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Abstract: Designing business process models plays a vital role in business process management.
The acquisition of such models may consume up to 60% of the project time. This time can be
shortened using methods for the automatic or semi-automatic generation of process models. In this
paper, we present a user-friendly method of business process composition. It uses a set of predefined
constraints to generate a synthetic log of the process based on a simplified, unordered specification,
which describes activities to be performed. Such a log can be used to generate a correct BPMN model.
To achieve this, we propose the use of one of the existing process discovery algorithms or executing
the activity graph-based composition algorithm, which generates the process model directly from the
input log file. The proposed approach allows process participants to take part in process modeling.
Moreover, it can be a support for business analysts or process designers in visualizing the workflow
without the necessity to design the model explicitly in a graphical editor. The BPMN diagram is
generated as an interchangeable XML file, which allows its further modification and adjustment.
The included comparative analysis shows that our method is capable of generating process models
characterized by high flow complexity and can support BPMN constructs, which are sufficient for
about 70% of business cases.

Keywords: business process management; BPMN; process modeling; constraint programming;
process planning; process graph

1. Introduction

Business process models are intended to be bridges between technical and business people.
They are used to describe sequential, parallel, as well as alternative workflows within an organization,
which aim to achieve the required goals. Visualizations of processes make them much easier to
comprehend than textual descriptions. Therefore, associations such as the Object Management Group
(see: http://www.omg.org/) make an effort to create universal and comprehensive standards for
the visual design of process, decision and software models [1–3]. A properly-designed model does
not require major enhancements as long as there are no significant changes in the process. However,
as requirements for modern software systems, as well as organizational structures in companies are
constantly changing, there is a general need to redesign processes frequently. Thus, it is crucial to use
an efficient modeling approach.

Because processes are often modeled manually by designers, the time spent on process acquisition
can be shortened when prototypes of the models are generated. The aim of this work is to simplify
the business process modeling phase by significantly limiting the number of iterations between the
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designer of the process and its participants. Our method tends to automate the modeling process
by merging data provided by multiple process participants into a semi-structured form, as well as
describing algorithms that transform this specification into a visual form.

The approach presented in this paper is related to various research areas such as business process
modeling, process planning, as well as constraint programming. Figure 1 presents an overview of the
proposed method. It describes the sequence in which data collected from different process participants
are merged to generate a BPMN diagram. This paper introduces the approach, describes briefly its two
first phases and is focused on the third and fourth phase of the approach, i.e., BPMN model generation.

In the first phase, all the process participants are given a spreadsheet-based form to insert
information about executed tasks, along with the conditions and effects of their execution.
Then, the files are merged into one specification where the consistency and uniformity of task names,
as well as used data entities should be assured. In the next step, the specification is formalized as
a Constraint Satisfaction Problem (CSP) and is passed to a constraint solver in order to generate a
synthetic workflow log (or simply log) of the process. Such a log, which is a set of all admissible
execution sequences, is then used to generate a final model by one of two different methods, namely
process mining (Phase IVa) and graph-based model composition (Phase IVb).

Semi-Automated Toolkit

Data collection 

Input:      
Output:   

Manually inserted data 
Spreadsheet files I 

Specification merge 

Input:      
Output:   

Spreadsheet files 
Validated specification II 
CSP Solving 

Input:      
Output:   

Validated specification 
Synthetic workflow log III alldifferent(P) 

length(P) <= 4*|T| 

Process Mining 

IVa 
Model Composition 

IVb 

Figure 1. Outline of the approach divided into four main phases.

This paper is organized as follows: In Section 2, we provide an overview of business process
modeling along with a brief specification of BPMN, which is the notation used in our approach.
In Section 3, we present related works in the area of process planning and transforming declarative
models into an imperative form. The concept of gathering process data to form its declarative
specification is presented in Section 4. Section 5 describes the constraint-based model, which is used to
generate a set of synthetic traces of the analyzed process, while in Section 6, we present two ways of
composing a BPMN diagram based on the generated log. The detailed specification of our approach
was evaluated in Section 7 in terms of its ability to support complex process flows, as well as different
BPMN constructs. Our idea is summarized in concluding remarks presented in Section 8.
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2. Business Process Modeling with BPMN

Business Process Management (BPM) [4] is a holistic approach to improving organization’s
workflow focusing on re-engineering of processes. Its goal is to optimize procedures and increase
efficiency and effectiveness by constant process improvement. Thus, BPM is often considered as a
legacy or the next step after workflows [5], which are often defined in terms of automation of business
processes during which documents, information or tasks are passed from one participant to another
for action.

However, BPM supports business processes using methods, techniques and software in the design,
execution, control and analysis of processes involving humans, organizations, applications, documents
and other information sources [6].

As BPM is restricted to operational processes, excluding processes that cannot be made explicit,
its key aspect is a business process [7]. A business process is often described as a collection of related
activities transforming different kinds of inputs into outputs. The main output of the whole process is
mainly considered as a product or service, which constitutes a customer value.

Although there are many process modeling languages [8], Business Process Model and Notation
(BPMN) [1], adopted and maintained by the OMGgroup, is one of the most widely-used notations for
modeling processes.

Business Process Model and Notation (BPMN) [1] contains a set of graphical elements for
constructing diagrams depicting the components of the process and the way it should be executed.
The present BPMN 2.0 version of the specification enables process engineers and business analysts to
design process, choreography, as well as collaboration models. However, the most popular are process
models [9], and these will be used in our approach.

The basic subset of BPMN elements is presented in Figure 2. It contains activities that represent
tasks executed within the process. This notation allows also for modeling data and control flow,
including splits and joins of execution paths, conditional operations, loops, event-triggered actions,
paths and communication processes. Activities, gateways and events constitute flow objects, which can
be connected by sequence flows determining the order of task execution.
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Figure 2. A core subset of BPMN workflow model elements.
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There are various ways of modeling more advanced or complex constructs in BPMN, e.g., time
issues [10,11]. Sometimes, pure BPMN is not enough, and the notation has to be extended to represent
modern concepts such as process tailoring [12], multiple process instances [13] or ubiquitousness [14].

