAVI 0.5
[

2R800 + 1−
√
(2R800 + 1)2 − 8(R800 − R680)

]
R805, R682 [18]

MSR705 (R750/R705 − 1)/
√

R750/R705 + 1 R748, R701 [3]
NDVI (R800 − R680)/(R800 + R680) R805, R682 [16]
SAVI (R800 − R680)(1 + 0.5)/(R800 + R680 + 0.5) R805, R682 [17]

SR R800/R680 R805, R682 [19]
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2.5. Statistical Methods and Data Analysis

First, we examined the internal correlations within the field-measured crop parameter data
to decide upon the potential limitations of the analyses. Next, we calculated the Kendall’s rank
correlation coefficient (τk) between LAI and the selected VIs from both simulated and field-measured
data. Kendall’s τk is a non-parametric measure of the strength of a monotonic relationship between
paired data. The value of τk lies between −1 and 1, with τk = −1 indicating a perfect negative
correlation between the paired data, τk = 0 the lack of a relationship and τk = 1 a perfect positive
correlation. We chose τk instead of the more standard Pearson’s correlation coefficient R (and the
related coefficient of determination R2) because the field data did not satisfy the assumption of
normality. Neither did we have to assume a linear relationship between the vegetation parameters and
VIs. Despite similar ranges, the numerical value of τk for a relationship between any two variables is
generally different from R.

To determine how MTA affects the performance of the indices in estimating LAI, we fixed Cab
in the simulated data by extracting simulations with Cab between 45–50 µg cm−2. Next, we divided
the simulations into groups based on MTA (15◦, 30◦, 50◦, and 70◦) and plotted the VIs calculated
from the data against LAI. Similarly, we fixed MTA at 57◦ and varied Cab between three levels (25–30,
55–60, and 95–100 µg cm−2) to estimate the effect of Cab on the VI–LAI relationship. Due to the
imbalance in the measured actual species-specific leaf angles caused by an uneven distribution of
samples between species, we could not analyze the sensitivity of the VI–LAI relationship to MTA in
the field-measured dataset.

3. Results

The average reflectances of all measured species were typical vegetation reflectance spectra, but
still dissimilar when examined in detail (Figure 3). For example, turnip rape had the largest reflectance
across the measured spectral range. Wheat had the lowest reflectance in NIR, but the second-highest in
red and average in green. The field-measured mean LAI for each species was between 3 and 4 (Table 3),
while individual plot-level measurements varied between 1 and 5 (Figure 4a). Cab varied between 25
and 95 µg cm−2 (Table 3, Figure 4a,b). Oat had the highest Cab (93 µg cm−2) and turnip rape the lowest
value (32 µg cm−2). There was a significant (p < 0.01) relationship between the field-measured LAI
and Cab, with τk = 0.35 (Figure 4a), and a weaker (τk = 0.19), yet still significant, correlation between
the photographic MTA and Cab (Figure 4b).
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Table 3. Key characteristics of field plots measured in the study. LAI: leaf area index, MTA: mean tilt
angle, Cab: chlorophyll a and b content.

Species Average LAI MTA (◦) Average Cab (µg cm−2)

Oat 3.91 58 93
Turnip rape 3.58 32 33

Barley 3.74 46 56
Lupin 3.46 18 61
Wheat 2.96 64 53

Faba bean 3.16 27 50
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Figure 4. Correlation between field-measured LAI, the chlorophyll a and b content (Cab), and the leaf
mean tilt angle (MTA): (a) field-measured LAI and Cab; (b) photographic MTA and Cab.

All used VIs were correlated with LAI in both the field-measured and model-simulated data
(Table 4), with τk between 0.34 and 0.64. For the field-measured data (Figure 5), the rank correlation
coefficients were all above 0.4, except for MSAVI, MSR705, and SAVI (τk = 0.34–0.36), and with GARI
and GNDVI performing best among the tested VIs (τk = 0.50). In model simulations (Figure 6), GARI
and GNDVI produced the lowest τk of 0.38, with BNDVI being the most strongly correlated (τk = 0.64).
All the relationships for both empirical analysis and model simulations were significant (p < 0.01).

Table 4. Kendall’s rank correlation coefficient (τk) between vegetation indices and LAI for model
simulations and field-measured data. All correlations were statistically significant (p < 0.01).

