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Abstract: Constant-time technique is of crucial importance to prevent secrets of cryptographic
algorithms from leakage by cache attacks. In this paper, we propose Permute-Scatter-Gather, a novel
constant-time method for the modular exponentiation that is used in the RSA cryptosystem. On the
basis of the scatter-gather design, our method utilizes pseudo-random permutation to obfuscate
memory access patterns. Based on this strategy, the resistance against fine-grained cache attacks is
ensured, i.e., providing the higher level of security than the existing scatter-gather implementations.
Evaluation shows that our method outperforms the OpenSSL library at most 11% in the mainstream
Intel processors.
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1. Introduction

Cache attacks, such as Prime+Probe [1–4] and Flush+Reload [5–10], exploit the usage of CPU
cache as a side channel to infer secret information of victim applications. Due to its high resolution,
the cache attack is very effective in attacking cryptographic algorithms [11–15]. By monitoring
secret-dependent patterns in memory access or control flow, an adversary can successfully extract
private keys in an implementation of the cryptographic algorithms. Thus, it is necessary to consider
constant-time programming when implementing cryptographic software secure against cache attacks.
The constant-time programming is an implementation technique that ensures the cryptographic
algorithm has constant patterns during the execution irrespective of an input (i.e., secret) in its
implementation.

Scatter-gather [16] is a constant-time programming technique for the RSA algorithm [17], which is
used in OpenSSL library [18]. The RSA encryption/decryption (or sign/verify) are basically performed
as modular exponentiation, in which the exponent is a private key (or a singing key). For computational
efficiency, several multipliers are pre-computed, stored as a table in the memory and accessed later
during the exponentiation. In a naive lookup-based implementation, multipliers are located in separate
memory lines, so accessing them would cause observable unique access patterns, which is susceptible
to cache attacks. Scatter-gather technique revises the arrangement of multipliers on the table so that
any multipliers are accessed with the constant pattern.

The current implementation of the scatter-gather technique has the underlying assumption that
cache adversaries only observe the access pattern at the granularity of cache line (i.e., 64 bytes) [19,20].
However, such assumption was broken as more fine-grained cache attack has been recently discovered.
This cache attack, dubbed Cache-bleed [21], exploits the cache-bank conflict between hyper-threads to
observe the secret-dependent access pattern at the bank level during the gathering phase.
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In this paper, we propose Permute-Scatter-Gather, a novel constant-time method for the
RSA modular exponentiation, which is resistant against fine-grained cache attacks. Based on the
scatter-gather design, our technique employs a pseudo-random permutation for locating multipliers
in a scattered memory layout. Such permutation actually obfuscates the memory access pattern,
thus prevents any adversaries even mounting fine-grained cache attacks from inferring the secret
from the observations. Furthermore, our novel technique for constant-time permutation allows the
permutation itself to have the constant-time property, making more secure against cache attacks.

Our evaluation shows that the proposed method outperforms the existing countermeasure,
implemented in the recent version of OpenSSL, at most 11% in the mainstream processors. It is also
shown that the Permute-Scatter-Gather can be easily adopted with the OpenSSL without significant
effort, increasing the practicality of the proposed method.

The rest of this paper is organized as follows. Background is presented in Section 2. Details on
the Permute-Scatter-Gather, and their evaluations are given in Section 3, and Section 4, respectively.
Finally, we conclude the paper in Section 5.

2. Background

2.1. Scatter-Gather Implementation

The main operation of RSA decryption (or sign) is the modular exponentiation; calculate be mod
n for a secret exponent e. OpenSSL library performs the modular exponentiation by a fixed-window
exponentiation algorithm [22] (See Algorithm 1). In a pre-computation phase, the algorithm computes a
set of multipliers mi = m jb mod n for 0 ≤ j < 2w , where w is a window size. In an exponentiation phase,
it scans each fraction of e of size w from e dk/we to e0. For each digit ei , it multiplies r , the intermediate
result from squaring, by the pre-computed multiplier mei . In the OpenSSL library, the window size is
set to w = 5, so there are 32 multipliers in total.

