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Featured Application: The proposed routing protocol can be applied to enable communication in
an extreme environment, where network infrastructure is not available.

Abstract: Delay tolerant network (DTN) protocol was proposed for a network where connectivity is
not available. In DTN, a message is delivered to a destination node via store-carry-forward approach
while using opportunistic contacts. Probabilistic routing protocol for intermittently connected
networks (PRoPHET) is one of the widely studied DTN protocols. In PRoPHET, a message is
forwarded to a contact node, if the contact node has a higher delivery predictability to the destination
node of the message. In this paper, we propose an improved opportunistic routing protocol, where
context information of average distance travelled and average time elapsed from the reception of
a message to the delivery of the message to the destination node is used. In the proposed protocol,
the average distance and average time are updated whenever a message is delivered to a destination
node. Then, both average distance and average time as well as delivery predictability of PRoPHET
protocol are used to decide a message forwarding. The performance of the proposed protocol is
analyzed and compared with that of PRoPHET and reachable probability centrality (RPC) protocol,
which is one of the latest protocols using the contact history information of a mobile node. Simulation
results show that the proposed protocol has better performance than both PRoPHET and RPC, from
the aspect of delivery ratio, overhead ratio, and delivery latency for varying buffer size, message
generation interval, and the number of nodes.

Keywords: delivery predictability; routing; PRoPHET; delay tolerant networks; opportunistic routing
protocol; average time; average distance

1. Introduction

In widely used networks such as Internet or cellular networks, connectivity between a source
node and a destination node should always be maintained in order to deliver data or message from a
source node to a destination node. If connectivity fails due to any reason, however, a communication
session between them is broken and message delivery is not possible any more. For a special network
environment, such as disaster environment, deep space environment, or wildlife sensing environment,
where connectivity between nodes is not available always, conventional network protocols, such as
Internet or cellular networks, are not feasible. Delay tolerant network (DTN) protocol was proposed
for this environment [1–3]. In DTN, a message is delivered using opportunistic contacts between nodes.
When a node has a message to send, it is stored in its buffer and it is not removed from the buffer,
even though there is no current connection with the destination node. Then, a message is forwarded
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to another node when the two nodes are within communication range, if a pre-defined forwarding
condition is met. Through a series of forwarding via intermediate nodes using opportunistic contacts,
a message can be delivered to a destination node finally. This is called a ‘store-carry-forward’
mechanism of DTN, as shown in Figure 1 [1–3].
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There are a lot of routing protocols in DTN. Out of these, epidemic [4], spray & wait [5], and
probabilistic routing protocol for intermittently connected networks (PRoPHET) [6] are basic but
important routing protocols. Epidemic protocol is a flooding-based protocol and a message is
forwarded to any contact node [4]. It is simple but it has high traffic overhead. To solve the traffic
overhead problem of Epidemic protocol, spray & wait protocol was proposed, where the number
of total message copies in a network is limited by L [5]. When a node generates a message to send,
only L copies of the message can be distributed in spray phase until L nodes have only one message
copy. Then, a node with the message copy delivers it to the destination node only in the wait phase.
Although spray & wait can efficiently reduce the traffic overhead, message copies are distributed
blindly. In PRoPHET protocol, messages are not forwarded to another node blindly, but are based
on the delivery predictability of a node to a destination node [6]. In PRoPHET protocol, each node
calculates the delivery predictability of other nodes based on the contact history between them.
The delivery predictability of a node A to a destination node B, P(A, B), is a metric to estimate a
likelihood of delivering a message to a node B. It is assumed that a node with a higher delivery
predictability to a destination node is a better node for delivering a message to the destination node.
Whenever any two nodes contact each other, the delivery predictability between them increases, as in
Equation (1) [6]:

P(A, B) = P(A, B)old + (1 − ∆ − P(A, B)old)× Pencounter, (1)

where Pencounter is a scaling factor controlling the increasing rate of the delivery predictability after
contact, and ∆ is a parameter for an upper bound of P(A, B). As time elapses, the delivery predictability
decreases, as in Equation (2) [6]:

P(A, B) = P(A, B)old × γK, (2)

where γ is the aging constant and K is the number of elapsed time units since last contact time. Also,
the delivery predictability has a transitive property. That is, if nodes A and B contact frequently, and if
nodes B and C contact frequently, the delivery predictability between nodes A and C becomes high, as
in Equation (3) [6]:

P(A, C) = MAX (P(A, C)old, P(A, B) ∗ P(B, C)recv × β), (3)
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where β is a scaling constant.
In this paper, we consider PRoPHET protocol as a base protocol [6]. In PRoPHET protocol, there

are several message forwarding strategies. In the GRTR strategy, the message of node A is delivered to
node B, if node B has higher delivery predictability to the destination node of the message. In GTMX
strategy, the message of node A is delivered to node B, if node B has higher delivery predictability
and the number of message forwarding so far is less than a threshold value. We note that GRTR and
GTMX are not a specific acronyms but they are just mnemonic.

There have been lots of related works. In AntProPHET scheme [7], ant colony optimization
algorithm, which is one of the widely used bio-inspired optimization algorithm, is applied to PRoPHET
protocol. In [8], a message is forwarded to another node if the delivery predictability of the another
node to the destination node of the message is higher than that of sending node and a threshold value,
and also if the sum of the delivery predictabilities of the receiving node so far is less than a threshold
value. In [9], the density of neighbor nodes is considered to decide whether Epidemic protocol or
PRoPHET protocol is used. Epidemic protocol is selected if the density is less than a threshold value.
Otherwise, PRoPHET protocol is selected.

In [10], the movement trajectory of a node is estimated by using the Markov chain based on the
speed and direction of movement of nodes and the movement trajectory is used to decide whether a
message is forwarded or not. In [11], the information of current location, movement direction, speed,
and estimated direction change of a mobile node with GPS (global positioning system) is used to
decide whether the node approaches near the destination node and a message is forwarded if a node
has the closest estimated approach to the destination node. In [12], a forwarding node is selected
based on the information of location, speed, movement direction, and time. In [13], if the movement
pattern is periodic in a considered network topology, a scheme to minimize the delivery time to reach
the destination node from a source node was proposed. In [14], the contact period between nodes is
estimated and a message is forwarded to a node closer to the next contact time with the destination
node. In [15], last contact duration, last contact time, and current contact time between any two nodes
are used to calculate the neighborhood index formula and a message is forded to a node with a higher
neighborhood index formula.

In [16], friendship and selfishness (FSF) value is classified as weak, middle, and high level, based
on contact counts to a destination node, contact duration, and the amount of exchanged messages.
Then, a message is forwarded if another node has a higher FSF value. In [17], contact history is managed
in a table and a message forwarding is determined based on the contact existence with the destination
node in the same time zone when the two nodes contact. In [18], in the early phase of message
dissemination, a message is forwarded to a node with a higher chance of message dissemination.
On the other hand, in the latter phase of message dissemination, message is forwarded to a node with
higher chance of message delivery to the destination node. In [19], reachable probability centrality
(RPC) is calculated based on the contact history with the destination node and a message is forwarded
to a node with a higher RPC value. In [20], node type such as pedestrian, car, and tram as well as
delivery predictability is used together to determine forwarding. The basic idea is to give higher
priority to tram for message forwarding, that is, if receiving node is a tram, messages are forwarded
with higher probability, since the buffer size of tram is relatively higher than other nodes and has more
chances of contact with other nodes due to its high mobility.

In [21], the authors use historical throughput and historical contact time to calculate forward
probability and a message is forwarded to a node with a higher forward probability. The forwarding
probability has similar characteristics with delivery predictability in PRoPHET protocol, i.e., increase
for each contact, decay after contact, and transitivity. In [22], the authors propose a novel encounter
based fuzzy logic routing, where the transfer opportunism of a node is computed while using
fuzzy logic using the encounter and non-encounter duration, and messages are forwarded based
on the transfer opportunism. In [23], the authors propose an encounter-based routing based on the
observation that the future rate of node encounters can be roughly predicted by past encounters. In the
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encounter-based routing, the total copies of a message are limited and forwarding is decided based
on the rates of encounters. In [24], the authors basically consider the spray and wait protocol, and
propose a new metric called multi-probability, where a message can be forwarded to a node if any of
its previously contact nodes has higher delivery predictability, even though the node does not have
higher delivery predictability currently.