However, regarding the routing of a process, five basic control-flow patterns can be distinguished [15],
which include simple sequences, parallel splits, synchronization, exclusive choices and simple merges
(see the examples shown in Figure 3):

1. Sequence: simple succession of activities.
2. Parallel split: split in a single thread of control into multiple threads that can execute in parallel.
3. Synchronization: synchronization of multiple parallel branches into a single thread.
4. Exclusive choice: representation of a decision point in a process where one of several

branches is chosen.
5. Simple merge: a point in a process where two or more alternative branches come together

without synchronization.

Task A Task B

Task A

Task C

Task B

Task A

Task C

Task B

Task C

Task B

Task A

Task C

Task B

Task A

sequence

simple merge

exclusive choice

parallel split
synchronization

Figure 3. Five basic control-flow patterns in BPMN models.

To distinguish business functions or parts of the system related to certain flow objects, the concept
of swim lanes is usually used in BPMN notation. Business process participants, which can either be
entities within an organization or different collaborators in a process [16], are represented by pools.
Their sub-partitions, which represent specific objects or roles, are called lanes.

For our approach, let us define a simple BPMN process model as a tuple: P = (O,F), where:

• O is the set of flow objects,
• F ⊂ O×O is the set of sequence flows.

Moreover, the set O of flow objects is divided into three disjoint sets (based on the definition
provided in [17]):

• T: a non-empty set of tasks (|T| > 0),
• E: a non-empty set of start and end events (|E| > 1),
• G: a set of gateways that split or merge the flow,

such as O = T∪E∪G.
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In this paper, we use the concept of data entities. Unlike the data object described in the
standard [1] (and presented in Figure 2), it is not a part of the generated process diagram, but constitutes
the additional process specification, which is needed for our composition method. In other words,
a data entity can be defined as a variable of a primitive or complex data type, which accompanies the
execution of a task. According to the literature [18], four different data operations performed by tasks
are distinguished in business processes: create, read, update and delete. A set of data entities present
in the whole process is defined by Formula (1).

∆ = {δ : δ = (ID, name, type)}, (1)

where δ is a data entity, defined as a triple containing its ID, name and type.

3. Related Works

The method presented in this paper focuses on the generation BPMN models. Thus, this approach
can be compared with such approaches as generating processes from natural language texts [19] or
data models [20]. As such a method includes transforming processes from other representations, it can
be also compared to these approaches. Let us briefly overview these groups of approaches in order to
explain the difference of this attempt.

3.1. Generating Models from Text Description

A promising research direction is generating process models from text description [19]. Such a
description can be provided in natural language or structured natural language [21]. However,
such generated models are limited to the elements possible for obtaining the text description.

3.2. Generating Models from Other Models

A business process model can be created based on a set of existing process diagrams,
which represent different execution variants of the workflow. Such an approach is called
decomposition-driven consolidation [22] and supports process modeling by reducing redundancies
and possible inconsistencies, which may occur in manually-created models. Process models can
also be acquired using translation from other representations, such as the UML diagrams (e.g., use
case diagrams [23–25], sequence diagrams [26]). the DMNmodels (e.g., [27]) or the CMMNmodels
(e.g., [28]). Unfortunately, translation from other notations requires the other models designed. Such
models, however, do not provide enough information and often even do not exist.

3.3. Generating Process Models from Data Models

There are also approaches that provide translations from various data models. These approaches use
such representations as Bill Of Materials (BOM) [29], Product-Based Workflow Design (PBWD) [30–33],
based on the Product Data Model (PDM) [34], Product Structure Tree (PST) [35,36], Decision Dependency
Design (D3) [37,38] or attribute relationship diagrams [39]. Although these solutions have been applied in
different business areas, all of them require preparing data models, and most of them do not support the
BPMN notation. However, one of the related approaches [40] supports the creation of choreographed
BPMN models by detecting synchronization points based on analyzing data objects generated and
consumed in the process.

3.4. Generating Imperative Process Models from Declarative Models

Process models are usually modeled using the imperative approach focusing on the explicit
definition of the process. Another approach focusing on the directives, policies and regulations,
which restrict the potential ways of achieving the process goal, is declarative modeling [41].
Some studies show that imperative and declarative models are not so distant [42], and hybrid solutions
are more expected by practitioners [43]. Thus, an important research direction in the area of generating
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process models is generating an imperative model based on a declarative one; see [42–46]. Most of
these solutions take advantage of constraint programming to find solutions fulfilling the assumptions.
Parody et al. [47] proposed an idea where a hybrid process model that combines a data-oriented
declarative specification and a control flow-oriented imperative specification is formalized. In the
next step, constraint programming is used to solve the optimization problem by finding the most
appropriate data input for the process. Such approaches are similar to ours; however, our approach
does not require preparing n additional declarative model as an input.

3.5. Analyzing Workflow Logs

Information about the analyzed process can be also retrieved by performing an analysis of an
existing workflow log. Such a set of execution sequences can be explored in order to determine temporal
relationships between activities [48]. Event data of a workflow may help to derive a process model
from its configurable representation. One of the recently-proposed business process management use
cases [49] consists of generating specified process variants based on the configurable model and the
historical workflow log obtained from the analyzed system. Chesani et al. [50] generated synthetic
traces for a business process model. Their approach covered also negative logs, which represent
workflow sequences not allowed during process execution.