Algorithm 1 Fixed-window exponentiation

Require: k-bit exponent e =
∑ dk/we

i=0 ei · 2wi , window size w, base b, modulus n
Ensure: be mod n

1: procedure EXPONENTIATION(w, b, n, e)
2: // Pre-computation phase
3: m0 ← 1
4: for i ← 1 to 2w − 1 do
5: mi ← mi−1 · b mod n
6: end for
7:

8: // Exponentiation phase
9: r ← 1

10: for i ← dk/we − 1 to 0 do
11: for j ← 1 to w do
12: r ← r2 mod n
13: end for
14: r ← r ·mei mod n
15: end for
16: return r
17: end procedure

Scatter-gather implementation is a constant-time programming technique to avoid secret-dependent
access at the cache line granularity [23]. Instead of storing multipliers consecutively in memory, it scatters
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each multiplier across multiple cache lines (Figure 1). When using the multiplier (i.e., in gathering phase),
the fragments of the required multiplier are gathered to a buffer for the multiplication.
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Line6

Line7

Line8

Figure 1. Memory layout of the multiplier table in OpenSSL.

2.2. Fine-Grained Cache Attack and Its Countermeasure

2.2.1. Fine-Grained Cache Attack

In Intel processors, a cache line is divided into multiple cache banks, each of which has part of
the line specified by the line offset. In such cache design, concurrent requests to the same line can be
served in parallel if the requested offsets are on the different banks. However, requests to the same
bank would cause a cache line conflict, resulting in observable execution delay [24,25]. Such conflict
at a cache line introduces fine-grained cache attacks such as Cache-bleed [21]. This kind of attacks
exploits a bank level timing channel introduced by the cache line conflict. The granularity of the
channel allows distinguishing between memory accesses within the same cache line.

With this attack, an adversary can infer which multipliers are accessed during the gathering phase
in the exponentiation. It was shown that the scatter-gather implementation of OpenSSL library of the
version 1.0.2f is vulnerable to the fine-grained cache attack, allowing the full recovery of RSA private
keys [21].

2.2.2. Constant-Time Gather Procedure

The root cause of the OpenSSL’s vulnerability to fine-grained cache attacks comes from that with
the bank-level granularity, it has secret-dependent memory access in gathering phase. To mitigate
the attack, the vulnerable version of the OpenSSL library (i.e., the version 1.0.2f) has been patched
in the later version 1.0.2g so that all secret-dependent accesses are eliminated. More specifically, in
the modified gathering process, all the multipliers laid on a single memory line are loaded into four
128-bit SSE (Streaming SIMD Extensions) registers (e.g., xmm0-xmm3). The relevant multiplier is then
selected among them by masking the register values accordingly. The masks are necessarily calculated
on-the-fly based on the index of the multiplier to be used.

The OpenSSL’s countermeasure requires modifications of two gathering functions, bn_gatter5()
and bn_mul_mont_gather5(), in the source file bn/x86_64-mont5.s.

This results in 10–20% performance drops of the modular exponentiation in RSA algorithms.
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3. Permute-Scatter-Gather Implementation

In this section, we give details on the Permute-Scatter-Gather (or Permute-SG in short),
the proposed method for secure modular exponentiation against fine-grained cache attacks, which is
also faster than constant-time gather procedure.

3.1. Threat Model

Cache attacks often target secret keys of a victim process performing an encryption algorithm.
In this paper, we assume that an adversary is a process which is co-resident on the same machine as the
victim process. Due to the memory protection provided by modern operating systems, an adversary
process is prohibited to view the content of the victim’s memory. Despite of the process isolation,
however, a logical processor is shared among processes, by which the adversary can exploit the
cache-bank conflict. By mounting the fine-grained cache attack, the adversary tries to learn about
the victim’s secret key. We also assume that the adversary is able to execute arbitrary programs on a
processor core shared with the victim process. However, as we mentioned above, the adversary does
not have access to the victim’s memory space.