Works on using mobility characteristics of mobile nodes for DTN have been carried out
significantly [25–29]. In [25], mobility traces taken from UMass DieselNet, which consist of buses
with WiFi interfaces that travel their routes, are used to forward messages, and the performance of
the DieselNet routing is analyzed. They show the periodic behavior of inter-contact times aggregated
at the router level. In [26], mobility traces from real public transport systems are characterized and
used to improve the routing performance of DTN. Then, large scale mobility traces are produced
using micro-mobility simulator and the performance of various DTN routing protocols are compared
with the proposed algorithm. In [27], the authors propose a journey predictor for DTN based on
mobility traces of public transportation system, where the journey predictor is based on a graph of
predicted journeys and the best journey is selected to a specific destination. Artificial neural networks
are used to predict a journey. In [28], a multi-copy routing scheme for a DTN based on an urban bus
transportations system is presented and contact history of nodes is used to improve the routing of DTN.
They propose a journey predictor based on artificial neural networks to select the best journey to a
destination. In [29], nanosatellite communications link is used to cover a terrestrial sensor network that
is based on DTN routing. The authors propose an optimal proactive fragmentation of DTN bundles,
due to short contact duration between a nanosatellite and a sensor node, and show the performance
enhancement over the reactive fragmentation approach.

In related works, movement trajectory [10], movement direction, speed, estimated direction
change, location [11,12], movement pattern [13], contact period [14], last contact duration, last contact
time, current contact time [15], contact count, contact duration, the amount of exchanged messages [16],
contact history [17], node type [20], historical throughput, historical contact time [21], encounter
duration, non-encounter duration [22], rate of encounters [23], and delivery predictability of previously
contact nodes [24] are used to decide a message forwarding. Most of the mentioned context information,
however, reflect individual characteristics of contact nodes or node itself, and collective characteristics
of nodes have not been considered well to deliver a message to a destination node. In this paper,
we propose an improved opportunistic routing protocol, where the context information of average
distance travelled and average time elapsed from the reception of a message to the delivery of the
message to the destination node is used. The context information such as average distance travelled
and average time elapsed considered in this paper reflects the collective characteristics of a node to
destination nodes, and we estimate that the collective characteristics are effective to decide a message
forwarding in the DTN environment. This is because the mobility and traffic characteristics of nodes
are not predictable and thus the collective characteristics of a node can be considered as a capability
to deliver a message to a destination node. In the proposed protocol, average distance and average
time are updated whenever a message is delivered to a destination node. Then, both average distance
and average time as well as delivery predictability of PRoPHET protocol are used to decide message
forwarding. Basically, a message is forwarded to a contact node, if the contact node has smaller average
time and distance values, as well as a higher delivery predictability value. Then, the performance of
the proposed protocol is compared with PRoPHET protocol with GRTR strategy and RPC [19] protocol,
which is one of the latest protocols using contact history information of a mobile node.

The idea of using both average distance and average time information of the proposed protocol is
similar to our preliminary work presented as an extended abstract in [30], but the proposed work is
significantly different from the previous work from the following aspects:

- the proposed protocol extends the forwarding algorithm further by additionally considering the
existence of both average distance and average time information firstly. Then, the hop count of a
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message is checked to choose an appropriate forwarding condition, which is extended from the
preliminary work; and,

- the performance of the proposed protocol is compared with RPC protocol additionally. Also,
the performance of the proposed protocol is compared additionally from the aspect of delivery
latency. Simulations are carried out extensively by additionally considering the change of number
of nodes.

- Related works are significantly extended in this paper.

The remainder of this paper is organized as follows: In Section 2, a detailed algorithm of the
proposed protocol is proposed and the proposed protocol is illustrated using examples. In Section 3,
the performance of the proposed protocol is analyzed extensively using simulation. Finally, Section 4
summarizes this work and presents future work.

2. Proposed Protocol

In the proposed protocol, whenever a node delivers a message to its destination node, it updates
average distance travelled and average time elapsed from the reception of the message. Average
distance and average time of node A are denoted as E[DA] and E[TA], respectively, and they are
updated, as follows:

E[DA] =
TotD

cntDest
(4)

E[TA] =
TotT

cntDest
(5)

where TotD, TotT, and cntDest are total distance travelled, total time elapsed, and total number of
messages for all of the delivered messages, respectively.

