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Abstract: The major objective of this work is to develop an efficient Finite Element Analysis (FEA)
procedure to simulate wave propagation in air-filled pipes accurately. The development of such
a simulation technique is essential in the study of wave propagation in pipe networks such as oil and
gas pipelines and urban water distribution networks. While numerical analysis using FEA seems
superficially straight forward, this paper demonstrates that the element type and refinement used
for acoustic FEA have a significant effect on the accuracy of the result achieved and the efficiency of
the computation. In particular, it is shown that the well-known, better overall performance achieved
with 3D solid hexahedral elements in comparison with 2D-type elements in most stress and thermal
applications does not occur with acoustic analysis. In this paper, FEA models were developed taking
into account the influence of element type and sizes using 2D-like and 3D element formulations,
as well as linear and quadratic nodal interpolations. Different mesh sizes, ranging from large to very
small acoustic wavelengths, were considered. The simulation scheme was verified using the Time of
Flight approach to derive the predicted acoustic wave velocity which was compared with the true
acoustic wave velocity, based on the input bulk modulus and density of air. For finite element sizes of
the same order as acoustic wavelengths which correspond to acoustic frequencies between 1 kHz and
1 MHz, the errors associated with the predictions based on the 3D solid hexahedral acoustic elements
were mostly greater than 15%. However, for the same element sizes, the errors associated with the
predictions based on the 2D-like axisymmetric solid acoustic elements were mostly less than 2%.
This indicates that the 2D-like axisymmetric solid acoustic elements are much more efficient than the
3D hexahedral acoustic elements in predicting acoustic wave propagation in air-filled pipes, as they
give higher accuracies and are less computationally intensive. In most stress and thermal FEA, the
3D solid hexahedral elements are much more efficient than 2D-type elements. However, for acoustic
FEA, the results show that 2D-like axisymmetric elements are much more efficient than 3D solid
hexahedral elements.

Keywords: Finite Element Analysis (FEA); Time of Flight; acoustic reflectometry; acoustic
wave propagation

1. Introduction

Understanding the wave propagation in a pipe is of fundamental importance to some engineering
systems such as oil and gas pipeline systems and urban water distribution networks. Pipelines are
extensively used to transport energy products like crude oil and gas, and for water transport and
distribution. Corrosion flaws can begin to develop as pipelines age, and it is therefore vital to develop
ways to inspect them efficiently. Many industrial pipelines are buried in the ground and are mostly
isolated and inaccessible. Therefore, there is a need to employ remote sensing techniques to monitor
the development of flaws in such pipelines. The acoustic wave propagation technique has become
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a very attractive, non-destructive testing technique for the remote monitoring of pipelines. The wave
propagation technique has the advantage of full volumetric inspection, and can be used to find the
characteristics of flow in a fluid-filled pipeline. The acoustic wave propagation technique operates in
elongated geometrical bodies with constant or variable cross-sections, e.g., pipes. Sound generated
in these bodies is constrained to propagate in the pipe wall, as well as in the fluid inside the pipe,
and is reflected back to the generation point when a change in impedance (discontinuity) occurs.
Therefore, acoustic wave propagation can only occur when there is a medium in which to propagate.

Acoustic wave propagation phenomena along pipelines have been investigated theoretically
and experimentally. Several modifications of the acoustic wave equation to more complex equations
have been established. For instance, for a fluid flowing with varying density and acoustic velocity,
Bergmann [1] previously proposed an equation that is widely used in underwater acoustics problems,
whereas Pierce [2] derived a generalized wave equation for an inhomogeneous fluid in motion whose
flow profile differs in time and position. Chen and Shen [3] proposed a method to analyze the surface
waves propagating on a grounded anisotropic slab. They considered the field variation in the direction
parallel to the wave propagation. The wave propagation characteristics were derived on the basis of
Maxwell’s equation and boundary conditions.

Recent developments showed that acoustic wave propagation using the Finite Element Method
(FEM) has been utilized in pipeline detection. The sound propagation within a fluid flow in a pipe
can be evaluated, taking the flow profile as a boundary condition for the simulation task. The FEA
solvers for linear and non-linear acoustic wave equations vary. This leads to a symmetric matrix
formulation for fluid-structure interaction [4], and this is being used in several computation solvers for
acoustics. Mohamed and Walied [5] developed a finite element model of a surface acoustic wave sensor
using the ANSYS simulation tool; the model was tested for hydrogen detection. Another numerical
FEA approach was proposed for the calculation of non-linear propagation of acoustic waves by
Kagawa et al. [6].

Eccardt et al. [7] presented an FEA method based on a modified wave equation, and compared
their results with previously developed techniques like the Holtz-Kirchhoff integral and ray
tracing method. They obtained sets of primary and secondary wave equations, and for numerical
implementation, they employed the Finite Element Method to discretize and solve the equation integral
scheme with respect to time. The numerical result shows that the equations are valid, but with more
pronounced discretization error for the secondary waves. An FE numerical technique for simulating
a 3D acoustic-wave correlator was presented by Tikka et al. [8]. They presented and discussed the
results of the analysis of device responses for variable acoustic modes and differences in electrical
response in the system. They concluded that FEA provides an effective means of analysing the
correlator’s response to various propagating modes.

Kutiš et al. [9] used FEM in modelling and simulation of surface acoustic wave sensor.
They performed modal and transient piezoelectric analysis to determine the eigenmodes and
frequencies of the system that were used to investigate the harmonic wave propagation characteristics
of the system. Yu and Yan [10] conducted a series of numerical studies using FEA to investigate
the wave propagation behaviour in wooden poles. Their results showed that a higher elastic
modulus in longitudinal direction always generated higher guided wave behaviour in a wooden
pole, and experimental testing was performed to validate their findings. Many works have been
conducted with the aim of improving the computational efficiency and accuracy of the convectional
FEA method. Owowo and Oyadiji [11] investigated the effect of leakage on acoustic wave propagation
in an air-filled pipe using the FEA method and experimental testing. Their predicted and measured
data was subsequently used to identify and locate the leakage using a Time-of-Flight approach.