4. Collecting Process Data

Business processes usually involve multiple contributors, which perform different tasks.
Therefore, designing a real-life process model is a complex activity and requires much communication
between the process architect and its main participants. The idea proposed in this paper consists of
providing an automated tool that gathers the required data in the simplest possible declarative form.
In the first step, all the process participants need to determine which tasks are performed within their
area of responsibility and provide the following information regarding each task:

• data entities that are required or are optional for execution,
• data entities created after execution,
• maximum number of repetitions.

One of the ways of providing the required input is a web-based form, which can be used to
acquire data from the participants of the process. Its sample layout is presented in Figure 4. It is also
possible to bypass the form itself and provide the input in a spreadsheet file.

Process Composer

PARTICIPANT INFO TASK DETAILSTASK LIST DATA ENTITIES

Data Entities Required

Input text

Data Entities Created

Input text

Optional

Order Reprocessed

Order Created

Task Name

Review Order

Maximum Number of Executions

1 5

Order Reviewed

OKCANCEL

Figure 4. Screenshot of the prototype form for the data acquisition.
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Such a business process description may be prepared using spreadsheets. Let us analyze a
case study example model of a supply process, which is realized by four participants: warehouse
operator, accounts payable specialist, purchasing specialist and purchasing manager. Their roles and
responsibilities are presented in Figure 5.

Warehouse Operator
Check Inventory 
Receive Packing Slip 
Record Packing Slip 

Accounts Payable
Reserve Funds 
Receive Invoice 
Record Invoice  
Release Funds 
Issue Payment 

Purchasing Specialist
Create Order 
Reprocess Order 

Purchasing Manager
Approve Order 
Send Order 

Figure 5. Roles of the participants in the example supply process.

Detailed task specifications performed by different roles are listed in Tables 1–4. Data entities that
are optional for task execution are listed in parentheses. The general process specification based on
inputs from different participants includes 12 tasks and 13 data entities (Table 5).

Table 1. Activities performed by the warehouse operator.

Task Name Required DEs Created DEs Executions

Check Inventory Goods Request Inventory Checked 1
Receive Packing Slip Order Sent Packing Slip 1
Record Packing Slip Packing Slip Packing Slip Record 1

Table 2. Activities performed by the accounts payable specialist.

Task Name Required DEs Created DEs Executions

Reserve Funds Order Reviewed Funds Reserved 1
Receive Invoice Order Sent Invoice 1
Record Invoice Invoice Invoice Record 1
Release Funds Invoice Record Funds Released 1

Packing Slip Record
Issue Payment Funds Released Order Completed 1

Table 3. Activities performed by the purchasing specialist.

Task Name Required DEs Created DEs Executions

Create Order Inventory Checked Order Created 1
Reprocess Order Order Reviewed Order Reprocessed 1

Table 4. Activities performed by the purchasing manager.

Task Name Required DEs Created DEs Executions

Review Order Order Created Order Reviewed 2
(Order Reprocessed)

Send Order Funds Reserved Order Sent 1
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Table 5. Data entities present in the example business process.

ID Name Type

01 Goods Request Text/JSON
02 Inventory Checked Boolean
03 Order Sent Boolean
04 Packing Slip Text/JSON
05 Packing Slip Record Integer
06 Order Reviewed Boolean
07 Funds Reserved Boolean
08 Invoice Text/JSON
09 Invoice Record Integer
10 Funds Released Boolean
11 Order Completed Boolean
12 Order Created Boolean
13 Order Reprocessed Boolean

In addition, the process designer must precisely define the initial state of the process in the form
of a list of data entities that are present before its execution. Additional required information is the
set of final states of the process, which covers the desired goal as mandatory information. Optionally,
it may also include different error states, which may happen during execution of the process. In this
case, the initial state of the process requires only a goods request data entity to be present. Since the
goal of the analyzed business process is to provide requested goods, it has two possible goal states:

• If requested goods are available in the warehouse, then there is no need for purchase order;
then inventory checked is the only data entity required. All data related to purchase order
processing should not exist.

• Otherwise, the expected goal is a completed purchase order, which corresponds to the order
completed data entity.

After gathering all the data entities and determining boundary states of the analyzed business
process, its participants are able to indicate which data entities cannot exist before the task is executed.
For example, if a purchasing specialist is performing the task create order, then the data entity order
reviewed should not be present, as there was no order to be approved before. Correspondingly,
an existing data entity can be removed as a result of an execution of a task. To illustrate this situation,
the task issue payment can be shown as an example. If the payment is done, there are no more funds
released for the order, and the release funds data entity should be deleted.

The final step of the process data collection consists of merging the information from all the
process participants into a single spreadsheet representation.

5. Constraint-Based Model

The composition of business processes is conducted using the Constraint Programming approach
(CP) [51]. It is based on the principles of the method presented in our preliminary work [52],
which covered a basic scenario. In order to prepare data for the algorithm, the spreadsheet
representation needs to be converted to a formal model.

5.1. Formal Process Data Structures

Using notation presented in Section 2, let us denote T as the set of all tasks included in the
spreadsheet representation and ∆ as the set of all data entities identified by the process participants.
Assuming that the cardinality of these sets are equal to n and m, respectively, creation of the constraint
model consists of generating two n×m matrices:

1. MTC: for conditions needed for a task to be executed,
2. MTE: for effects caused by the execution of a task.
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Values of matrices MTC and MTE should reflect the execution preconditions and effects of
each task, as defined by the process participants in the specification (see Tables 1–4). A precondition or
an effect is understood as the presence of data entities before or after task execution, respectively.

Formulae (2) and (3) present rows of matrices MTC and MTE, which correspond to the review
order task specified in Table 4. The order of the columns refers to the order of data entities listed in
Table 5.