Figure 2 shows a scenario of update of average distance and average time when node A and
node B contact each other. Since node A has message M2 with node B as a destination node, it firstly
delivers the message M2 to node B. Then, node A updates average distance and average time by using
the distance travelled and time elapsed, since it received the message M2 from another node firstly.
Also, since node B has message M6 with node A as a destination node, it updates average distance
and average time similarly. In the proposed protocol, we deliver a message to a node with smaller
values of average distance and average time, as well as higher delivery predictability to a destination
node, since a node with a smaller average distance and average time is more expected to contact the
destination node because of its higher contact characteristic. That is, the proposed protocol considers
both a collective property using average distance and average time, and it considers an individual
property using delivery predictability to determine a better forwarder. In order to promote message
dissemination in its early dissemination phase, a message generated originally at a node is forwarded
based on a less strict condition, which will be explained in detail later.
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In the proposed protocol, we consider delivery predictability of PRoPHET protocol for message
forwarding basically. Also, we consider the average distance travelled and the average time elapsed
from the reception of the message to the delivery to the destination message additionally. In order to
apply the message forwarding condition efficiently, we firstly check the existence of average distance
and average time value at a node and we classify a message into two classes, depending on the hop
count of the messages. Hop count is defined as the number of nodes that a message has forwarded
so far. If a message is generated at a node, the hop count of the message is defined as 0, and the hop
count increases by 1 whenever it is forwarded to another node.

If average distance and average time information are not available since it has not delivered
a message to a destination yet, different forwarding conditions are applied, depending on the hop
count of the message. If the hop count is 0, a message is forwarded if the delivery predictability of the
contact node is higher. This is because if the hop count is 0, which means that the message is originally
generated at the current node, we promote the dissemination of such message since it has not been
forwarded much, and thus active message forwarding is more favorable for message delivery. Thus,
we forward such as message, if the basic condition of delivery predictability is met. On the other hand,
if the hop count is larger than 0, which means that the message was forwarded from another node, the
message is not forwarded in the proposed protocol. This is because the average distance and average
time information are not available, and thus we defer the forwarding for such an already forwarded
message until we have enough information to make a good forwarding decision.

If average distance and average time information are available, we apply different forwarding
conditions, depending on the hop count of a message. If the hop count of a message at a node is 0, we
promote a dissemination of such a message, and thus, a message is forwarded, if either (1) the delivery
predictability of the contact node is higher or (2) both average distance and average time of the contact
node are smaller is met. On the other hand, if the hop count is larger than 0, we selectively forward
the message by using more strict condition. That is, a message is forwarded, if both of the conditions
are met.

Figure 3 shows the flowchart of the proposed protocol. Whenever node A contacts node B, they
exchange summary vectors that include the list of messages they have and the destination node
information for the stored messages. If node A has a message with node B as a destination node it
delivers the message to node B, and updates the average distance and average time. Otherwise, node
A and B check if they have average distance and average time already. If they both have those values,
they compare average distance, average time, and delivery predictability. Then, node A checks the
hop count of a considered message. If the hop count of a message is 0, a message is forwarded if the
following condition is met:

(E[DA] > E[DB] AND E[TA] > E[TB]) OR (P(A, D) < P(B, D)) (6)

In Equation (6), the basic idea is to promote a dissemination of a message by allowing for a
forwarding if any of the two conditions, i.e., E[DA] > E[DB] AND E[TA] > E[TB] or P(A, D) < P(B, D), is
met, if the hop count of the message is 0. If the hop count of a message is larger than 0, a message is
forwarded only if the following condition is met:

(E[DA] > E[DB] AND E[TA] > E[TB]) AND (P(A, D) < P(B, D)) (7)

In Equation (7), the basic idea is to restrict a dissemination of a message by allowing a forwarding
only if all of two conditions are met, if the hop count is larger than 0, since it has been forwarded
already, and thus, forwarding should be carried out more selectively in order to reduce traffic overload,
which is a major factor to decrease delivery ratio.