In our threat model, we do not require that the target executable binary (e.g., OpenSSL library)
running in the victim be kept secret. That is, the adversary has sufficient information on a logical
structure of the binary such as the control flow and the exploitable locations. However, the adversary
has no information about the runtime states (e.g., secret keys or permutation tables) of the executable,
which are located on the data section of the binary in the victim’s process.

3.2. Overview and Design Goals

The idea of the Permute-SG is basically to unlink the index of a multiplier from its memory
location, thereby making it infeasible to figure out the multiplier used during the exponentiation.
For this, the proposed method obfuscates the memory locations of the multipliers through a
pseudo-random permutation. Specifically, given an index idx and a pseudo-random permutation P,
the location of the multiplier is determined by the permuted index idx’ = P(idx). In this way, all the
32 multipliers are rearranged in the table according to their permuted indices. By mounting cache
attacks, an adversary might get the trace of P(idx). However, he/she cannot infer which multipliers are
actually used from the obtained trace.

We construct the Permute-SG technique with consideration of achieving the following
design goals:

• Resistance against fine-grained cache attacks. No information about the actually accessed multiplier
should be revealed to adversaries who can observe memory accesses with bank-level granularity.

• Computational efficiency. Performance degradation in modular exponentiation due to applying this
method should be minimized.

• Adaptability. It should be easily integrated into the existing implementation (e.g., OpenSSL library)
without significant modification of source codes.

3.3. Implementation

The Permute-SG is augmented with ease to the OpenSSL’s scatter-gather implementation
(i.e., the version of 1.0.2f). The procedure of the Permute-SG for the modular exponentiation is
performed through the following steps:

1. Permute step: In this step, a permutation P is randomly generated from P, the set of all
permutations. The generation process is conducted along with the precomputation phase of
modular exponentiation algorithm (Algorithm 1).

2. Scatter step: This step is the same as the scatter procedure in the OpenSSL, except that the
scattering location of a multiplier with an index idx is determined by P(idx).
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3. Gather step: This step is the same as the gather procedure in the OpenSSL, except that the
gathering location of a multiplier with an index idx is determined by P(idx).

3.3.1. Challenging Issue

As described above, we can easily integrate the Permute-SG technique into the OpenSSL library,
thus adaptability, one of our design goals, is trivially achieved. However, it is not trivial to achieve
the other two design goals together when implementing the technique. That is, evaluating P with
an index idx is a time consuming operation and it occurs at every scatter and gather step. This may
lead to the significant performance degradation. The optimal solution is to implement the evaluation
procedure using a permutation table. By looking up the table with idx, the value of P(idx) can be
retrieved just within a few CPU cycles. For security perspective, however, the lookup operation with
the permutation table is subject to the fine-grained cache attack. This is because the memory access to
the table reveals the index of the used multiplier during exponentiation. Therefore, implementing the
permutation with regard to efficiency and security is a challenging problem.

3.3.2. Constant-Time Permutation

We overcome the challenging problem by implementing constant-time permutation. It is a
lookup-based technique that always has constant memory access pattern irrespective of the
accessed index, thus revealing no information to adversaries. For the computational efficiency,
the constant-time permutation is implemented in a x86 assembly. Since a memory access is a costly
operation, the number of access needs to be minimized for the constant-time lookup procedure.
We achieve this by utilizing only a single SSE load instruction. By doing so, the memory access time
for the lookup can be confined to just a single CPU cycle in the case of the table being loaded to a L1
cache [26].

To load a permutation table into a SSE register by a single load instruction, we have to fit the size
of the table within the width of the register. In most Intel x86 processors, SSE registers are 128 bits
in length (Recent Intel processors support Advanced Vector Extension (AVX), in which the size of
registers are more than 128 bits in length. For our technique to be widely deployed, we only consider
SSE instructions in this paper). Please note that there are 32 multipliers in total, and thus the size of
each index should be at least 5 bits in length. This indicates that a room of 160 bits is needed in the
table to store all the indicies, which is larger than the size of the SSE register. We solve this problem
in a way that the four leftmost bits of the index are stored in the table instead of all the bits being
stored. This makes the four bits of the index to be permuted while the remaining rightmost bit is left
unchanged during the permutation process.