MTC[ReviewOrder] =
[

0 0 0 0 0 0 0 0 0 0 0 1 −1
]

(2)

MTE[ReviewOrder] =
[

0 0 0 0 0 1 0 0 0 0 0 −1 0
]

(3)

In addition, having g as the number of admissible goal states, it is necessary to define a matrix
MST of size g×m, which describes admissible goal states, and a m-element vector s0 should be defined
to store information about the presence of data entities before the execution of the process. All these
data structures can contain integer values from the set {−1, 0, 1}. Table 6 explains the meaning of
structure values with respect to data entities present in the process.

Table 6. Explanation of process data structure values in the constraint model.

Value MTC MTE MST s0

−1 not relevant unchanged not relevant —
0 forbidden deleted forbidden forbidden
1 required created required required

The last structure to be defined is an n-element vector et, which defines the maximum number of
executions per each task. By default, its values should be equal to one unless the process contains loops
or tasks executed iteratively. In the example supply process, the specification of which is presented
in Tables 1–4, there is only one such task. Therefore, a vector et should contain a value of two on the
corresponding position, while all its other elements should be equal to one.

5.2. Generation of a Workflow Log

A workflow log W = {σ1, σ2, ...σL} is a multiset of event traces [53] σ, which can be defined
as ordered sequences of activities in a process: σ = (τ(1), τ(2), ...τ(K)). Although the definition of
a workflow log allows traces to appear multiple times, the aim of the presented approach is to
generate a complete log artificially [54], which contains distinct workflow traces covering all the
admissible execution sequences of the process. Therefore, W will be considered as an ordinary set in
the further analysis.

The synthetic workflow log is generated based on the data input/output specification in the
process. Thus, its generation requires data structures that were presented in Section 5.1. For the purpose
of finding a set of solutions, the notion of a process state is introduced. It is an m-element vector
representing the presence of data entities at a particular stage of the process execution. Before specifying
constraints needed to generate proper logs, it is necessary to define the satisfiability predicate [52],
which determines if state vector s fulfills the requirement for a task to be executed (Formula (4)).

sat(s, TC(τi)) ⇐⇒ ∀j = 1...m : sj = TC(τi)j ∨ TC(τi)j = −1 (4)

where TC(τi) corresponds to the i-th row in the MTC matrix.
To generate a complete process log, the analyzed problem must be modeled using constraints

over variables [55]. This concept is based on three main pillars:
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1. Search space: finite sequences of tasks.
2. Decision variables: workflow trace, process state matrix.
3. Constraints over variables: determined by the input data, as well as a set of predefined formulae.

The constraint-based model was created in the MiniZinc [56] modeling language. In this
section, we present the description of applied predicates and constraints, along with their simplified
code representations. Two custom predicates were defined in order to be reused in constraint
definitions, namely:

• State satisfies requirements (based on Formula (4)).

predicate state_satisfies_requirements(state, requirements)

= forall(s in 1..m)(

state[s] == requirements[s] \/ requirements[s] == -1

);

• State satisfies set of requirements.

predicate state_satisfies_requirements_set(state, requirements_set)

= exists(i in 1..g)(

state_satisfies_requirements(state, row(requirements_set,i))

);

Then, the predefined constraints, which ensure the correctness of the process were
formulated as follows:

1. The global limit of executions for all tasks is a constant value and denoted as MAXEX .

constraint max_execution_number = MAX_EX;

2. The number of executions for each task should be lower than or equal to the corresponding value
in vector et or to the global limit.

constraint forall(i in 1..n)(

if (e_t[i] == 0 \/ e_t[i] > max_execution_number) then

count_geq(workflow_trace, i, max_execution_number)

else count_geq(workflow_trace, i, e_t[i]) endif

);

3. The maximum length of the workflow trace is equal to n×MAXEX .

constraint last_task_index < n*max_execution_number+1;

4. The input state of the first executed task should be equal to s0.

constraint forall(i in 1..m)(

process_states[1, i] == s_0[i]

);

5. Every non-empty task should change the current state.

constraint forall(i in 1..n*max_execution_number)(

let {

task = workflow_trace[i],

state = [process_states[i,s] | s in 1..m],

next_state = [process_states[i+1,s] | s in 1..m],

effects = [M_TE[task,s] | s in 1..m]

} in

forall(s in 1..m)(
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if effects[s] == -1 then next_state[s] == state[s]

else next_state[s] == effects[s] endif

)

);

6. The process should end when the desired goal state is achieved.

constraint forall(i in 1..n*max_execution_number)(

let {

state = [process_states[i,s] | s in 1..m]

} in

state_satisfies_requirements(state, row(M_ST,1))

-> last_task_index < i+2

);

7. The last state of the process should satisfy one of the goal states.

last_state = [process_states[n*max_execution_number, s] | s in 1..m];

constraint state_satisfies_requirements_set(last_state, M_ST);

8. A task can be executed only if the current state satisfies its input conditions.

constraint forall(i in 1..n*max_execution_number)(

let {

task = process[i],

state = [process_states[i,s] | s in 1..m],

conditions = [M_TC[task,s] | s in 1..m]

} in

state_satisfies_requirements(state, conditions)

);

The presented model is executed using the Gecode solver [57]. For the workflow trace generation.
the search goal should be set for constraint satisfaction by using the statement solve satisfy.
To generate a workflow log, two files are needed:

• the model file .mzn, which contains definitions of decision variables, predicates and constraints,
• the data file .dzn, where all the input information such as matrices MTC, MTE, MST and initial

state vector s0 are defined.

Since the result of a single search is a single workflow trace, in order to obtain a complete log,
the option to print all solutions should be used. The results are saved to a text file, which serves as an
input to the next step: process composition.

