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Featured Application: the work introduced in this paper can be used for wildlife conservation,
health protection, and other engineering applications.

Abstract: Acoustic localization for a moving source plays a key role in engineering applications,
such as wildlife conservation and health protection. Acoustic detection methods provide an alternative
to traditional radar and infrared detection methods. Here, an acoustic locating method of array signal
processing based on intersecting azimuth lines of two arrays is introduced. The locating algorithm
and the precision simulation of a single array shows that such a single array has good azimuth
precision and bad range estimation. Once another array of the same type is added, the moving
acoustic source can be located precisely by intersecting azimuth lines. A low-speed vehicle is used as
the simulated moving source for the locating experiments. The length selection of short correlation
and moving path compensation are studied in the experiments. All results show that the proposed
novel method locates the moving sound source with high precision (<5%), while requiring fewer
instruments than current methods.

Keywords: acoustic localization; cross array; moving sound source; discrete sampling; error analysis

1. Introduction

The localization of moving sources represents a major issue in engineering applications. Similar to
other detection technologies, acoustic-localization methods have been developed rapidly over the years.
Meanwhile, the noise generated by low-speed vehicles (LPVs) is a key issue, especially in connection
with acoustics mitigation, where noise pollution continues to be a major health problem, with a whole
host of health effects, such as: sleep disorders with awakenings [1], learning impairment [2,3],
hypertension ischemic heart disease [4], and especially annoyance [5], a widely used indicator to
study the effect of different noise sources on wellbeing. In this context, the main effort has been
done to mitigate the main sources of noise: road traffic [6–8], railway traffic [9,10], airport [11,12],
and industrial [13]. Specifically about road noise, the most important interaction producing noise,
more than just the engine noise used for the LPV, was also road/tire interaction [14,15] and aerodynamic
noise for high-speed vehicles. Furthermore, a relatively new noise source is impacting modern society
in areas where background noise is low. Wind farms are being installed continuously every year to
supply energy demand, but people are being affected by its noise, which is more disturbing than other
sources [16,17] and the scientific community is moving towards its assessment [18].

In this paper, the LPV is the research object. As for all moving vehicles, exhaust systems and
chain tracks are the main noise sources of LPVs, with exhaust systems representing the dominant
factor. Therefore, exhaust systems could be chosen as the moving noise source. The most common
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localization methods for noise sources are Nearfield Acoustic Holography (NAH), beamforming,
and array signal processing [19]. The sound field of a moving vehicle is effectively measured based on
NAH with a moving acoustic plane [20] and coordinate compensation [21,22]. Far-field measurements
of a moving source can be achieved by the short-time beamforming method, but these require extensive
computational resources for processing the acquired data for the acoustic plane frame at every
moment. The false noise source (ghost image) would also be easily generated [23,24]. For array
signal processing, the required computations are fast and can be performed to high precision [25,26].
This is so since the necessary calculations to be performed on the signals are only one-dimensional
and, therefore, substantially less demanding than those for a whole acoustic plane.

The localization method of a moving sound source for the new method described here is achieved
by intersecting the azimuth lines of cross arrays. Initial testing of the localization algorithm and the
data analysis were performed for a single array and revealed a good performance. Therefore, a second
array was added to cross the azimuth lines. The locating experiments were conducted with the engine
noise of an LPV as a moving noise source. The data length determined by short-time correlation
and path compensation were also introduced. The new method succeeded in effective localization of
moving vehicles, requiring less expensive instrumentation than existing methods. Moreover, it was
found that it continues to perform properly even under adverse ambient conditions, such as bad
weather or at low light levels at night.

2. Localization Analysis of Single Array

2.1. Localization Algorithm

The LPV used for the current study travelled on level ground such that its height remained
constant relative to the array sensors. The height of the vehicle was about 2.0 m, which was
approximately 1.5 m higher than the arrays themselves. Compared to the range of about 100 m
or more, the constant height difference between the vehicle and the arrays had little influence on the
localization performance and accuracy. Therefore, the localization was operated in the x-y coordinate
system while height difference was ignored. The five-element cross array was taken as a basic array
pattern, as illustrated in Figure 1.
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Figure 1. Model of single array.