Vegetation Index Model Simulation Field Measurements

BNDVI 0.64 0.48
GARI 0.38 0.50

GNDVI 0.38 0.50
MSAVI 0.38 0.34
MSR705 0.39 0.36
NDVI 0.53 0.41
SAVI 0.38 0.34

SR 0.53 0.41



Appl. Sci. 2018, 8, 1435 8 of 17

Appl. Sci. 2018, 8, x FOR PEER REVIEW  7 of 17 

  
(a) (b) 

Figure 4. Correlation between field-measured LAI, the chlorophyll a and b content (Cab), and the leaf 
mean tilt angle (MTA): (a) field-measured LAI and Cab; (b) photographic MTA and Cab. 

All used VIs were correlated with LAI in both the field-measured and model-simulated data 
(Table 4), with τk between 0.34 and 0.64. For the field-measured data (Figure 5), the rank correlation 
coefficients were all above 0.4, except for MSAVI, MSR705, and SAVI (τk = 0.34–0.36), and with GARI 
and GNDVI performing best among the tested VIs (τk = 0.50). In model simulations (Figure 6), GARI 
and GNDVI produced the lowest τk of 0.38, with BNDVI being the most strongly correlated (τk = 0.64). 
All the relationships for both empirical analysis and model simulations were significant (p < 0.01). 

  
(a) (b) 

  
(c) (d) 

0

1

2

3

4

5

6

0 20 40 60 80 100

L
A
I

Cab (μ cm-2)

Faba bean Narrow-leafed lupin
Turnip rape Oat
Barley Wheat

τk=0.35, p<0.01
10

20

30

40

50

60

70

0 20 40 60 80 100

M
T
A
(°
)

Cab (μ cm-2)

Faba bean Narrow-leafed lupin
Turnip rape Oat
Barley Wheat

τk=0.19, p<0.01

0.0 

1.0 

2.0 

3.0 

4.0 

5.0 

6.0 

0.60 0.70 0.80 0.90 1.00

L
A

I

BNDVI

a

τk=0.48, p<0.01
0.0 

1.0 

2.0 

3.0 

4.0 

5.0 

6.0 

0.00 5.00 10.00 15.00

L
A

I

GARI

b

τk=0.50, p<0.01

0.0 

1.0 

2.0 

3.0 

4.0 

5.0 

6.0 

0.50 0.60 0.70 0.80 0.90

L
A

I

GNDVI

c

τk=0.50, p<0.01
0.0 

1.0 

2.0 

3.0 

4.0 

5.0 

6.0 

1.00 3.00 5.00 7.00 9.00

L
A

I

MSAVI

d

τk=0.34, p<0.01

Appl. Sci. 2018, 8, x FOR PEER REVIEW  8 of 17 

  
(e) (f) 

(g) (h) 

Figure 5. Correlation between LAI and the selected vegetation indices from imaging spectroscopy 
data: (a) BNDVI, (b) GARI, (c) GNDVI, (d) MSAVI, (e) MSR705, (f) NDVI, (g) SAVI, (h) SR. Kendall’s 
correlation coefficient τk and the significance level p are given in each plot. 

  
(a) (b) 

0.0 

1.0 

2.0 

3.0 

4.0 

5.0 

6.0 

0.20 0.40 0.60 0.80 1.00 1.20

L
A

I

MSR705

e

τk=0.36, p<0.01
0.0 

1.0 

2.0 

3.0 

4.0 

5.0 

6.0 

0.20 0.40 0.60 0.80 1.00

L
A

I

NDVI

f

τk=0.41, p<0.01

0.0 

1.0 

2.0 

3.0 

4.0 

5.0 

6.0 

0.40 0.60 0.80 1.00 1.20 1.40

L
A

I

SAVI

g

τk=0.34, p<0.01
0.0 

1.0 

2.0 

3.0 

4.0 

5.0 

6.0 

0.0 5.0 10.0 15.0 20.0 25.0 

L
A

I

SR

h

τk=0.41, p<0.01

Figure 5. Correlation between LAI and the selected vegetation indices from imaging spectroscopy
data: (a) BNDVI, (b) GARI, (c) GNDVI, (d) MSAVI, (e) MSR705, (f) NDVI, (g) SAVI, (h) SR. Kendall’s
correlation coefficient τk and the significance level p are given in each plot.
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The correlations between VIs and LAI were improved when MTA was fixed, with τk > 0.7 at
all four MTA levels (Table 5). The relationships between VIs and LAI were most notably affected
at MTA > 60◦; at a lower MTA, the effect of leaf angle was less evident (Figure 7), especially for
BNDVI, GARI, GNDVI, NDVI, and MSR705 at LAI > 3 (Figure 7a,f,g). The effect of MTA on the
VI–LAI relationship increased as a function of decreasing LAI for BNDVI, GNDVI, MSR705, NDVI,
and SAVI; for the remaining indices, the trend was unclear. Across the whole studied LAI variation
range, the VI–LAI relationships for MSAVI and SR were most strongly affected by MTA, as the point
clouds corresponding to the distinct MTA levels are clearly separable in Figure 7d,h. On the other
hand, SR was the least saturating VI with LAI, and the relationships were nearly linear for the whole
LAI range at MTA 15–50◦ (Figure 7h).