6. Composition of a BPMN Diagram

There are two possible scenarios that may be applied when composing a business process model
based on a synthetic workflow log:

1. The mining-driven approach.
2. The process composition based on activity graphs.

The former consists of translating the log into an event log file and applying one of the existing
process mining algorithms. In case of using the latter, a workflow log is processed directly and
converted to a graph form, which is a first step towards the generation of a BPMN diagram.
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6.1. Mining-Driven Approach

The mining-driven approach allows the user to generate a BPMN diagram using the output from
the constraint-based model described in Section 5. For this purpose, one of the most widely-used open
source environments for process mining is the ProM Tools software [58,59]. The user can select one of
the desired methods and generate a BPMN model based on a workflow log of a process.

In the first step, the ordered list of tasks obtained as a result of solving the constraint satisfaction
problem presented in Section 5.2 needs to be converted into a file in XESformat, which is an XML-based
standard for event logs [60].

In our previous paper [52], we presented a solution for this problem, using Heuristic Miner
with the default parameters. This Petri-net mining algorithm provides a good level of construct
recognition [61]; however, it has a tendency to underfit the model. In other words, there can be more
admissible task sequences in the resulting model than included in the logs. In addition, heuristic-based
algorithms include noise reduction, which results in ignoring workflow traces that appear less
frequently in the log. A process model composed using such an algorithm may lack alternative
branches, which serve as a bypass for a large number of tasks, e.g., paths leading to error end events.

There are several different process discovery algorithms that can be applied to process
composition. In general, they can be divided into five main groups [61,62]:

1. Abstraction-based (also known as α-series): consists of three phases: abstraction, induction and
construction. In such an algorithm, ordering relations between tasks are identified, and the final
workflow net is constructed based on predefined rules.

2. Heuristic-based: consider the frequency of ordering relations appearing in workflow traces,
and filter out the potential noise.

3. Search-based: use genetic algorithms to discover process models that represent the most frequent
behavior in a workflow log.

4. Language-based: assume that each activity in a trace is a letter in an alphabet and each trace
is a word. One of the approaches [63] uses Integer Linear Programming (ILP) to discover
control flows.

5. Inductive: filter the most frequent activities, and produce a process tree. The generated model
is then enriched with frequency information for each task and the information about how the
generated model deviates from the input log.

Table 7 presents a comparison of selected process mining algorithms and their suitability for
constraint-based process composition. In this brief summary, we consider only these mining techniques,
which can generate a BPMN model in the ProM environment (see: http://www.promtools.org/).

Table 7. Comparison of selected process mining approaches present in the ProM environment
( —supported feature, G#—partially supported feature).

Feature α algorithm Heuristic Miner ILP Miner Inductive Miner

Type abstraction heuristic language inductive
Construct discovery G#   G#

Fitness tendency overfitting underfitting overfitting overfitting
Generalization G#  G#  

Advantage simplicity control flow high fitness high fitness
discovery

Inconvenience low quality high generalization complex use block division
Recommended � �� ��� ��

It is worth noting that although using an existing process mining framework to generate a BPMN
model is a comfortable task, the available algorithms are not fully dedicated to work on artificial data.

http://www.promtools.org/
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6.2. Process Composition Based on Activity Graphs

All the process mining techniques presented in Section 6.1 consist of generating a Petri-net based
on a provided set of workflow traces. Converting such a net to a BPMN model is a complex task and
may require additional model modifications [64]. Therefore, the other approach presented in this
paper is based on activity graphs and is used to compose a BPMN model directly from a synthetic
workflow log.

An activity graph [65] GA of a business process can be defined by Expression (5):

GA = (VA, E, deg−, deg+), (5)

where:

• VA is a finite set of vertices representing process activities,
• E is a set of directed edges,
• deg− : VA −→ N0 determines the number of incoming edges for a vertex, and N0 stands for

non-negative integers,
• deg+ : VA −→ N0 determines the number of outgoing edges for a vertex.

There are several relation templates [66] that describe dependencies between events in a workflow
log and as a consequence relations between activities in a business process model. Let us recall those
that correspond to the most strict ordering relations between two events, denoted as A and B:

• chain response: if A occurs, then it is directly followed by B,
• chain precedence: if B occurs, then it is directly preceded by A,
• chain succession: A occurs if and only if B occurs directly afterwards.

Activity graphs represent admissible chain response and chain precedence relations in a
workflow log. The creation of such a graph GA for a given workflow log W consists of defining
an initial node, a terminal node and a separate intermediate node for every activity in the logs and
then linking all the pairs of nodes with directed edges if a chain ordering relation occurs between them
(see Algorithm 1 for details).

Algorithm 1: Generation of an activity graph.
Input: Workflow log W
Output: Activity graph GA
GA := new Graph();
GA.addVertex(vs, type := “Start Event”);
foreach Trace σ in W do

vn := GA.addVertex(τ(1), type := “Activity”);
GA.connect(vs,vn);
foreach Activity τ in τ(2)...τ(K) ∈ σ do

vn+1 := GA.addVertex(τ, type := “Activity”);
GA.connect(vn,vn+1);
vn := vn+1;

end
if not GA.contains(“End Event”) then

GA.addVertex(vt, type = “End Event”);
GA.connect(vn+1,vt);

end

Representing all the chain ordering relations in a log by a directed edge may lead to parallelism
clutter [62]. This situation occurs when the process specification allows one or more activities to be
executed in parallel. In the workflow log generated according to the method described in Section 5.2,
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such activities can appear in different order, depending on the workflow trace. As a result, given two
activities A and B, if A occurs directly before B in trace σx and at B occurs directly before A in trace σy,
then executing Algorithm 1 will cause the creation of two independent directed edges: one from A
to B and the other from B to A. The issue of doubled edges needs to be resolved in order to avoid
doubled sequence flows between parallel activities in the generated BPMN model.