The coordinates are defined within the plane of the array. The center acoustic sensor is located at O (0,
0), while the remaining four were M2 (D, 0), M3(0, D), M4 (−D, 0), and M5 (0,−D), where D represents the
distance from Mi to O. The noise source is assumed to be located at T (x, y), with an angle ϕ between OT
and x axis as indicated in Figure 1. The time delays between the arrival time of noise at the center sensor
and the other four sensors are referred to as τ1i. Similarly, d1i (i = 2, 3, 4, 5) represents the distance between
the center sensor and the neighboring sensors, such that d1i = c× τ1i (c is current sound velocity). R is the
distance from O to T.
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From the simple geometry in Figure 1, the distances can be expressed.

x2 + y2 = R2

(x− D)2 + y2 = (R + d12)
2

x2 + (y + D)2 = (R + d13)
2

(x + D)2 + y2 = (R + d14)
2

x2 + (y− D)2 = (R + d15)
2

(1)

The solution of Equation (1) is  x =
2R(d14−d12)+d2

14−d2
12

2D

y =
2R(d13−d15)+d2

13−d2
15

2D

(2)

 tan ϕ = y
x = (τ15−τ13)[2R−c(τ15−τ13) ]

(τ14−τ12)[2R−c(τ14−τ12) ]

R =
√

x2 + y2 =
4D2−d2

12−d2
13−d2

14−d2
15

2(d12+d13+d14+d15)

(3)

when R >> c × τ1i,

tanϕ ≈ (τ15 − τ13)

(τ14 − τ12)
(4)

then Equation (3) can be simplified:
ϕ = arctan (τ15−τ13)

(τ14−τ12)

R = (4D2 − c2
5
∑

i=2
τ1i

2)/2c
5
∑

i=2
τ1i

(5)

The location of the noise source is given by Equations (2) and (5) and, with reference to their
derivation, it is evident that the localization algorithm is based on the time delays between the arrival
times of noise at the sensors in the array.

2.2. Precision Analysis for Localization

The algorithm for localizing the noise source, as described by Equations (2) and (5) in Section 2.1,
and the associated accuracy depend on sound velocity c, array size D and, in particular, the error
involved in estimating the time delay στ . Since D and c remain constant, for any particular array and
measurement environment, the dominant factor affecting the precision of the proposed method is
associated with the error involved in measuring στ. Due to the symmetric arrangement of the sensors
with regard to the central sensor, the standard errors for the time delay of all sensors were assumed to
be equal, such that στ = στ1i.

In Equation (5), quadratic function was included in the expression of coordinates (x, y), which makes it
different to calculate the transmission. Then, after the precision calculation of coordinates was transferred
into angular coordinates, the localization was described with azimuth ϕ and range R as illustrated
in Equation (5).

2.3. Azimuth Precision

According to Equation (5), azimuth Φ was a function of time delay τ.

Φ = F(τ) = F(τ12, τ13, τ14, τ15) (6)

The transmission form of azimuth error σϕ can be expressed.

σϕ
2 = (

∂ϕ

∂τ12
στ)

2
+ (

∂ϕ

∂τ13
στ)2 + (

∂ϕ

∂τ14
στ)2 + (

∂ϕ

∂τ15
στ)2 (7)



Appl. Sci. 2018, 8, 1281 4 of 16

Taking derivative of τ in Equation (5):
∂ϕ

∂τ12
= − ∂ϕ

∂τ14
= 1

1+tan2 ϕ
· τ15−τ13
(τ14−τ12)

2

∂ϕ
∂τ13

= − ∂ϕ
∂τ15

= − 1
1+tan2 ϕ

· 1
τ14−τ12

(8)

So the expression of azimuth error σϕ is

σϕ =
στ

1 + tan2 ϕ

√√√√2(τ14 − τ12)
2 + 2(τ15 − τ13)