Other numerical techniques have been used for predicting acoustic wave propagation.
These include the Boundary Element Method (BEM), Statistical Energy Analysis (SEA), and the SWAN
(Simulating Waves Nearshore) spectral phase averaged wave model. For example, Chen et al. [12]
used the Finite Element Method and Boundary Element Method (FEM-BEM) to analyse acoustic
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fluid-structure interaction. An algorithm based on FEM-BEM was presented for simulation of
fluid-structure interaction in their work. The accuracy of the simulation was improved by evaluating
the single integrals in boundary integral equations using the Cauchy principal value and the Hadamard
finite part integral method.

In order to understand the mechanism of acoustic wave propagation in a body, the noise
propagation in ship structures was investigated by Weryk et al. [13], and was tested in several vessels
using Statistic Energy Analysis (SEA). Their predicted result was compared with the experimental
results obtained from tests carried out using similar vessels. Eugen [14] studied the patterns by which
wave energy propagates in the western side of the Black sea and simulated the propagation using the
SWAN spectral phase averaged wave model. The study shows that there is a tendency for the waves
to travel faster along the Black sea surface.

A field experiment to assess the feasibility of using commercially available accelerometers and
related signal condition to analyse acoustic wave propagation in a pipe was recently conducted [15].
Results from the experiments confirmed that attenuation is the most important factor that affects
the viability of acoustic wave propagation for impact detection. In another work, a sound intensity
measurement technique was used to investigate how sound energy propagates around organ pipes [16].
The authors obtained the sound intensity distributions around the pipes, and the directions of the
acoustic energy flow were presented. Papadopoulou et al. [17] used the acoustics pulse reflectometer
technique for flaw detection in pipes in the time domain.

The use of analytical equations to investigate acoustic- or pressure-wave propagation in
a fluid-filled pipeline might be straight-forward and easily implemented for a simple straight pipe.
However, when pipe networks are involved, the prediction of acoustic or pressure wave propagation
becomes very difficult to implement analytically. In such cases, the use of a numerical method,
such as FEA, is imperative. However, large errors may also occur in the numerical predictions of
acoustic wave propagation. For example, when FEA was used to predict acoustic wave propagation
in an air-filled pipe, as in the work by Owowo and Oyadiji [11], very large acoustic speed errors
were obtained. They used 3D hexahedral acoustic elements whose structural counterparts usually
give accurate predictions. They expected the 3D hexahedral acoustic elements to also give accurate
predictions, but did not check to confirm the degree of their accuracy. Therefore, there is a need to
further investigate the FEA of acoustic wave propagation in fluid-filled pipes using other acoustic
finite elements in order to achieve accurate and efficient predictions.

In this paper, the simulation of acoustic wave propagation in a pipe using FEA is presented
and verified using the Time of Flight approach to deduce the acoustic velocity associated with the
predictions. The use of different acoustic element types of 2D-like and 3D formulations, and of linear
and quadratic interpolations, are investigated in order to deduce the most accurate acoustic FEA
approach, and thereby, to minimise the errors.

2. Acoustic Wave Theory and Finite Element Formulation

2.1. Acoustic Wave Theory

Acoustic wave propagation in a homogenous fluid media at rest is governed by the wave equation:
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2
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1
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and the equations for coordinate transformations are given by:

x = rcos θ, y = rsin θ, r =
√

x2 + y2 (4)

where c is the velocity of acoustic wave propagation, Φ velocity potential and x, y, and z are standard
Cartesian coordinates. The corresponding acoustic pressure wave propagation is governed by:

1 
 

 
2 p =

1
c2

∂2 p
∂t2 (5)

where the pressure, p and instantaneous particle velocity, u are related to the velocity potential, Φ by:

u =

1 
 

 Φ; p = −ρ
∂Φ

∂t
(6)

For an open-ended air-filled pipe without defect, with uniform cross-sectional area, driven by
a sound pulse, the general solution of Equation (1) is of the form [18]:

qkx ,ky ,kz(x, y, z, t) = Aei(kx x+kyy+kzz−ωt) (7)

or
qkr ,kθ ,kz(r, θ, z, t) = Aei(krr+kθθ+kzz−ωt) (8)

where q represents the longitudinal displacement of the fluid as the wave propagates through it, t is
time, ω is the frequency and k is the wave number. The FEA method based on Equation (1) leads to
a symmetric matrix formulation for fluid structure interaction [1,3] which is used in several numerical
computational analysis programs for acoustics. For direct integration transient analysis, FEA solutions
are based on Equation (7).

2.2. Acoustic Finite Element Formulation in the Abaqus FEA Software

The acoustic elements in the Abaqus FEA software model the propagation of acoustic waves,
and are active in dynamic analysis procedures. In the Abaqus FEA software (version 6.14,
ABAQUS Inc, Johnston, RI, USA), the analysis with acoustic elements should be thought of as
small-displacement linear perturbation analysis. The equation for small motions of compressible, adiabatic
fluid is taken to be [19]:

∂p
∂x

+ γ
.
u(x, α) + ρ

..
u(x, α) = 0 (9)

where p is the pressure in the fluid, x is the spatial position of the fluid particle,
.
u is the fluid particle

velocity,
..
u is the fluid particle acceleration, ρ is the density of the fluid, γ is the “volumetric drag”

(force per unit volume per velocity), and α are independent field variables such as temperature,
humidity of air, or salinity of water, on which ρ and γ may depend.