The necessary refinement of the set of edges (E) consists of identifying potentially parallel activities
and removing doubled connections between them. A relation of potential parallelism was defined in the
α algorithm: two tasks are likely to be parallel if they can follow each other directly in any order [67].
Although this rule is valid for models representing a simple workflow, it does not work perfectly if loops
exist in the discovered process. In order to illustrate such a situation, let us present an example of two
workflow logs, each consisting of two traces having four different activities (Formulae (6) and (7)):

W1 = {ABCD, ACBD}, (6)

W2 = {ABCD, ABCBD}. (7)

Log W2 contains a loop, as task B is executed two times. Figure 6 presents activity graphs created
as a result of executing Algorithm 1 with the logs W1 and W2 as input data. If the rule from algorithm
α were applied, then doubled edges between activities B and C would need to be removed in both
graphs. In the second graph, this would result in a connectivity loss, as the vertex representing activity
C would not be reachable from the initial node.

C

B D

A

vs vt 

C

B D

A

vs vt 

(a) (b)

Figure 6. Activity graphs created from the example workflow logs: (a) W1 and (b) W2.

Medeiros et al. [68] proposed an extension to the α algorithm, which includes the discovery of
length-two loops. In this extension, a new ordering relation ∆ was defined. It is used to identify
short loops as follows: given two tasks A and B being part of workflow log W, A∆W B if and only if a
sequence ABA is a part of at least one trace in W. Another introduced ordering relation is �, which is
valid when A∆B and B∆A. As a consequence, tasks A and B cannot be considered parallel if A � B.
Such a solution could handle basic loop structures; however, it is unable to identify relations properly
between tasks shown in Figure 6b without further modifications. In this case, B∆C is true, while the
reciprocal relation C∆B does not imply.

As a solution to this problem, we propose a redefinition of task parallelism, which can be applied
to activity graphs defined by Formula 5. Given a workflow log W over a set of tasks T and activity
graph GA created based on W, two tasks A, B ∈ T can be considered parallel if and only if:

1. There exists a directed edge leading from A to B and one from B to A.
2. There exists a workflow trace σ ∈W where the number of occurrences for A and B is equal.
3. There exist two workflow traces σ1, σ2 ∈W such that A occurs first before the first occurrence of

B in σ1 and B occurs first before the first occurrence of A in σ2.

Parallelism relations can be also identified using Prime Event Structures (PES) [69]. This method
is based on the assumption that two events are considered to be concurrent if there are neither causality
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nor conflict relations between them [70]. Having properly identified potentially parallel pairs of tasks,
it is possible to run the refinement procedure of set E. Its objective is to remove all edges from activity
graph GA, the endpoints of which satisfy the three aforementioned conditions of activity parallelism.

In the next step, an activity graph needs to be transformed into a business process graph, which is
a precise representation of a BPMN process model. As a complex gateway structure may appear,
this task includes mainly the identification and connection of logical gateways present in the process,
which has been discussed in our previous work [71]. Similarly to the model used to generate synthetic
workflow traces based on the process specification, the algorithm for discovering complex gateway
structures was modeled as a constraint satisfaction problem in the MiniZinc environment.

Given a predefined set of constraints, which ensure a proper flow between gateways, the process
composition algorithm includes the dynamic creation of an input data file and running the simulation
for each graph vertex, the indegree or outdegree of which is greater than two. Algorithm 2 describes
the identification of places where complex gateway structures are needed, as well as the iterative
execution of MiniZinc simulations for structure discovery. The example method applies to split
gateways. In order to include join gateway structures in the process model, an analogical algorithm
needs to be executed.

Algorithm 2: Adding gateway structures to the activity graph.
Input: Activity graph GA, workflow log W, MER - matrix with identified parallelism relations

between graph edges
Output: Business process graph GP
GP := new Graph(GA);
foreach Vertex v in GA.vertices where v.objType in (Task, Event) do

successors := GA.getSuccessors(v);
outEdges := GA.getOutEdges(v);
if outEdges.count() == 2 then

if parallelExexution(outEdges[0], outEdges[1] then
GP.insertGateway(v, successors, type := “ANDSplit”);

else
GP.insertGateway(v, successors, type := “XORSplit”);

end
else if outEdges.count() > 2 then

MinizincInterface.createDataFile(outEdges, MER);
identifiedStructure := MiniZincInterface.runSimulation(numberOfSolutions := 1);
foreach type in indentifiedStructure.getGatewayTypes() do

GP.insertGateway(type);
end
foreach edge in outEdges do

GP.connect(indentifiedStructure.getEdgeGateways(edge), edge.endPoint);
end
foreach gateway1, gateway2 in indentifiedStructure.getGateways() do

if identifiedStructure.connected(gateway1, gateway2) then
GP.connect(gateway1, gateway2);

end
GP.connect(v, indentifiedStructure.getInputGateway());
GP.removeEdges(outEdges);

end

In such a case, instead of successors and outgoing edges of vertex v, predecessors and incoming
edges should be considered. The result of the presented algorithm is a directed graph, the vertices of
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which represent the most common elements of a BPMN model (see Figure 2): a start event, an end
event, activities and data-based gateways.

Figure 7 shows an example of executing Algorithm 2 on a part of the activity graph G
′
A, the set

of vertices of which contains the following activities: {V, W, X, Y, Z}. V is the source node with four
direct successors. The identified parallel relations are: (W, X), (W, Y) and (W, Z). The other pairs of
tasks can only be executed exclusively.

V
X

Y

W

Z

V

X

Y

W

Z

AND AND

XOR

(a) (b)

Figure 7. Complex gateway structure: (a) as a part of the activity graph; (b) after discovery.

The last phase of the proposed approach to business process composition is the transformation
of the generated business process graph into a BPMN diagram. For this purpose, we use the
interchangeable BPMN 2.0 XML format, which was described in detail in the specification of
BPMN [1]. In this standard, both flow objects and sequence flows are represented by XML elements.
Table 8 presents BPMN sub-class elements, which are currently supported in process composition
(the metamodel for this BPMN subset is presented in Figure 8.