2

(τ14 − τ12)
4 (9)

Solving Equations (2) and (5): {
(τ14 − τ12)

2 + (τ15 − τ13)
2 = D2

v2

(τ14 − τ12)
2 = D2

v2(1+tan2 ϕ)

(10)

Substituting Equation (10) into Equation (9):

σϕ =
∂ϕ

∂τi
=

√
2c

D
στ (11)

Thus, the azimuth error is determined by c, D, and στ . We assume a value of c = 343 m/s for
the sound velocity and employ a sampling rate of 5000 Hz. The sampling interval is 200 µs and the
distribution of azimuth error is shown in Figure 2.
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Figure 2. Distribution of azimuth error of c and στ .

Figure 2 shows that the relationship of σϕ and c was linear, as well as στ . However, the one
between σϕ and D was inverse. In the condition of D ≥ 2 m, σϕ stays at an optimal level as 0.03◦ in
Figure 2a; when στ = 100 µs in Figure 2b it stays 0.1◦ when c was set as 343 m/s.

2.4. Range Precision

The range is also a function of time delay τ, and the transmission error is:

σR
2 = (

∂R
∂τ12

στ)
2
+ (

∂R
∂τ13

στ)2 + (
∂R

∂τ14
στ)2 + (

∂R
∂τ15

στ)2 (12)
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Evaluating the partial derivatives of τ in Equation (5) gives:

∂R
∂τ1i

= [2c2τ1i

5

∑
j=2

τ1j − (c2
5

∑
j=2

τ1j
2 − 4D2)]/2c(

5

∑
j=2

τ1j)

2

(13)

Substituting Equation (5) into Equation (13) yields:

∂R
∂τ1i

= (cτ1i − R)/
5

∑
j=2

τ1j (14)

According to the geometric relation of array and target:

τ1i = 1
c{R−

√
R2+D2 − 2RDcos[ϕ− (i− 1)π

2 ]}

= R
c −

R
c

√
1 + [D

R ]
2 − 2[D

R ] cos[ϕ− (i− 1)π
2 ]

(15)

then the Taylor expansion of Equation (15) is:

τ1i = R
v −

R
v {1 +

1
2 [(

D
R )

2 − 2(D
R ) cos[ϕ− (i− 1)π

2 ]}
− 1

8{(
D
R )

2 − 2(D
R ) cos2[ϕ− (i− 1)π

2 ]}
≈ R

v {
1
2 [(

D
R )

2 − (D
R ) cos[ϕ− (i− 1)π

2 ]

− 1
2 (

D
R )

2
cos2[ϕ− (i− 1)π

2 ]}

(16)

5
∑

i=2
τ1i = − 2D2

Rc + D
c

5
∑

i=2
cos[ϕ− (i− 1)π

2 ]

+ D2

2Rc

5
∑

i=2
cos2[ϕ− (i− 1)π

2 ]
(17)

Substituting


5
∑

i=2
cos[ϕ− (i− 1)π

2 ] = 0

5
∑

i=2
cos2[ϕ− (i− 1)π

2 ] = 1
into Equation (17):

5

∑
i=2

τ1i ≈ −
2D2

Rc
(18)

and then substituting Equation (18) into Equation (14) yields:

∂R
∂τ1i
≈ −2Rc(cτ1i − R)

3D2 (19)

Therefore, Equation (14) then becomes

σR =
4Rc
√

D2 + R2

3D2 στ (20)

Equation (20) reveals that the range error σR is determined by range R, array size D, sound velocity c,
and the delay error. Compared to the azimuth error, the influence of R here is an additional effect on the
error. Assuming values of 5 kHz for the sampling rate, R = 100 m, and array size changed from 1 m to 5 m,
the distribution of range error is shown in Figure 3.
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In Figure 3, the range error was quite big. In both cases, the error reduces with increasing array
size, and it increases with both the range R and the time delay στ . In general, however, the error
is overall at a fairly high level. In Figure 3a, the relative error was almost 40% under the optimal
condition, and the biggest error was 950%. The error distribution in Figure 3b is the same as in
Figure 3a, with higher level, the optimal error was 50%, and the biggest one is twenty times.