The constitutive behavior of the fluid is assumed to be inviscid, linear, and compressible;
the pressure can be obtained as

p = −K(x, α)
∂

∂x
·u (10)

where K is the bulk modulus of the fluid.
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2.3. Direct Integration Transient Dynamics Formulation

The partial differential equation used in direct integration transient analysis in the Abaqus FEA
software is obtained by combining Equations (9) and (10), to give the equation of motion for the fluid
in terms of the fluid pressure [19]:

1
K

..
p +

γ

ρ K
.
p− ∂

∂x
·
(

1
ρ

∂p
∂x

)
= 0 (11)

An equivalent weak variational form of the equation of motion, Equation (11), is obtained by
introducing an arbitrary variational field, δp and integrating over the fluid domain to give:

∫
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Applying all necessary boundary conditions, Green’s theorem allows the Equation (12) to give
the final variational statement for the acoustic medium as [19]:∫
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where n = −n is the inward normal of the surface. For the structural interface:∫
V

δε : σdV +
∫

V
βρδu· .udV +

∫
V

ρδu· ..udV +
∫

V
pδu·ndS +

∫
V

δu·tdS = 0 (14)

where σ is the stress at a point in the structure, p is the pressure acting on the fluid-structural interface,
n is the outward normal to the structure, ρ is the density of the material, β is the mass proportional
damping factor,

..
u is the acceleration of a point in the structure, T is the surface traction applied to

the structure, δu is a variational displacement field, and δε is the strain variation that is compatible
with δu.

2.4. The Discretized Finite Element Equation

The variational problem for the coupled fields u and p is defined by Equations (13) and (14).
The problem domain is discretized by introducing the following interpolation functions (i) in the fluid:
P = HP pP, where H is the interpolation function in the fluid domain and superscript P = 1, 2, . . . up
to the number of pressure nodes; and (ii) in the structure: u = NN uN , where N is the interpolation
function in the structural domain and superscript N = 1, 2, . . . up to the number of displacement
degrees of freedom. Using Galerkin method and the Petrov-Galerkin substitution, the discretized
coupled variational equation is obtained by adding Equations (13) and (14) to give [19]:

−δP̂P
{(

MPQ
f + MPQ

f r

) ..
P

Q
+
(

CPQ
f + CPQ

f r

) .
P

Q
+
(

KPQ
f + KPQ

f r + KPQ
f i

)
PQ − SPM

f s
..
u− PP

f

}
+δu

{
IN + MNM ..

u + CNM
(m)

.
u +

[
SQN

f s

]T
PQ − PN

}
= 0

(15)

where the superscripts P, Q refer to pressure degrees of freedom in the fluid and N, M refer to
displacement degrees of freedom in the structure and the bracketed terms are integral expressions of
the interpolation functions H and N defined in [19].



Appl. Sci. 2018, 8, 1318 6 of 20

3. Acoustic Elements

Acoustic elements are formulated for modelling an acoustic medium undergoing small
pressure changes. The solution in the acoustic medium is defined by a single pressure variable.
Impedance boundary conditions representing absorbing surfaces or radiation to an infinite exterior are
available on the surfaces of these acoustic elements. The major acoustic element types in the Abaqus
FEA software are the acoustic 3D hexahedral solid elements (AC3D8 and AC3D20) and acoustic
axisymmetric solid elements (ACAX4 and ACAX8).

3.1. Acoustic 3D Solid Elements (AC3D8 and AC3D20)

Three-dimensional elements are defined in the global X, Y, Z space. These elements are used
when the geometry and/or the applied loading are too complex for any other element type with fewer
spatial dimensions. The solid 3D acoustic elements in the Abaqus FEA software includes the 8-node
brick (AC3D8) element that has linear nodal interpolations and the 20-node brick (AC3D20) element
which has quadratic nodal interpolation as shown in Figure 1.Appl. Sci. 2018, 8, x  6 of 19 
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Figure 1. Solid hexahedral elements: (a) 8-nodes; (b) 20-nodes [19].

3.2. Acoustic Axisymmetric Solid Elements (ACAX4 and ACAX8)

Axisymmetric elements provide for the modelling of bodies of revolution under axially symmetric
loading conditions. A body of revolution is generated by revolving a plane cross-section about an axis
(the symmetry axis), and is readily described in cylindrical polar coordinates r, z, and θ. There are two
main acoustic axisymmetric element types used in the Abaqus FEA software: the 4-node quadrilateral
element (ACAX4) with linear nodal interpolation and the 8-node quadrilateral (ACAX8) element with
quadratic nodal interpolation. Figure 2 shows a typical reference cross-section and the elements in
an axisymmetric solid at θ = 0. These elements are defined as if they are 2D elements, but they are
actually solid elements when they are internally revolved in the software as illustrated in Figure 2.
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4. Acoustic Finite Element Analysis (AFEA) of Acoustic Wave Propagation in a Straight Pipe

4.1. Finite Element Modelling Description

To perform the acoustic wave propagation using FEA in a pipe, three stages must be considered
in the numerical modelling: (i) pre-processing, (ii) analysis, and (iii) post-processing. The analysis
starts from the development of the geometry of the air cavity (domain) of an air-filled pipe. This is
followed by the discretization of the geometry into smaller discrete elements. The elements are joined
together by nodes to form a mesh. The amount of elements used for a particular model is referred
to as the mesh density. The acoustic finite element is a unique element designed for the simulation
of a system undergoing small variation in acoustic pressure. The simulation process of the AFEA of
the acoustic wave reflectometry method involves the integration of the geometrical description of
a model with the parameters of the fluid-medium, such as: pressure, momentum, and energy across
the elements of the domain. The AFEA then evaluates the medium responses at each of the integration
points of the elements, thereby obtaining the responses at the nodes that join the elements together.