Figure 8. Metamodel of the supported BPMN subset.
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Table 8. Supported BPMN 2.0 XML elements and their attributes.

Element Name Attributes

startEvent id, name
endEvent id, name

task id, name
parallelGateway id, name, gatewayDirection

exclusiveGateway id, name, gatewayDirection
sequenceFlow id, name, sourceRef, targetRef

The algorithm for generating an XML file from a business process graph consists of three major
steps (see Algorithm 3):

1. Create the process file structure.
2. For each vertex and its attributes, create an element corresponding to the type of flow object.
3. For each directed edge, create a sequenceFlow element.

Algorithm 3: Generating a BPMN XML file from a business process graph.
Input: Business process graph GP
Output: Business process model P
P := new Process(O, F);
foreach Vertex v in GP.vertices do

if v.objType == Task then
o = new Task(v);
O.append(o : o ∈ T)

else if v.objType == Event then
o = new Event(v);
O.append(o : o ∈ E)

else if v.objType == Gateway then
o = new Gateway(v);
O.append(o : o ∈ G)

end
foreach Edge e in GP.edges do

f = new SequenceFlow(e.getSource(),e.getDest())
F.append( f )

end

The BPMN 2.0 standard includes also a possibility to define the visual layout of a business process
model. This is managed by the BPMN Diagram Interchange package (BPMN DI), the elements of
which represent flow objects and sequence flows along with their coordinates on the canvas. In order
to create a layout for the composed model, it is possible to use one of the existing layouts for directed
graphs such as the ISOMalgorithm based on self-organizing graphs [72]. Graphical layouts specific for
BPMN models can be also generated using a dedicated library, such as EasyBPMN [73].

Although the proposed approach offers the possibility to compose a BPMN diagram with a
graphical layout, the generated models can be saved without the BPMN DI section. In such a case,
the model can be opened in one of the editing environments for BPMN diagrams.

Figure 9 shows the resulting BPMN model, which was generated based on the specification
presented in Tables 1–4. At the final stage of process modeling, labels for events and conditions for
exclusive gateways should be added manually. The conditions for the conditional flows might also be
mined with some decision discovery algorithm [74].
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Figure 9. Example result of applying the graph-based composition algorithm. The graphical layout of
flow objects has been enhanced with the Signavio editor [75].

7. Evaluation

To validate the correctness of the proposed approach, we use a set of existing BPMN models,
which contain different flow object structures. Several complexity metrics were defined for evaluation
of business process models [76], which consist of describing a process diagram by a numerical value
that expresses the difficulty to design or implement the model. Regarding the fact that the biggest
modeling challenges in the area of process composition are gateways and loops (see Section 6.2),
the Control-Flow Complexity (CFC) could be used in this case. It represents the number of states
induced by control elements in a process. However, it disregards the possibility that activities executed
in parallel can be triggered in a different order, as the presence of an AND gateway induces only
one state [77]. To overcome this inconvenience, we propose a Log-based Complexity Metric (LCM),
which represents the number of workflow traces with respect to the number of activities in a process.
Its definition is given by Formula (8).

LCM =
|W|
|T| (8)

Table 9 presents a set of sample BPMN models used to evaluate the proposed method. It contains
the analytically-determined number of traces and corresponding values of the LCM metric. In order to
calculate the number of traces for process models that contain loops, we use the notion of a sufficiently
complete workflow log, which is explained in Definition 1.

Definition 1. (Sufficiently complete workflow log) Let GP be a business process graph [78] representing the
analyzed process and SC be a set of all simple cycles in GP. Function CC(τ) determines the number of occurrences
of the vertex representing activity τ in SC. Workflow log W is sufficiently complete if it contains all the possible
execution sequences where the number of occurrences for each activity τ is lower than or equal to CC(τ) + 1.

Another useful metric that measures the complexity of control flows is the Looping Depth (LD).
It describes the degree to which structured blocks in the process model are nested. It also gives the
information about the maximal number of task repetitions in a sufficiently complete workflow log.
For comparison, we also provided the values for the CFC metrics denoting the complexity of
the models.

Table 9. Example BPMN models used for method evaluation (|T|, No. of activities; |W|, No. of traces).
LCM, Log-based Complexity Metric; LD, Looping Depth; CFC, Control-Flow Complexity.

Process model |T| |W | LCM LD CFC

Liability Insurance 6 6 1 0 1
Supply Management 12 13 1.08 1 7

Student Project Evaluation 5 9 1.8 1 9
Employee Hiring 7 36 5.14 2 7

Bank Account Opening 14 160 11.43 0 8
Intricate Example 31 10,700 345.16 2 25
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The evaluation of the proposed method can be divided into two separate phases: one for verifying
workflow traces generated based on the formal specification described in Section 5 and the other that
aims to validate the graph-based model composition proposed in Section 6.

7.1. Generation of Workflow Traces

In order to evaluate the constraint-based model, we create an artificial process specification for
each of the example models, which is based on the following assumptions:

1. Each activity generates one data entity.
2. Each activity requires data entities generated by its predecessors. If it is preceded by an exclusive

gateway, then an artificial data entity is created to represent the alternative.
3. The initial state of the process is a zero vector.
4. The goal state of the process requires data entities produced by its predecessors.

After performing the simulation in MiniZinc for all the example models included in Table 9,
we have achieved 100% accuracy of the method. In other words, in every case, the number of traces
generated by the constraint-based model was equal to the analytical estimation.

7.2. Graph-Based Model Composition

For the purpose of evaluating the proposed composition method, it might have been convenient
to use one of the existing metrics for analyzing process discovery algorithms, such as replay fitness,
simplicity, precision and generalization [79]. However, in process composition, we focus mainly on
the allowed behavior of the process instead of analyzing the graphical layout of the model. Therefore,
we determine the rate to which the generated BPMN diagram can satisfy the set of workflow traces
generated by solving the constraint satisfaction problem.