Figure 2 illustrates the process of constant-time permutation. We have PermTab, an array with
a length of 128 bits, which is divided into two 64-bit permutation tables, PermTabH and PermTabL.
The address of PermTab is 16 bytes aligned so that a single load instruction can load both tables into
a SSE register. Two pseudo-random permutations P0 and P1, which are generated independently in
the Permute step, are set up to those tables respectively. Each table contains a permuted list of partial
indices of 4 bits in its slots s0, s1, ..., s15 according to the permutation.

In the permutation process, the value of the four leftmost bits of idx, denoted by X in Figure 2,
is used to lookup the values of the corresponding slots in the tables simultaneously. For instance,
the case of X = 2 would make concurrent lookups to PermTabH and PermTabL with the same slot s2,
resulting P0(X) and P1(X). The remaining rightmost bit of idx, denoted by Y, is used to select the one
among them. As a result, the permuted index idx’ is constructed from PY(X) and Y, where PY ∈ {P0, P1}

as shown in Figure 2. The memory location of the multiplier is then determined by the permuted
index idx’.
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Figure 2. The process of constant-time permutation

Listing 1 presents the implementation of the constant-time permutation. The source code is
written in perlasm, a x86 assembly language in the form of a perl script. In lines 1–2, the 16 bytes
array of PermTab, which comprises PermTabH and PermTabL, is loaded into a xmm1 register. In lines
3–9, the slots from PermTabH and PermTabL, corresponding to the four leftmost bits of the index idx
(denoted by $idx), are selected in the xmm1 register, and values in those slots are loaded to r10 and
r11 registers, respectively. In lines 10–17, one of the values is chosen from r10 and r11 according to
the rightmost bit of $idx, and saved to rax register. Finally, in lines 18–20, the permuted index idx’ is
produced from the value in rax and the rightmost bit of idx, and then loaded into $idx as an output.

Listing 1: The assembly of constant-time permutation.

1 : l e a . LPermTab(% r i p ) ,% rax
2 : movdqa 0(% rax ) , %xmm1
3 : mov $idx , %rax
4 : shr \$1 , %rax
5 : s h l \$2 , %rax
6 : mov %rax , %xmm0
7 : psr lq %xmm0, %xmm1
8 : pextrq \$1 , %xmm1, %r10
9 : mov %xmm1, %r11
1 0 : and \$1 , $idx
1 1 : not $idx
1 2 : add \$1 , $idx
1 3 : mov %r11 , %rax
1 4 : xor %r10 , %r11
1 5 : and $idx , %r11
1 6 : xor %r11 , %rax
1 7 : and \$15 , %rax
1 8 : and \$1 , $idx
1 9 : s h l \$1 , %rax
2 0 : add %rax , $idx

4. Evaluation

4.1. Resistance Against Fine-Grained Cache Attacks

Suppose that an applicationV executes a modular exponentiation which is implemented with
the Permute-SG technique. V might be a RSA application that performs a decryption with a RSA
private key. By leveraging fine-grained cache attacks, an adversaryA attempts to know the information
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of the multiplier (i.e., the index idx) which is used whenV conducts the gathering phase (i.e., Gather
step in Section 3.3). A may observe the memory offset accessed by V at fine-grained granularity.
The offset, however, only reveals the information of P(idx). UnlessA knows the permutation P, he/she
cannot infer idx from P(idx).

A may attempt to learn idx by observing the memory access to the array PermTab. As described
in Section 3.3, the access to the permutation table occurs in a single load instruction (Line 2 in Listing 1)
and is independent on the value of idx. Therefore, it is infeasible to know the index of the accessed
multiplier by observing access to the permutation table.