Thus, for any other point within the elements, results are obtained by interpolation from the
nodal data. However, the geometrical order of interpolation is determined by the kind of element
employed for the analysis. There are two principal interpolations, namely: linear interpolation used by
element types ACAX4 and AC3D8, and quadratic interpolations used by element types ACAX8 and
AC3D20 [19].

4.2. Analysis Procedure and Boundary Conditions

In creating the intact pipe model using the solid elements AC3D8 and AC3D20, the 3-D modelling
space of the Abaqus/CAE part module was used to create a single solid shape deformable cylinder
that represents the model of the air volume that occupied the pipe cavity. In the case of the intact pipe
model using the axisymmetric elements ACAX4 and ACAX8, a longitudinal sectional plane of the
3-D modelling space was used to part-define the model from which the full solid shape deformable
cylinder was derived internally by revolving the plane about its axis. In both cases, only the fluid (air)
content of the pipe was modelled without the inclusion of the pipe in the model. Since the specific
acoustic impedance of the air medium is much smaller than the specific impedance of the wall of
a metallic or plastic pipe, this assumption is reasonable. This eliminates contact interaction of the solid
pipe wall and the fluid, and as a consequence, reduces computational time and resources.

The acoustic properties of air used for the intact models are density ρ = 1.225 kg m−3 and bulk
modulus B = 142, 000 N m−2 which give an acoustic velocity of 340.47 m s−1. Volumetric drag of
the air medium was assumed to have negligible effect on the analysis and was ignored. The next
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step in creating the model involves defining and assigning material and section properties to the
deformable domain.

In defining the analysis step for the simulation, the step module of the Abaqus/CAE was selected.
The air properties were evaluated to define a general dynamic implicit step with a primary period
of 1.469× 10−3 s for the initial step, and with an increment size set at 1.469× 10−6 s. Also, a fixed
maximum number of time increments of 10, 000 was defined to guarantee convergence in the time
increments. The solution technique used for the equation solver was the Full Newton, while the default
analysis product that converts severe discontinuity iterations to propagate from the previous step was
selected. The extrapolation of prior state of each increment was chosen as linear, while Alpha time
integrator parameter was specified as −0.333.

An acoustic impulse of a half sine wave, as shown in Figure 3, was created. The pulse had
a maximum amplitude of 1 Pa, and was applied for a duration of 10−4 s at the inlet. Similarly, at the
pipe outlet region, a zero acoustic pressure was defined to create a profile of pressure damping from
maximum to atmospheric at the pipe exit boundary.
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4.3. Simulation Results

4.3.1. Verification of Results Using Time of Flight

The FEA of acoustic wave propagation in a pipe of diameter 25.4 mm and of length 4.02 m
was earlier conducted by Owowo and Oyadiji [11]. A 20-node quadratic acoustic brick (AC3D20)
element type was employed for their analysis, as illustrated in Figure 4. As a starting point in these
investigations, the acoustic wave propagation in the same pipe was analysed using the AC3D20
element type and the same mesh seed size of 9 mm. The responses obtained at six monitoring points,
which are designated as ‘sensor’ locations s1 to s6, as shown in Figure 5, are illustrated in Figure 6.
These results are identical to those shown in the paper by Owowo and Oyadiji [11], and the Time of
Flight approach was used to check their accuracy.

Figure 6 presents stacked plots of the dynamic pressure versus time waveforms at the six
monitoring nodes identified in the intact pipe model. It should be noted that all the plots start
with a dynamic pressure amplitude of zero. Thus, in all cases, the maximum peak amplitudes are
less than 1.0 Pa. The stacking of the plots enables a direct comparison of the forward-going and
backward-going (reflected) wavefronts at the different sensor locations. From the figure, the first
positive peaks seen in each of the graphs indicate the arrival of the pressure pulse to the individual
sensors. The compression pulse propagates past the respective sensors (s1–s6) in the order of time seen
in the second column of Table 1. On the other hand, the first negative peaks seen at the various sensor
locations are the times taken by the wave to travel to the pipe outlet and back to the corresponding
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sensor locations. Thus, since s6 is located close to the pipe outlet, the reflection of the wave from Pout

is first noticed by s6, then followed by s5–s3, and subsequently to s2 and s1, at times tabulated in the
third column of Table 1.

Appl. Sci. 2018, 8, x  8 of 19 

4.3. Simulation Results 

4.3.1. Verification of Results Using Time of Flight 

The FEA of acoustic wave propagation in a pipe of diameter 25.4 mm and of length 4.02 m was 
earlier conducted by Owowo and Oyadiji [11]. A 20-node quadratic acoustic brick (AC3D20) element 
type was employed for their analysis, as illustrated in Figure 4. As a starting point in these 
investigations, the acoustic wave propagation in the same pipe was analysed using the AC3D20 
element type and the same mesh seed size of 9 mm. The responses obtained at six monitoring points, 
which are designated as ‘sensor’ locations s1 to s6, as shown in Figure 5, are illustrated in Figure 6. 
These results are identical to those shown in the paper by Owowo and Oyadiji [11], and the Time of 
Flight approach was used to check their accuracy. 

 
Figure 4. Air-filled pipe model meshed using the acoustic continuum 3D 20-node brick elements 
(AC3D20). 

 
Figure 5. Schematic pipe geometry in 2D. 