In summary, a single five-element cross array has good directional ability. The azimuth error
can stay below 0.1◦ under reasonable conditions. However, the range ability is rather bad. The error
is nearly 40% even under best conditions, which makes it impossible to achieve satisfactory sound
source localization.

3. Localization Analysis of Double Arrays

3.1. Localization Principle

Although the single array has poor range-detection ability, its good directional ability ensures that
the direction of the sound source is accurately determined. In order to improve the range-detection
ability, a second array was added to the setup by means of intersecting the azimuth lines.

The array in Figure 1 remained positioned as shown in the figure and is referred to as Array 1.
The second array, with identical characteristics, was added to the X-Y plane as Array 2. The centre of Array
2 is located at O1 (L, 0). The angle between the line OT (sound source T to origin O) and the axis-X is
referred to as ϕ1, while the angle between O1T and X is ϕ2. The time delay when the sound signal reaches
the sensors in Array 2 is τ1i

′. The range differences are d1i
′ (i = 2, 3, 4, 5), so d1i

′ = c× τ1i
′. The geometry of

the double-array setup is shown in Figure 4.
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Since the structure of both arrays is the same, the form of the azimuth formula is the same and
the relevant expressions follow from Equation (3) as: tanϕ1 ≈ (τ15−τ13)

(τ14−τ12)

tanϕ2 ≈ (τ15′−τ13′)
(τ14′−τ12′)

(21)

From the geometric relationship, {
k1 = y

x = tanϕ1

k2 = y
x−L = tanϕ2

(22)

The simplification of Equation (22) is: {
x = Lk2

k2−k1

y = Lk1k2
k2−k1

(23)

{
ϕ = arctan(k1)

R =
Lk2
√

1+k2
1

k2−k1

(24)

Equations (23) and (24) represent two alternative expressions for the localization of sound source.
In these two expressions, the variables are array distance L and slopes k1 and k2. The slopes can
be inferred from the time delay at each one of the two sensors by means of Equation (21). In the
experiments, localization was obtained from time delay τ1i

(′) and array distance L.

3.2. Precision Analysis for Localization

Compared to the single array, the variable L has been added to the localization expression for
double arrays. However, the time delay remains the key variable. As the structure and sensors of the
two arrays are identical, the standard time delay errors of both are equal (στ = στ12 = στ13 = στ14 =
στ15 = σ’τ12 = σ’τ13 = σ’τ14 = σ’τ15).

As the direction was determined by Array 1, the azimuth error was analyzed according to
Equation (24). Meanwhile, range error σR is influenced by azimuth error σϕ and array distance L.
Range precision is obviously determined by the azimuth precision according to Equation (24). Range
precision can be expressed with error transmission as

σR =
∂R
∂τi

=
∂R
∂ϕ

∂ϕ

∂τi
= (

∂R
∂ϕ1

+
∂R
∂ϕ2

)
∂ϕ

∂τi
(25)

σR =

√
2cr(sin(ϕ1 + ϕ2) + sec ϕ1 cos ϕ2)

sin(ϕ1 − ϕ2)
στ (26)

Applying the sin theorem on ∆TO1O2 gives:

sin∠TO2O1

R
=

sin∠O2TO1

L
(27)

sin ϕ2

R
=

sin(ϕ2 − ϕ1)

L
(28)

R =
L sin ϕ2

sin(ϕ2 − ϕ1)
(29)

Taking partial derivative in Equation (29) yields:

σR =

√
2cL cos ϕ2

D sin(ϕ2 − ϕ1)
στ (30)
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Substituting in Equation (29) gives

σR =

√
2cR

D tan ϕ2
στ (31)

In Equation (31), range precision is determined by sound velocity c, array size D, azimuth ϕ2 of
Array 2, error of time delay στ , and range R. The distribution of the range error is shown in Figure 5.
In Figure 5a, R = 100 m, c = 343 m/s, στ = 100 µs. In Figure 5b, D = 3 m, R = 100 m, c = 343 m/s.