The leaf chlorophyll content only weakly affected the relationship between BNDVI, MSAVI, NDVI,
SAVI, and LAI (Figure 8a,d,f,g), as the point clouds corresponding to the different Cab values overlap
in the figure. For the other indices (GARI, GNDVI, MSR705, and, to a smaller extent, SR; Figure 8b,c,e,h),
relationships with LAI were clearly affected by Cab, with the influence of Cab generally increasing as
a function of LAI.
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Figure 7. Correlation between vegetation indices and the leaf area index (LAI) for a fixed Cab (45–50
µg cm−2) and different leaf mean tilt angles (MTA = 15, 30, 50, 70◦): (a) BNDVI, (b) GARI, (c) GNDVI,
(d) MSAVI, (e) MSR705, (f) NDVI, (g) SAVI, (h) SR. Canopy reflectance simulated with PROSAIL.

Table 5. Kendall’s rank correlation coefficient (τk) between vegetation indices and LAI in
PROSAIL-simulated data for different MTA values at a fixed Cab (45–50 µg cm−2). All correlations
were statistically significant (p < 0.01).

Vegetation Index MTA = 15◦ MTA = 30◦ MTA = 50◦ MTA = 70◦

BNDVI 0.98 0.99 0.99 0.95
GARI 0.72 0.80 0.88 0.93

GNDVI 0.72 0.80 0.88 0.93
MSAVI 0.98 0.98 0.98 0.94
MSR705 0.73 0.83 0.91 0.94
NDVI 0.93 0.97 0.98 0.95
SAVI 0.93 0.97 0.98 0.95

SR 0.95 0.98 0.99 0.95
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Figure 8. Correlation between vegetation indices and the leaf area index (LAI) for a fixed MTA
of 57◦ and different leaf chlorophyll contents (Cab = 25–30, 55–60, 95–100 µg cm−2): (a) BNDVI,
(b) GARI, (c) GNDVI, (d) MSAVI, (e) MSR705, (f) NDVI, (g) SAVI, (h) SR. Canopy reflectance simulated
with PROSAIL.

4. Discussion

The field data used in this analysis had some inherent natural limitations. For example, the leaf
chlorophyll content (Cab) and green LAI are often closely related [41], which was also the case for
the field data used in the study (Figure 4). As the application of nitrogen increases the chlorophyll
content [42], the level of fertilization has an impact on the performance of LAI-sensitive VIs if these
also depend on Cab. Furthermore, a similar indirect influence of Cab on the studied VIs is possible
if the Cab values are dominated by between-species differences. In addition to natural correlations,
the experimental design of the study was not fully driven by the objectives of this research. We used
the field data available from numerous crop management experiments carried out in the area covered
by airborne IS data. We accounted for the imbalanced nature of the field data as much as possible and
used crop reflectance simulations of uniformly distributed input parameters for generalization.

Our results, both computer simulated and those retrieved from field data, are generally consistent
with the numerous published findings, which state that the selected VIs can indeed be utilized for
measuring LAI with remote sensing (e.g., [23]): τk was between 0.34 and 0.64 for all the selected VIs.
However, the relationship was nonlinear [20,43], and some indices (e.g., NDVI) saturated at high LAI
values [44].