 
Figure 6. Stacked Plots of pressure vs. time predicted using FEA at sensor 𝑟𝑟1 to 𝑟𝑟6 on intact air–filled 
pipe using AC3D20 (Note: all plots start with zero amplitude; maximum peak amplitude of each plot 
is less than 1.0 Pa). 

0 0.01 0.02 0.03 0.04 0.05

Time (s)

0

1

2

3

4

D
yn

am
ic

 p
re

ss
ur

e 
(P

a)

s
1

s
2

s
3

s
4

s
5

s
6

AC3D20 Element

Figure 4. Air-filled pipe model meshed using the acoustic continuum 3D 20-node brick elements
(AC3D20).

Appl. Sci. 2018, 8, x  8 of 19 

4.3. Simulation Results 

4.3.1. Verification of Results Using Time of Flight 

The FEA of acoustic wave propagation in a pipe of diameter 25.4 mm and of length 4.02 m was 
earlier conducted by Owowo and Oyadiji [11]. A 20-node quadratic acoustic brick (AC3D20) element 
type was employed for their analysis, as illustrated in Figure 4. As a starting point in these 
investigations, the acoustic wave propagation in the same pipe was analysed using the AC3D20 
element type and the same mesh seed size of 9 mm. The responses obtained at six monitoring points, 
which are designated as ‘sensor’ locations s1 to s6, as shown in Figure 5, are illustrated in Figure 6. 
These results are identical to those shown in the paper by Owowo and Oyadiji [11], and the Time of 
Flight approach was used to check their accuracy. 

 
Figure 4. Air-filled pipe model meshed using the acoustic continuum 3D 20-node brick elements 
(AC3D20). 

 
Figure 5. Schematic pipe geometry in 2D. 

 
Figure 6. Stacked Plots of pressure vs. time predicted using FEA at sensor 𝑟𝑟1 to 𝑟𝑟6 on intact air–filled 
pipe using AC3D20 (Note: all plots start with zero amplitude; maximum peak amplitude of each plot 
is less than 1.0 Pa). 

0 0.01 0.02 0.03 0.04 0.05

Time (s)

0

1

2

3

4

D
yn

am
ic

 p
re

ss
ur

e 
(P

a)

s
1

s
2

s
3

s
4

s
5

s
6

AC3D20 Element

Figure 5. Schematic pipe geometry in 2D.

Appl. Sci. 2018, 8, x  8 of 19 

4.3. Simulation Results 

4.3.1. Verification of Results Using Time of Flight 

The FEA of acoustic wave propagation in a pipe of diameter 25.4 mm and of length 4.02 m was 
earlier conducted by Owowo and Oyadiji [11]. A 20-node quadratic acoustic brick (AC3D20) element 
type was employed for their analysis, as illustrated in Figure 4. As a starting point in these 
investigations, the acoustic wave propagation in the same pipe was analysed using the AC3D20 
element type and the same mesh seed size of 9 mm. The responses obtained at six monitoring points, 
which are designated as ‘sensor’ locations s1 to s6, as shown in Figure 5, are illustrated in Figure 6. 
These results are identical to those shown in the paper by Owowo and Oyadiji [11], and the Time of 
Flight approach was used to check their accuracy. 

 
Figure 4. Air-filled pipe model meshed using the acoustic continuum 3D 20-node brick elements 
(AC3D20). 

 
Figure 5. Schematic pipe geometry in 2D. 

 
Figure 6. Stacked Plots of pressure vs. time predicted using FEA at sensor 𝑟𝑟1 to 𝑟𝑟6 on intact air–filled 
pipe using AC3D20 (Note: all plots start with zero amplitude; maximum peak amplitude of each plot 
is less than 1.0 Pa). 

0 0.01 0.02 0.03 0.04 0.05

Time (s)

0

1

2

3

4

D
yn

am
ic

 p
re

ss
ur

e 
(P

a)

s
1

s
2

s
3

s
4

s
5

s
6

AC3D20 Element

Figure 6. Stacked Plots of pressure vs. time predicted using FEA at sensor s1 to s6 on intact air–filled
pipe using AC3D20 (Note: all plots start with zero amplitude; maximum peak amplitude of each plot
is less than 1.0 Pa).

A magnified plot of the dynamic pressure versus time waveform predicted for sensor s1 is shown
in Figure 7. Considering the predicted times of flight, the wave speed can be deduced from the arrival
times predicted for sensor locations s1 to s6 using the following relation:

c =
∆`
∆t

=
2× (`− ls)

tp − ts
(16)
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where ` is the pipe length (m), ls is the distance from the pipe inlet to sensor location (m), c is the
wave speed, tp is the time it takes the wave to travel from the inlet to the sensor then to the pipe exit
and back to sensor location (s) and ts is the time it takes the wave to travel from the inlet to sensor
location sn (s).

Table 1. Arrival Time of Compression and Rarefaction Wave-front using the acoustic continuum 3D
20-node brick elements (AC3D20).

sn ls (m) ts (ms) tp (ms) c (ms−1) Error, E (%)

s1 0.128 0.3 20.5 395.1 14.5
s2 0.938 2.2 18.2 395.4 14.6
s3 1.758 4.2 16.0 397.9 15.3
s4 2.240 5.5 14.8 397.9 15.3
s5 3.050 7.6 12.8 400.6 16.1
s6 3.870 9.6 10.7 414.8 20.2
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Figure 7. Enlarged view of pressure vs. time response predicted at sensor s1 using AC3D20
element type.