In order to do so, we use the concept of log-based process model verification, which consists
of generating a synthetic set of traces based on the resulting diagram and comparing it to the
original log. A model can be considered perfectly composed if the original log is sufficiently complete
(see Definition 1) with respect to this model. Thus, the generated model should allow one to execute
all the sequences represented by original traces and no more. To verify this ability, we propose a metric
called composition accuracy. It combines the following measures:

• model fitness: the percentage of traces from the original log, which were generated based on the
composed model,

• execution precision: the percentage of generated workflow traces that are allowed in the
original log.

CA = model_fitness× execution_precision (9)

The metric can be calculated as defined in Formula (9). In order to illustrate its use, we provide an
elementary example. Let WC be a complete workflow log generated based on a declarative specification
(Formula (10)).

WC = {{A, B, C}, {B, A, C}, {A, B, C, D}, {B, A, C, D}}. (10)

Let us assume that a BPMN model was composed based on log WC. The set of traces generated
from the resulting model is a synthetic log WS (Formula (11)).

WS = {{A, B, C, D}, {B, A, C, D}, {A, C, B, D}}. (11)

As can be clearly seen, two logs significantly differ. First, the generated model allows one to
reproduce only half of the original traces since traces without activity D do not occur in WS. The model
fitness is then equal to 50%. Secondly, log WC does not contain sequence {A, C, B, D}. In this case,
the composed model allows for more behavior than the original log. This leads to an execution
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precision equal to 66.67%. Multiplying these two metrics results in a composition accuracy equal
to 33.34%.

In order to verify the ability of our approach to compose BPMN models based on a synthetic
workflow log, we compare it to process mining algorithms that were briefly reviewed in Table 7.
At the first step, we have excluded Alpha Miner because of its inability to discover loops [68].
Figure 10 presents the results of comparing the activity graph-based composition described in
Section 6.2 to three process discovery algorithms, namely: ILP Miner, Inductive Miner and Heuristic
Miner. All the mining algorithms were executed in the ProM 6 environment [59], with a minimal noise
threshold and default parameters for the others.

Figure 10. Comparison of applying different methods for BPMN diagram generation.

The results show that there is no explicit correlation between log-based complexity and
the composition accuracy. However, one may observe that the models where process mining
algorithms achieved less accurate results are characterized by higher looping depth (see Table 9).
Therefore, we have grouped the results by looping depth and presented the average composition
accuracy for each value in Figure 11.
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Figure 11. Comparison of applying different methods for BPMN diagram generation.

7.3. Limitations

The main purpose of the proposed method is to facilitate business process modeling by automating
tasks that need to be executed between creating a specification of the process and obtaining the final
model. However, modeling a business process will still require manual actions of different stakeholders
of the process, i.e., process owners or process analysts, such as identifying tasks and participants,
as well as defining the desired final outcome.

In order to be commonly used in practice, such a method needs to be versatile enough not only
by managing cases of high complexity, as described in Section 7.2, but also by assuring the support of
commonly-used elements of the selected notation.

Since our approach consists of multiple steps based on different algorithms, the support of
modeling elements is limited in multiple phases, which include:

• creating the spreadsheet specification (see Section 4),
• generating a synthetic workflow log (see Section 5),
• composing the final model (see Section 6).

Therefore, if there is a need to include a BPMN element in the method, it should be supported
by all three main stages of the process composition. In 2008, zur Muehlen and Recker [80] analyzed
a set of business process models and ranked 50 different BPMN 1.0 elements in terms of frequency
distribution. Although the survey did not cover the most recent business cases, it is still considered
valid in terms of element usage in BPMN process models [81]. Their results show that over 75% of the
constructs were present in less than 30% of diagrams used in consulting engagements. Table 10 shows
the current support of our approach for the 12 most frequently-occurring BPMN elements.

In the presented approach, we do not explicitly support the multi-instance or loops markers for
tasks. Our approach supports loops modeled in an explicit way using the sequence flow. A short loop
containing a single task can be later refined into a task with a loop marker. However, such process
refactoring is out of the scope of this paper.



Appl. Sci. 2018, 8, 1428 22 of 26

Table 10. Support for the most commonly-used BPMN elements based on ranking presented in [80]
( —supported, G#—partially supported #—not supported).

Element Type Support

Sequence Flow  
Task  

End Event  
Start Event  

Pool G#
Data-based XOR  

Start Message G#
Text Annotation #
Message Flow #

Parallel Split/join  
Lanes G#

Association #

8. Conclusions

In this paper, we presented a method for participatory business process modeling. Our approach
consists of collecting data coming from different process participants and merging it into one
declarative specification of performed tasks. Based on this semi-formal description, we generate
a set of synthetic workflow logs, which is then used to obtain the final model.

For the generation of BPMN models based on the set of generated traces, we propose two
approaches, namely: the mining-driven model generation and the activity graph-based composition.
The former uses existing process mining techniques, while the latter is an in-house technique that
merges the logs into an activity graph and transforms it into a BPMN model. The presentation of both
approaches is followed by a comparative analysis performed on a set of example models.

As a future work, we plan to develop an integrated tool that uses the proposed techniques to
generate the correct BPMN model. Our aim is to generate BPMN diagrams using partially structured
data from different sources, using multiple spreadsheet files as inputs. An integral part of such an
extension would be an integrated tool for merging and validating data provided by the participants by
filling in the appropriate forms. Another challenge is to model additional BPMN constructs, such as
message flows or associations.

Supplementary Materials: The repository is available online at www.github.com/wpk1124/ProcessComposer_v2.
The repository includes: a set of sample BPMN models, evaluation results, the constraint-based model used for
workflow log generation and the source code of the application used for model composition.
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