4.2. Adaptability

The Permute-SG is designed to be easily augmented to the existing scatter-gather implementation
of the OpenSSL library. As described in Section 3.3, the modification is only required in the library at
the part of the precomputation of modular exponentiation as well as the part of locating the multiplier
in Scatter and Gather steps.

4.3. Computational Efficiency

We conducted some benchmarks to evaluate the computational efficiency of the proposed method.
For this, an OpenSSL library of the version 1.0.2f is modified by replacing its scatter-gather part with
our Permute-SG implementation. We selected this version since it is vulnerable to fine-grained cache
attacks [21]. The benchmarks were performed on a server equipped with a Xeon E5-2620v4 processor
(Broadwell) and a PC with a Core i7-7820HQ processor (Kaby Lake). We used a benchmarking tool
included in the OpenSSL framework, and measured the speed of the RSA signing and verifying
operations for each implementation.

Table 1 and Figure 3 show the benchmarking results. The terms ‘SG’ and ‘SG-Const’ refer to the
unmodified OpenSSL libraries of version 1.0.2f and 1.0.2g, respectively. Both have the scatter-gather
implementation, of which the SG is vulnerable to fine-grained cache attacks while the SG-Const has a
countermeasure with constant-time gather procedure (See Section 2.2.2). In Figure 3, the benchmarking
results are illustrated in a relative manner to give an intuitive comparison. The SG shows the fastest
performance result, which comes at the cost of lacking the countermeasure against the fine-grained
cache attacks. Among the implementations with the countermeasure, the Permute-SG is the fastest
in all the benchmarking cases. In Broadwell processor, the Permute-SG shows almost the same
performance as the SG, and is 11% faster than the SG-Const for signing operation in RSA 4096-bits.
Because of the microarchitectural difference, the Permute-SG shows a little performance degradation
in Kaby Lake processor, in which it still outperforms the SG-Const. It is worth noting that in RSA
1024-bits, all the implementations show the same performance, because the scatter-gather is only
applied to more than RSA 2048-bits in OpenSSL.
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Table 1. The result of performance evaluation.

(a) Benchmark on Xeon E5-2620v4 (Broadwell)

RSA Bits SG SG-Const Permute-SG

sign/s verify/s sign/s verify/s sign/s verify/s

1024 6698.2 96,683.1 6702.4 96,869.6 6555.4 96,262.6
2048 903.8 28,983.1 868.3 27,985.6 902.7 28,934.8
4096 126.4 7835.7 113.3 7400 125.7 7831.7

(b) Benchmark on Core i7-7820HQ (Kaby Lake)

RSA Bits SG SG-Const Permute-SG

sign/s verify/s sign/s verify/s sign/s verify/s

1024 7442.1 108,685.8 7101.9 97,294.2 7544.7 103,288.5
2048 999.6 31,684.9 889.0 28,972.2 911.6 29,650.9
4096 140.9 8748.2 116.3 7877.3 128.9 7977.5

80%

85%

90%

95%

100%

1024 bits 2048 bits 4096 bits

(a) Broadwell (Sign) 

SG Permute-SG SG-Const

80%

85%

90%

95%

100%
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(b) Broadwell (Verify) 

SG Permute-SG SG-Const

80%
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100%

1024 bits 2048 bits 4096 bits

(c) Kaby Lake (Sign) 

SG Permute-SG SG-Const

80%

85%

90%

95%
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1024 bits 2048 bits 4096 bits

(d) Kaby Lake (Verify) 

SG Permute-SG SG-Const

Figure 3. Comparison in the benchmarking results of scatter-gather implementations

5. Conclusions

In this paper, we proposed Permute-Scatter-Gather, a novel constant-time method for the
modular exponentiation in the RSA cryptosystem. Based on the scatter-gather design, we utilized
pseudo-random permutation in the construction to obfuscate memory access patterns so as to mitigate
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fine-grained cache attacks. Throughout rigorous evaluations, we showed that our method provides
the required security, computational efficiency as well as adaptability, making it practicable in real
world applications.
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