Substituting the respective data in Equation (16) for sensor s1 gives;

c =
2× (4.12− 0.128)

(20.51− 0.302)(×10−3)
≈ 395.09 ms−1

Similarly, the wave speed c, according to the time of flight for other sensor points (s1–s6) are
computed and tabulated in Table 1. Using the properties of air used for the AFE analysis, the actual
speed of sound in air is approximately 345 ms−1. Comparison of the derived sound speed (derived
from the predicted arrival times) with the actual sound speed used in the AFEA gives the errors E
associated with each sensor location, as shown in the fifth column of Table 1. These errors are rather
large and unacceptable. They can be attributed to the coarseness of the mesh used in the Abaqus AFEA.
Therefore, there is a need for mesh refinement, in order to get a more accurate result. This refinement
is a bit challenging; as the model size will become bigger, the computation time will be too long and
the grid cells will be too much to be numerically computed on a regular computer.

In order to use a finer mesh size without increasing the model size, axisymmetric element types
were also used in the simulation. AFEA of acoustic wave propagation in an intact air-filled pipe
was conducted using solid axisymmetric element type ACAX8, as illustrated in Figure 8. With this
axisymmetric element type, it was possible to use very refined element sizes of 1 mm, and even down
to 0.01 mm, for the simulations on a desktop PC with standard specifications, whereas the use of
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the solid element types AC3D8 and AC3D20 was not possible for element mesh size less than 9 mm.
The predicted wave propagation using element type ACAX8 for the smallest mesh size is shown in
Figure 9. Similarly, the Time of Flight approach was used to verify the acoustic speed results from the
arrival time predicted for sensor locations s1 extracted from Figure 10.
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Figure 8. A meshed air-filled pipe model using the acoustic continuum axisymmetric 8-node element
(ACAX8).
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Figure 9. Stacked Plots of pressure vs. time predicted using FEA at sensor s1 to s6 on intact air–filled
pipe using ACAX8 (Note: all plots start with zero amplitude; maximum peak amplitude of each plot is
less than 1.0 Pa).

Similarly, by using the properties of air used for the FEA analysis, the actual speed of sound in
air is approximately 345 ms−1. Comparison of the derived sound speed (derived from the predicted
arrival times) with the actual sound speed used in the AFEA gives the errors (E) associated with each
sensor location, as shown in the sixth column of Table 1. These errors are very small in comparison to
the errors associated with the use of the AC3D20 element. The relatively very small errors associated
with the use of the ACAX8 element type indicate that the axisymmetric elements are better suited
for acoustic wave propagation simulations than the AC3D20 element type. Nevertheless, it is seen
from Table 2 that the errors associated with sensor location s6 is about 3.5 to 7 times that of the errors
associated with the other sensor locations. This is due to the closeness of sensor s6 to the end of the
open-ended pipe outlet where the acoustic wave is reflected.
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c =
2× (4.12− 0.128)

(23.35− 0.436)(×10−3)
≈ 348.43 ms−1

Table 2. Arrival Time of Compression and Rarefaction Wave-front using the acoustic continuum
axisymmetric 8-node element (ACAX8).

sn ls (m) ts (ms) tp (ms) c (ms−1) Error, E (%)

s1 0.128 0.43 23.3 348.4 0.9
s2 0.938 2.76 21.0 348.5 1.0
s3 1.758 5.08 18.7 346.9 0.5
s4 2.240 6.49 17.2 348.2 0.9
s5 3.050 8.81 14.9 347.7 0.7
s6 3.870 11.1 12.6 357.1 3.5

4.3.2. Sensitivity of Acoustic Finite Elements

In this section, a sensitivity analysis is developed for the meshing of the acoustic medium. The aim
is to investigate the influence of mesh element type and mesh size in acoustic FEA. The AC3D20
element in the Abaqus FEA software produced a lot of computational errors in the derived acoustic
speed, as seen in the sixth column of Table 1. Most of the errors in the acoustic speed are more than
15%. To address this much more closely, the two axisymmetric element types ACAX4 and ACAX8
and the two solid element types AC3D8 and AC3D20 were used. Also, various mesh densities were
employed involving element seed sizes of 120 mm down to 0.01 mm. While it was possible to run
these analyses using the axisymmetric element types ACAX4 and ACAX8 on a regular desktop PC
(which has a single processor), the analyses using the solid element types AC3D8 and AC3D20 could
only be carried out on supercomputers using multiple cores (between 4 and 12 parallel processors).
The results of these sensitivity analyses are shown in Figures 11–13.
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Figure 11. (a,c,e,g) Stacked Plots of pressure vs. time predicted at s1 using ACAX4, ACAX8, AC3D8
and AC3D20 elements respectively. (b,d,f,h) Magnified view of pressure vs. time response predicted
at s1 using ACAX4, ACAX8, AC3D8 and AC3D20 elements respectively (All plots start with zero
amplitude).
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Figure 12. (a,c,e,g) Stacked Plots of pressure vs. time predicted at s3 using ACAX4, ACAX8, AC3D8
and AC3D20 element respectively. (b,d,f,h) Magnified view of pressure vs. time response predicted
at s3 using ACAX4, ACAX8, AC3D8 and AC3D20 elements respectively (All plots start with zero
amplitude).
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Figure 13. (a,c,e,g) Stacked Plots of pressure vs. time predicted at s6 using ACAX4, ACAX8, AC3D8
and AC3D20 elements respectively. (b,d,f,h) Magnified view of pressure vs. time response predicted
at s6 using ACAX4, ACAX8, AC3D8 and AC3D20 elements respectively (All plots start with zero
amplitude).
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Figures 11–13 show the pressure vs. time histories predicted using the two axisymmetric element
types, ACAX4 and ACAX8, and the two solid element types, AC3D8 and AC3D20, predicted at sensor
locations s1, s3 and s6 respectively. These pressure-time histories manifest the relationships between
the element types chosen for the analyses, the mesh densities used, and the computational errors.
The first waveforms for each set of pressure-time histories were also magnified in order to clearly show
the differences in the predictions using different element types and mesh densities.