Figure 5 reveals that ϕ2 affected range precision substantially. In (1◦, 20◦) and (160◦, 179◦),
the range error remains very high. In (20◦, 160◦), the error was much lower and acceptable. In Figure 5a,
array size D significantly affected precision when D < 3 m. Error was 10.78% when ϕ2 was 8.12◦.
The error reduced as angle ϕ2 is increased. When ϕ2 was 15.24◦, range error was 5.65% and it reduced
to 3.78% as ϕ2 was increased to 22.36◦. In Figure 5b, distribution was the same to Figure 5a, and the
error stayed below 5% when ϕ2 is above 20◦.
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111 1
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k kk k k
k k k k
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++
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k

ϕ
ϕ
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Since array distance L is independent to time t, the error expression of L is:

σL
R =

∂R
∂L

(32)

Take partial derivatives of L in Equation (24):

σL
R =

k2
√

1 + k1
2

2(k2 − k1)
=

k2k1

√
1 + 1

k12

2(k2 − k1)
(33)

Substituting

{
y = R sin ϕ1

k1 = tan ϕ1
into Equation (33) gives

σL
R =

R
L

(34)

Equation (34) was the expression of the range error with factor L. The error was affected by range R
and array distance L. The relative error is 1/L; therefore, the relative error theoretically stays constant when
L was designated. The error is below 6.67% when L≥ 15 m. The distribution is shown in Figure 6.
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Figure 6. Distributions of the range error of L.

In summary, the locating ability of the double array is good. The range error stays below 5 m
under a range condition of 100 m in most areas, and the azimuth error remains below 0.2◦ for all
conditions. Considering the environmental factor (c) and calculated factor (στ), it is advisable to choose
large array sizes to improve localization precision. However, larger array sizes result in higher costs
and increased complexity of the system.

4. Experiments

4.1. Experiment Setting

The locating experiments were conducted in the natural environment. The test area was open
with a size of 150 × 150 m2, and there were no tall reflectors along the boundary of the measurement
domain. According to the empirical sound speed formula, the velocity of sound propagation was
343 m/s for an air temperature of 21 ◦C. During the experiments, wind speed was very low and
the localization range was about 100 m, such that the influence of wind can be assumed negligible.
Since it’s difficult to keep an LPV going straight and travel at a constant speed, a simulated sound
source with a smaller size was used to replace the vehicle noise.

The simulated source consisted of a 0.1 kW loudspeaker and a power amplifier. The biggest
noise sources of LPV were the exhaust system and track system. The track noise was random and
nonstatistical. So, the actual measurement of periodic exhaust noise was the sound signal that was
collected during the running of the vehicle engine with rotating speed r = 1200 rpm. The sound signal
is shown in Figure 7.
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Figure 7. Sound signal for moving source.
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The moving sound source travelling at a constant speed was achieved by dragging the loudspeaker
with a fixed pulley at a constant rotating speed. The source was traveling along a straight line.
By monitoring the distance travelled as a function of time, the speed of motion of the source
was obtained.

In Figure 8, two five-element cross arrays were set according to Figure 4. The distance L between
two central sensors was 10 m, and 2 m for array size D. A NI-PXI system with 10 channels and a sample
rate of 248 kS/s was the testing instrument. The array microphones used G.R.A.S with the sensitivity
of 40 mv/pa.
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The sound source started moving from point A (−28.8, 97.92) to B (28.8, 97.92) in the X-Y plane,
and then returned back to point A.

4.2. Data Length for Correlation

Since the signal collected was not even during the interval while the source moved, it is necessary
to extract part of the whole signal periodically for short-time correlation. To ensure efficiency,
the extraction must cover one whole period in each short-time correlation.