If two contact nodes do not have average distance and average time value yet, only a message
with hop count of 0 is forwarded, if the delivery predictability of the contact node is higher. The same
procedure is repeated for all of the messages of node A.
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Figure 4 shows an example of the operation of the proposed protocol. Before contact occurs, node
A and node B have messages with delivery predictability information as well as average distance and
average time information, as shown in Figure 4a. In the example, it is assumed that both nodes have
delivered a message to a destination node, and thus they have average distance and average time
information, and those values of node B are smaller than those of node A. Since the destination node
of message M4 of node A is node B, it is delivered to node B, and then, both average distance and
average time values of node A are updated. The message M4 is removed from the buffer of node A
after delivery. The message M1 of node A is forwarded to node B, since both average distance and
average time values of node B are smaller than those of node A, although the delivery predictability of
node B is not larger than that of node A, in order to disseminate the message M1 more, which is the
forwarding condition when the hop count of a message is 0 and both average distance and average
time information are available, as in Equation (6). The message M2 of node A is forwarded to node
B, since both the average distance and average time values of node B are smaller than those of node
A and the delivery predictability of node B is larger than that of node A, which is the forwarding
condition when the hop count of a message is larger than 0 and both the average distance and average
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time information are available, as in Equation (7). On the other hand, the message M3 of node A is
not forwarded to node B, since the forwarding condition Equation (7) is not met, i.e., the delivery
predictability of node B to the destination node D is smaller than that of node A, although both the
average distance and average time values of node B are smaller than those of node A. The message
M5 of node B is not forwarded to node A, since the forwarding condition Equation (4) is not met, i.e.,
the delivery predictability of node A to a node E, which is the destination node of M5, is not larger
than that of node B and both average distance and average time values of node A are not smaller than
those of node B. The message M7 of node B is forwarded to node A, since the delivery predictability of
node A to node F, which is the destination node of message M7, is larger than that of node B, although
both average distance and average time values of node A are not smaller than those of node B, as in
Equation (6), in order to disseminate the message M7 more.
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3. Performance Analysis

The performance of the proposed protocol is analyzed and compared with PRoPHET protocol
with GRTR strategy and RPC protocol [19], which is one of the latest protocols while using history
information. For performance analysis, opportunistic network environment (ONE) simulator is
used to analyze the performance, which is one of the most widely used simulators for DTN [31,32].
The parameter values assumed in the simulation are given in Table 1.

Table 1. Simulation Parameter Values.

Parameter Value

Area Size (m2) 4500 × 3400
Router PRoPHET Router

Movement model
pedestrians, car: Shortest Path Map Based Movement

tram: Map Route Movement

Speed (m/s)
pedestrian: U[0.5, 1.5]

car: U[2.7, 13.9]
tram: U[7, 10]

Number of Node 126 (default value)
Simulation Time (s) 100,000

Transmission range (m) 10
Packet transmission speed 250 Kbyte/s

Buffer Size (Bytes) 10, 20, 30 (default value), 40, 50, 60, 70, 80, 90, 100 M,
Message interval (s) 25~35 (default value)
Message size (Bytes) U[500 k~1 M]

Figures 5–7 show delivery ratio, overhead ratio, and delivery latency of the proposed protocol,
PRoPHET, and RPC, for varying the buffer size of a mobile node, where delivery predictability,
overhead ratio, and delivery latency are defined as follow:

delivery ratio =
Ndm
Ncm

(8)

overhead ratio =
Nrm − Ndm

Ndm
(9)

delivery latency =
SDdm
Ndm

(10)

where Ndm, Ncm, Nrm, and SDdm represent the number of successfully delivered messages, the number
of created messages, the number of relayed messages, and the sum of the delays of the all delivered
messages, respectively.

Figure 5 shows delivery ratio for varying buffer size. The delivery ratios of all three protocols
increase as the buffer size increases, since more buffer size can accommodate more messages, and
thus more messages can be delivered successfully without removal at the buffer. The delivery ratio
saturates as the buffer size increases, since the change of buffer size does not have significant effect on
the delivery. The proposed protocol has better delivery ratio than both PRoPHET and RPC for fixed
buffer size, since the proposed protocol can deliver messages more efficiently.