Firstly, the axisymmetric element type ACAX4 was used with a very coarse mesh density of
element length Le = 120 mm to discretise the model. It can be seen from Figures 11a, 12a and 13a,
and the corresponding enlarged plots of Figures 11b, 12b and 13b, that the predicted waveforms are
not well-separated pulses, but are rather wavy and very noisy curves. The model was refined using
Le = 30 mm; this resulted in a less noisy waveforms, but not well-defined pulses. By further refinement
using Le = 9 mm, the waveforms become a little clearer, with well-defined pulses and only a little noise.
Very refined mesh density of Le = 0.1 mm and Le = 0.01 mm was further used, and the waveforms
become very smooth, clear, identical, and well-defined. Thus, it can be deduced that the AFEA solution
becomes more accurate when element type ACAX4 with length Le = 0.1 mm is used for the analyses.

These analyses were repeated using the axisymmetric element ACAX8 with the same mesh
densities as those previously used with the element type ACAX4. The predicted waveforms are
shown in Figure 11c, Figure 12c, and Figure 13c, and the corresponding enlarged plots of the first
pulses are shown in Figure 11d, Figure 12d, and Figure 13d, respectively. These figures show that the
characteristics predicted by the ACAX8 element type are similar to those predicted by the ACAX4
element type. That is, the predicted waveforms are not well-separated pulses, but are rather wavy and
very noisy curves when coarse mesh densities are used. However, when fine mesh densities are used,
the waveforms become very smooth, clear, and well-defined. Furthermore, the converged waveforms
predicted by the ACAX8 element type are identical to those predicted by the ACAX4 element type.
The main difference between the two element types is that the ACAX8 element type required greater
computational times.

In the introduction, it was stated that Owowo and Oyadiji [11] used 3D hexahedral acoustic
elements which they expected to give accurate predictions, just as the 3D hexahedral structural
elements give accurate predictions for structural problems. But it was shown in the previous
sub-section and in Table 1 that the hexahedral acoustic element type AC3D20 gives large prediction
errors even when the element size used is deemed to be reasonably small. In order to ascertain
the mesh sensitivity versus accuracy of the hexahedral acoustic element types AC3D8 and AC3D20,
they were also used in the acoustic simulations for the same mesh densities as those used with the
axisymmetric element types ACAX4 and ACAX8.

Figure 11e–h, Figure 12e–h, and Figure 13e–h show that when coarse mesh densities
(i.e., Le = 120 mm, Le = 30 mm and Le = 9 mm) are used with element types AC3D8 and AC3D20,
the predicted waveforms are worse than those predicted by the axisymmetric elements. The predicted
waveforms are not well-separated pulses, but are rather very wavy and very noisy curves. When a fine
mesh is used (Le = 1 mm), the waveforms become less noisy and show well-defined pulses.

Figure 11 also shows that when the mesh is coarse, the waveforms predicted by the solid element
type AC3D20 are less noisy than the waveforms predicted by the solid element types AC3D8. When
the mesh is very fine (i.e., Le = 0.1 mm and Le = 0.01 mm), the predictions of the two element types are
identical. However, the analysis using element type AC3D20 takes much more time to complete than
with element type AC3D8. Furthermore, the use of AC3D20 elements generates a much bigger model
and requires more static and dynamic storage than the use of AC3D8 elements.

In addition to the predicted waveforms not being sufficiently smooth with well-defined pulses
when a fine mesh is used (Le = 1 mm), the figures also show that the predicted time intervals between
the pulses is also larger, resulting in large errors in the predicted acoustic wave velocity. Thus, while it
is important for the waveforms to be as smooth as possible, it is not sufficient to judge the accuracy
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of an acoustic wave propagation analysis by the waveform alone; it is also necessary to consider the
accuracy of the Time of Flight.

The performance of the FEA solutions for different element types and mesh sizes is evaluated
using three key variables, namely: (1) the waviness of the waveforms; (2) the computational time of
the analysis; and (3) the predicted acoustic speed error. The variations of these variables are examined
using different acoustic element types and sizes in the Abaqus FEA software. The relevant sensitive
parameters employed by the analysis for each element type and element sizes are summarised in
Table 3.

Table 3. Basic acoustic mesh sensitivity study.

Element Type Mesh Seed Le (mm) Total No. of Element Total No. of Nodes Total No. of Variables Analysis Time (h)

ACAX4 (1)

120 35 72 72 3
30 136 274 274 4.5
9 1374 1836 1836 6
1 103,000 107,146 107,146 7

0.1 2,475,400 2,612,980 2,612,980 8.5
0.01 13,305,460 13,937,450 13,937,450 10

ACAX8

120 35 178 178 3.5
30 136 683 683 5
9 1374 3836 3836 8
1 103,000 317,291 317,291 9.5

0.1 2,475,400 3,085,430 3,085,430 11
0.01 13,305,460 15,135,560 15,135,560 12

AC3D8 (2)

120 432 629 629 24
30 1584 2261 2261 36
9 5328 7565 7565 46
1 128,000 164,041 164,041 60

0.1 22,776,000 23,235,670 23,235,670 132
0.01 63,085,430 64,587,604 64,587,604 220

AC3D20

120 432 2277 2277 30
30 1584 8229 8229 46
9 5328 27,573 27,573 57
1 128,000 616,113 616,113 71

0.1 22,776,000 28,458,752 28,458,752 179
0.01 63,085,430 113,654,300 113,654,300 240

(1) acoustic continuum axisymmetric 4-node element; (2) acoustic continuum 8-node brick element

4.3.3. Comparisons of Prediction Errors Due to Acoustic Element Type

Table 4 shows the acoustic wave speed derived from the waveforms predicted by the four acoustic
element types using different mesh densities based on the Time of Flight approach. The percentage
errors associated with these predicted velocities are also shown in the table. A summary of the
requirements, performance, and associated errors for the four acoustic element types in the predictions
of the acoustic wave propagation is shown in Table 5.