As the sound source was being actuated by a pulley, the speed of motion was relatively slow,
which should be less than 5 m/s.

f ′ = (
v0 ± vt

v0 ∓ vs
) f (35)

According to the Doppler effect formula, the difference in value between Doppler frequency f′

and original frequency f was about 0.01 f. Meanwhile, sound velocity v0 was 343 m/s, velocity vt of
the observer was zero and velocity of source vs took the maximum velocity 5 m/s. Therefore, data bias
resulting from the Doppler effect can be ignored.

The longest distance that one acoustic wave travels in the single array is 2 D, such that the
maximum travel time is 2 D/c. The sampling interval is TN = 1/F when the sampling frequency is
assumed to be F. The data length n for short-time correlation describes the theoretical length of each
correlation in Equation (36):

n ≥ 1/ f + 2D/c
1/F

(36)

4.3. Time Compensation during Signal Transmission

Since the acoustic signal travels a long distance before it is detected by the test system, there exists
a time delay between this signal and the instant when it was emitted by the noise source. Point x(t) is
the position of the moving source at the instant t. The signal as used for the data analysis has been
generated at the source at point x(t0), which is located at a distance r from x(t), as was illustrated in
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Figure 9. Thus, the identified location at the instant time t is in fact the position of noise source at the
moment t0. It is essential to compensate for the difference.
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Figure 9. Path of motion of the sound source.

This constellation, as graphically illustrated in Figure 8, can be expressed as:
R0 =

√
x(t0)

2 + y(t0)
2

R =
√

x(t)2 + y(t)2

r = |x(t0)− x(t)| = vR0/c

(37)

To locate the noise source in actual conditions, point x(t0) moves with velocity v and sound velocity
c can be calculated. Therefore, compensation r is available and needs be taken into consideration in the
actual localization procedure.

4.4. Experiment Results

Additional environmental noise cannot be avoided either. This superposed additional noise will
negatively affect the correlation of the signals. Therefore, preprocessing of the measured signals is
required before obtaining the correlations. Since there were no other obvious sound sources and since
the superposed additional noise is of high frequency, the wavelet-filtering method was chosen to
remove unwanted noise, whereby the wavelet basis was “db10”(No. 10 of Daubechies Series Basis [27]).
As the signal was relatively simple, it was decomposed into three layers. Then, the lower part in
frequency was taken to perform short-time correlation. The signal-filtering process of one channel is
shown in Figure 10.
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Reference to Figure 10 reveals the noise contained in the test signal. There were two kinds of
noise. One is the high-frequency noise for which the amplitude is about 1/20 of test signal. The other
is the impulse with about 1/3 of the amplitude. Both of these noise contributions detrimentally affect
the correlations of the array signal. Hence, the signal form without noise, as shown in the lower left
part of Figure 9, was used to operate correlations.

During the path A→B, traveling distance was S = 57.6 m, with associated travel time t = 45.6 s and
sampling length N = 228,800. Distance S was divided into 11 elements, while travel time was the same.
The localization of the moving source was achieved by locating the central point of the 11 elements.
The results obtained are shown in Table 1.

Table 1. Point information of path A→B.

No. Coordinates/m Time/s Central Point

1 (−23.56, 97.92) 4.15 20,727
2 (−18.33, 97.92) 8.30 41,454
3 (−13.09, 97.92) 12.45 62,181
4 (−7.85, 97.92) 16.60 82,908
5 (−2.62, 97.92) 20.75 103,635
6 (2.62, 97.92) 24.90 124,362
7 (7.85, 97.92) 29.05 145,089
8 (13.09, 97.92) 33.20 165,816
9 (18.33, 97.92) 37.35 186,543

10 (23.56, 97.92) 41.50 207,270

In Figure 11, it’s obvious that basic frequency was 600 Hz with some doubling frequency component.
From Section 3.2, it is known that the period of noise T was 1/f = 1666 µs. Maximum traveling time of a single
wave between array sensors is 2 D/c≈ 11.66 ms. The length of signal extracted for one correlation must be
bigger than 11.66 ms. As the sampling interval was 200 µs, the minimum length of signal extraction was 58.
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Figure 11. Frequency spectrum of the signal.