Figure 6 shows overhead ratio by varying buffer size. The overhead ratios of all three protocols
decrease as buffer size increases since the delivery probability increases as buffer size increases and
the effect of increased number of successfully is more dominant in the calculation of overhead as in
Equation (9). The proposed protocol has the smaller overhead than both PRoPHET and RPT for fixed
buffer size, since it has higher delivery probability and it efficiently limits the number of forwarding
by comparing the average distance and average time as well as delivery predictability.
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Figure 7 shows delivery latency by varying buffer size. The delivery latencies of three protocols
increase as buffer size increases, since more buffer size can accommodate more messages, and thus
more time is needed for forwarding to another node during short contact duration. The proposed
protocol has smaller delivery latency than both PRoPHET and RPC for fixed buffer size, since the
proposed protocol efficiently limits the forwarding by comparing the average distance and average
time, as well as delivery predictability.
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Figures 8–10 show the delivery ratio, overhead ratio, and delivery latency of the proposed protocol,
PRoPHET, and RPC, by varying the message generation interval. As shown in Figure 8, the delivery
ratios of all three protocols increase as the message generation interval increases, since the number of
generated message decreases as the message generation interval increases, and thus, the number of
removed message decreases for a fixed buffer size. The proposed protocol has larger delivery ratio
than PRoPHET and RPC for a fixed value of message generation interval.
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As shown in Figure 9, the overhead ratios of all three protocols increase as message generation
interval increases, since the number of delivered messages decreases as message generation interval
increases. The proposed protocol has smaller overhead ratio than both PRoPHET and RPC, since it
has higher delivery probability and it efficiently limits the number of forwarding by comparing the
average distance and average time, as well as delivery predictability.
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The delivery latencies of all three protocols increase as message generation interval increases, as
shown in Figure 10, since the number of messages dropped at the buffer decreases since the number
of messages decreases, and thus, more time is needed for forwarding to another node during short
contact duration. The proposed protocol has smaller delivery latency than both PRoPHET and RPC,
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since it efficiently limits the number of forwarding by comparing average distance and average time as
well as delivery predictability.Appl. Sci. 2018, 8, 1344 12 of 15 
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Figures 11–13 show the delivery ratio, overhead ratio, and delivery latency of the proposed
protocol, PRoPHET, and RPC, by varying the number of nodes. As shown in Figure 11, the delivery
ratios of PRoPHET and RPC protocol does not increase as the number of nodes increases since more
nodes generate more message copies and thus the number of delivered message decreases due to more
message removal at the buffer. The delivery ratio of the proposed protocol increases as the number of
node increases since the proposed protocol efficiently selects forwarding node out of more number
of possible forwarding nodes. The proposed protocol has larger delivery ratio than both PRoPHET
and RPC.
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As shown in Figure 12, the overhead ratios of all three protocols increase as the number of nodes
increase. In both PRoPHET and RPC, the overhead ratio increases due to more relayed messages and
decreased number of delivered messages in Equation (9). The overhead ratio of the proposed protocol
also increases, since the effect of increased relayed messages due to more number of nodes is more
dominant that the effect of more delivered messages. The proposed protocol has smaller overhead
ratio than both PRoPHET and RPC.
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As shown in Figure 13, the delivery latencies of all three protocols decrease as the number of
nodes increases, since more contacts are possible when the number of nodes is higher and messages
can be delivered more quickly. The proposed protocol has smaller delivery latency than both PRoPHET
and RPC.

4. Conclusions and Future Work

In this paper, we proposed an improved opportunistic routing protocol, where the context
information of average distance travelled and average time elapsed from the reception of a message to
delivery of the message to the destination node was used. In the proposed protocol, average distance
and average time were updated whenever a message is delivered to a destination node. Then, both the
proposed average distance and average time as well as delivery predictability of PRoPHET protocol
were used to decide message forwarding. The performance of the proposed protocol was compared
with PRoPHET and RPC protocol. Simulation results show that the proposed protocol had better
performance than PRoPHET and RPC from the aspect of delivery ratio, overhead ratio, and delivery
latency for varying buffer size, message generation interval, and the number of nodes. In our future
work, we will develop an analytical model of the proposed protocol in detail and verify the numerical
results in this paper. After that, the optimization model of the proposed protocol will be developed
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and solved using particle swarm optimization model, which is one of the widely used bio-inspired
optimization techniques.
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