Table 4. Acoustic mesh sensitivity study showing the acoustic speed computation error.

Element
Type

Acoustic Wave Speed (ms−1) Error (%)

Le (mm) Le (mm)

120 30 9 1 0.1 0.01 120 30 9 1 0.1 0.01

ACAX4 354.1 353.7 353.2 352.4 349.3 348.4 2.6 2.5 2.4 2.1 1.2 0.9
ACAX8 352.6 352.4 352.4 351.6 349.0 348.4 2.2 2.1 2.1 1.9 1.1 0.9
AC3D8 396.3 395.4 395.3 395.4 381.0 350.5 14.9 14.6 14.5 14.6 10.4 1.5

AC3D20 395.9 395.1 395.0 395.0 380.4 349.9 14.8 14.5 14.4 14.4 10.2 1.4
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Table 5. Sensitivity analysis- key variable performance evaluation.

Element Type Refinement Quality NE NN TC (h) C (ms−1) E (%)

AC3D20 Coarse Noisy 1584 8229 46 395.1 14.5
AC3D8 Coarse Noisy 1584 2261 36 395.4 14.6

AC3D20 Fine Smooth 6.31 × 107 (1) 1.13 × 108 (3) 240 349.9 1.4
AC3D8 Fine Smooth 6.31 × 107 (1) 6.45 × 107 (4) 220 350.5 1.5
ACAX8 Coarse Noisy 136 683 5 352.4 2.1
ACAX4 Coarse Noisy 136 274 4.5 353.7 2.5
ACAX8 Fine Smooth 1.33 × 107 (2) 1.51 × 107 (5) 12 348.4 0.9
ACAX4 Fine Smooth 1.33 × 107 (2) 1.39 × 107 (6) 10 348.4 0.9

NE = number of elements generated; NN = number of nodes generated; E = Error; C = Speed; TC = computational
time, exact values: (1) 63,085,430; (2) 13,305,460; (3) 113,654,300; (4) 64,587,604; (5) 15,135,560; (6) 13,937,450.

Figure 14 shows the variations of the percentage acoustic speed errors with the element sizes
for the four acoustic element types. It is observed that the axisymmetric element type ACAX4 and
ACAX8 produce less computational errors in the acoustic FEA. Also, it is clearly seen that the linear
interpolation elements (ACAX4 and AC3D8) have less errors than the quadratic interpolation elements
(ACAX8 and AC3D20). Figure 14 shows that very large computational errors occur in the AFE analysis
result when solid element types AC3D8 and AC3D20 are used. But when the axisymmetric element
types ACAX4 and ACAX8 are used, the errors are minimised.
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It is thus concluded that the solid element types AC3D8 and AC3D20 are not optimal in
terms of speed, accuracy, and computation-resource requirements for AFE analysis of acoustic wave
propagation in an air-filled pipe. Furthermore, considering the computational time and resources
for each model as illustrated in Table 5, the ACAX4 is the best element type for acoustic FEA. This is
because it has the smallest model size, smallest computational time, and smallest computational errors.

5. Conclusions

The acoustic finite element approach has been used to predict the wave propagation characteristics
in a fluid-filled pipe. This paper has detailed the use of Finite Element Analysis (FEA) to simulate the
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acoustic wave propagation and acoustic wave reflectometry of a pipe. The wave velocity predicted by
the FEA has been found to be consistent with the actual velocity when the right element type is chosen
for the numerical computation. The primary conclusions of this paper are as follows.

• The acoustic FEA of a fluid-filled pipe can be achieved with the simulation of only the fluid content
of the pipe and without the inclusion of the pipe in the model. Thus, this eliminates contact
interaction of the solid pipe wall and the fluid, and as a consequence, reduces computational
time and resources. Since the specific acoustic impedance of the air medium is much smaller
than the specific impedance of the wall of a metallic or plastic pipe, this assumption is reasonable.
The results confirm that the acoustic FEA of an air-filled pipe can be achieved with the
simulation of only the fluid content of the pipe and without the inclusion of the pipe in the
model. However, when a denser fluid medium is used, and when there is high flow velocity,
fluid-structure interaction will become very significant. Then, the fluid medium and the pipe wall
will need to be modelled together.

• The main source of error in an acoustic FEA is the element type chosen and the mesh density.
The results indicate that the ACAX4 element type with a fine mesh should be used in any acoustic
FEA simulation of wave propagation in a symmetrical pipe in order to obtain the smallest
computational errors, fastest computations, and least usage of computer static and dynamic
storage resources. For a nonsymmetrical pipe, the 3D solid hexahedral elements can be used at
the part of the pipe that is unsymmetrical and the 2D-like axisymmetric element should be used at
the symmetric part of the pipe to obtain the smallest computational errors, fastest computations,
and least usage of computer static and dynamic storage resources.

• It has been shown that the use of the Time of Flight approach enables the verification of the
accuracy of the acoustic FEA simulations using any of the four element types investigated,
namely: ACAX4, ACAX8, AC3D8, and AC3D20.

• Of these four element types, the best element for AFE simulations of wave propagation in
a symmetric air-filled pipe was found to be the axisymmetric element type ACAX4, whereas the
worst element type was found to be the solid element type AC3D20. This is a rather surprising
result when compared to the equivalent structural analysis, in which the solid elements with
quadratic interpolation are better than element types with linear interpolation for the same
mesh density.
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