The localization was carried out at the first central point to study the choosing principle of
extraction length that participated in one short-time correlation. Based on the signals of Sensor 1 and
Sensor 2 in Array 1, the first central was set at point 20,727, and the length of extraction was assigned
as 30, 60, 65, 70, 100, 200, and 300. After extraction of the signal and 100 times of interpolations,
the correlations of different length were calculated, as shown in Figure 12a.

The sampling interval decreased to 2 µs after 100 times of interpolation. Maximum value is
located at N = 3233, while the central point of correlation was N = 3000 when extraction n = 30.
Then, time delay is τn=30 = (3223 − 3000) × 2 = 446 µs and delays of other lengths can be calculated in
the same way, as shown in Figure 12b.
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Figure 12 illustrated that it is not possible to obtain correct time delays as time delay varies
randomly when n ≤ 60. When n ≥ 65, delay value only varies marginally and remains steady at a level
of about 520 µs, which represents the correct value of time delay.
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The locating results of different signal lengths are shown in Table 2.

Table 2. Locating result of different lengths.

Length Actual Coordinates Test Coordinates

30

(−23.56, 97.92)

(18.24, 52.31)
60 (6.79, 7.34)
65 (−24.36, 92.95)
70 (−24.35, 92.70)

100 (−24.20, 92.80)
300 (−24.07, 92.17)
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Table 2 illustrates that localization has failed with a rather high error when the length of the signal
involved in the correlation was n ≤ 60. When n ≥ 65, the test point was located nearly around the
actual point. Therefore, the length of the signal extraction was assigned as n = 65, participating the
calculation after interpolation.

All the locating results are summarized in Table 3, and the moving paths are shown in Figure 13.

Table 3. Locating result of moving source.

No. Actual Coordinates
Test Coordinates/m

A→B B→A

1 (−23.56, 97.92) (−24.01, 92.82) (−23.65, 98.29)
2 (−18.33, 97.92) (−19.44, 94.33) (−18.24, 96.86)
3 (−13.09, 97.92) (−14.29, 94.62) (−15.85, 99.70)
4 (−7.85, 97.92) (−9.75, 98.12) (−9.55, 98.38)
5 (−2.62, 97.92) (−4.58, 101.67) (−3.38, 98.15)
6 (2.62, 97.92) (1.33, 98.53) (2.81, 96.97)
7 (7.85, 97.92) (6.39, 96.68) (8.70, 97.28)
8 (13.09, 97.92) (11.06, 93.80) (13.68, 95.85)
9 (18.33, 97.92) (16.61, 95.15) (19.27, 96.00)
10 (23.56, 97.92) (21.58, 94.49) (25.04, 95.39)

Both Table 3 and Figure 13 depict that the discrete points along the moving path were obtained
accurately in the localization experiment with only small associated error.
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According to Section 3.2, after compensation was considered, the relative locating error
distribution is shown in Figure 14 before and after fixing.
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The lines in Figure 14 represent the original error of the localization, while dotted lines for error
after fixing. To some extent, the locating result improved. In summary, the accurate localization
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of a moving acoustic source was achieved and the error stayed below 5%. In further application,
the complete moving path could be obtained by increasing the number of parts divided.

5. Conclusions

The precision analysis of a locating method of a moving sound source based on intersecting
azimuth lines was studied in this paper. Simulations showed that, after another single array was
added, it had better precision and lower error. The experiments were conducted outdoors after
choosing principle of signal length in correlation. Accurate localization of a moving source was
achieved with the associated error for locating the source staying below 5%.

The work in this paper indicates applications for low-speed noise sources, such as wildlife
conservation, health protection, wind turbine noise, and other engineering applications in the wild.
However, the property change of the acoustic signal was ignored with low velocity and assumption
of point source during the simulated source localization. Further research is required in the actual
application. Further developments should focus on improvements of array size and shape. Meanwhile,
the localization of high-speed moving sources and long-distance sources is not just an extension of
this research.
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