In both field-measured and simulated data, correlation coefficients between VIs and LAI were low
(τk was between 0.34 and 0.64), even though the selected indices were clearly sensitive to LAI. This is in
agreement with other studies [26,45,46], which have found a wide range of coefficients of determination
(0.05 < R2 < 0.66) between VIs and LAI. It is known that differences between crop species affect the
goodness of fit more than the vegetation indices used [47]. Evidently, the coefficients were affected by
the large volume of simulated data and the range of species with different characteristics in the true data.
Both datasets included sufficient structural and biochemical variation to blur the relationships between
LAI and VIs. Estimating the LAI of heterogeneous vegetated areas (with subpixel heterogeneity) from
remote sensing data is hence not as reliable as estimation of the LAI of homogeneous fields. This is
demonstrated by Figure 7 and Table 5, where the correlations improved and correlation coefficients
increased from the range of 0.38–0.64 to 0.72–0.93 when a structural parameter, MTA, was fixed. Other
studies have also shown the relationship between VIs and LAI to vary across vegetation types (canopy
architecture) and the correlations to improve when analyzing the relationship between VIs and LAI for
each vegetation type separately [48,49]. The leaf angle distribution, and thus MTA, affects the spectral
properties of a canopy [50] to a degree that confuses LAI estimation algorithms based on simple VIs [50].
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Based on its performance in both field-measured and model-simulated data, the best index was
BNDVI. It was only slightly sensitive to MTA, especially for low LAI values (Figure 7a), and insensitive
to Cab (Figure 8a). Two indices (GARI, GNDVI) (τk = 0.50) performed slightly better than BNDVI
(τk = 0.48) in the field study and were insensitive to MTA (Figure 7b,c). Unfortunately, both indices
were sensitive to Cab (Figure 8b,c). For example, at a medium LAI (LAI = 3), when Cab increased from
low levels (25–30 µg cm−2) to high levels (95–100 µg cm−2), the indices increase by approximately
50% of their whole range of variation (Figure 8b,c), and hence did not show a strong correlation with
LAI in the model-simulated data (τk = 0.38). On the other hand, BNDVI (similarly to GNDVI) clearly
saturated with LAI (Figure 7a,c), while GARI was more linear with LAI (Figure 7b). The slope of the
GARI–LAI relationship, however, depended on Cab (Figure 8b). The slope varied from 0.94 to 0.19
when Cab increased from low (25–30 µg cm−2) to high levels (95–100 µg cm−2). SR displayed only
slight saturation with LAI, regardless of MTA and the chlorophyll content. This index was largely
insensitive to Cab (Figure 8h) and showed similar slopes (approximately 0.15) when plotted against
LAI for MTA < 60◦. Unfortunately, MTA created varying offsets in the LAI–SR relationship (Figure 7h).
As a result, SR showed only an average performance, with τk = 0.41 and 0.53 in the field-measured
and model-simulated datasets, respectively. Nevertheless, it could be the index of choice for mapping
areas with limited variations in structure, e.g., covered by the same crop species. Indeed, together with
MSAVI, SR was among the indices independent of Cab and producing the most linear relationships
with LAI (Figure 8). For reasons unknown to us, MSAVI and SAVI were the worst performers with
field-measured data (Table 4) and hence cannot be recommended based on this study.

LAI and Cab affect canopy reflectance in a similar manner [51] in visible and near-infrared
spectral regions, explaining the better performance of VIs in LAI estimation under high Cab. Although
the relationships between VIs and LAIs may be tight for a limited set of species under a controlled
environment, MTA, as well as other structural parameters, causes scatter in these relationships at
larger scales and thus reduces the LAI retrieval capacity of the VIs. This may make the design of
a universal optimal spectral index for all crops and growth conditions impossible [52]. LAI can
still be rapidly and reliably estimated using VIs in breeding projects with limited within-sample
structural variation in which early vigor is of interest. LAI estimation can be used to select the
populations with the greatest leaf area as the most vigorous ones, as early vigor gives an advantage
over weeds [53,54]. VI-based LAI estimation could also be potentially used in optimizing crop
production and the development of best crop management practices, such as the timing of application
of water, fertilizers, and pesticides [55–57].

5. Conclusions

Based on empirical measurements and model simulations, the effects of the leaf angle and
chlorophyll content on LAI-sensitive narrow-band indices were examined. Kendall’s correlation
coefficients between LAI and the vegetation indices were between 0.34 and 0.64 for all the tested
indices. The accuracy of the indices in estimating LAI was restricted by the variation in MTA and
Cab. The relationship was stronger within specific canopy architectures (defined by a constant MTA),
making it difficult to estimate LAI using VIs for areas covered by different vegetation types. Of the
studied indices, we found BNDVI to be the least affected by the leaf tilt angle and chlorophyll content,
and thus the most suitable one for retrieving LAI using remote sensing (τk = 0.64 for empirical data).
Nevertheless, the performance of all studied VIs in LAI estimation, including BNDVI, was affected by
the leaf tilt angle, especially at LAI < 3. Most of the studied indices were suitable for monitoring the LAI
of crops with a constant leaf angle distribution (Kendall’s tau τk > 0.7 in the simulated dataset), with SR
outperforming others in linearity and applicability to both measured and simulated data. In the future,
more crop species with different leaf angle distributions, leaf pigment contents, contrasting canopy
architectures, and different growth stages should be used to empirically validate the effects of leaf
angle and Cab on LAI-sensitive indices, so that the results can be applied to a wider geographic region.
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