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Featured Application: Strain-based elastography. In this paper, a Real-Time Elastography
(Hitachi Medical Corporation, Zug, Switzerland) is used with relevant probes for external and
endoscopic applications.

Abstract: Ultrasound-based strain imaging is available in several ultrasound (US) scanners.
Strain ratio (SR) can be used to quantify the strain recorded simultaneously in two different
user-selected areas, ideally exposed to the same amount of stress. The aim of this study was to
evaluate SR variability when assessed in an in-vitro setup with a tissue-mimicking phantom on
resected tissue samples and in live tissue scanning with endoscopic applications. We performed
an in vivo retrospective analysis of SR variability used for quantification of elastic contrasts in
a tissue-mimicking phantom containing four homogenous inclusion in 38 resected bowel wall lesions
and 48 focal pancreatic lesions. Median SR and the inter-quartile range (IQR) were calculated for all
external and endoscopic ultrasound (EUS) applications. The IQR and median provide a measure of
SR variability focusing on the two percentiles of the data closest to the median value. The overall SR
variability was lowest in a tissue-mimicking phantom (mean QR/median SR: 0.07). In resected bowel
wall lesions representing adenomas, adenocarcinomas, or Crohn lesions, the variability increased
(mean IQR/Median: 0.62). During an in vivo endoscopic examination of focal pancreatic lesions,
the variability increased further (mean IQR/Median: 2.04). SR variability increased when assessed
for different targets with growing heterogeneity and biological variability from homogeneous media
to live tissues and endoscopic application. This may indicate a limitation for the accuracy of SR
evaluation in some clinical applications.

Keywords: ultrasound; strain elastography; quantification; strain ratio; strain quantification;
measurement variability; pancreas; endoscopic ultrasound (EUS); Crohn’s disease; carcinoma

1. Introduction

Soft tissue elastic properties change in various pathological tissues, such as malignant tumors
and inflammatory processes. Strain elastography can be used to quantify this physical feature based
on ultrasound imaging. Tissue hardness can be assessed across tissue images describing the Elastic
modulus (E), defined as the relationship between the application of local stress and the resulting strain.
This can be expressed as:

E =
∆strain
∆stress

(1)
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Since the stress is not recorded as it travels from the stress source through the tissue as it gradually
attenuates, calculating the Elastic modulus from strain data alone is not possible. This phenomenon is
sometimes referred to as the “inverse problem” of strain elastography [1]. Under similar stress, strain
in harder tissue is lower than strain in softer tissue [2,3]. Thus, a comparison between strain in the
reference tissue and lesion produces a ratio that increases above one when the focal lesion is harder
than the reference tissue. Strain ratio (SR) represents the relative difference in tissue hardness [4].
The definition of SR is:

Strain Ratio (SR) =
Mean strain B (re f erence area)

Mean strain A (lesion area)
(2)

Hooke’s law states that for small deformations in elastic media, the strain is linearly proportional
with the force (stress) applied. However, this is true for isotropic and homogeneous media with near
infinite or free border conditions. These conditions are rarely present in biological tissues, which exhibit
non-linear elastic properties of different magnitudes due to differences in tissue structure and function.
This may be of importance for the accuracy of strain elastography. By restricting the pre-compression
and range of compressions (∆-stress) to a limited interval, the stress–strain relation of the tissues
involved may still be regarded as linear.

Vital tissue contains ducts and veins that act as stress dampers, as well as connective tissue
and sliding anatomical surfaces that limit and enhance tissue movement, respectively. Unintended
movements may cause strain concentration and reduce the accuracy of SR evaluation. Hence, in vivo
conditions often do not meet the preconditions of Hooke´s law for elasticity calculation, and may
therefore represent limitations and cause strain-imaging artefacts that increase variability and reduce
the reproducibility of SR measurements.

SR expresses a momentarily and relative difference in compressibility in two user-selected areas
within selected regions of interest in a strain elastogram. SR is dependent on similar stress applications
in the two areas compared, and similar stress attenuation in the tissue between the stress source (probe)
and the area of interest. The SR measurement method was first introduced as the “fat-lesion ratio” in
breast imaging, where an area of subcutaneous fat was used as the reference to mean strain in the lesion
under investigation. Using the subcutaneous fat as reference was perhaps as close to a standardized
reference tissue as one can get. However, the same preconditions apply, as the tissue constitution
between the probe and target lesion, and the probe distance may influence the strain distribution in
reference area fat tissue.

The variations in elasticity of biological tissues is not linear with varying pre-compression or
stretch of the tissue. For breast and pancreatic tissues, this has been evaluated by force indentation and
deformation studies under increasing strength. This implies that the amount of pre-compression and
the range of the stress applied influences the strain result and thereby the elastogram. In one study,
the authors recommended a pre-compression level less than 0.2–0.4 kPa for breast imaging [5].

Another physical condition that complicates the reproducibility of strain ratios is the temporal
variability in a live strain cine-loop. The best phases for acquiring strain data is during the compression
and decompression phase, since no strain signal is transmitted when the stress is stable between
these two phases. Compression and decompression of vital tissue may be caused by applied pressure
from the probe or by natural internal movements from arterial pulsation, heart movements, or even
breathing. Some strain elastography platforms provide feedback to the examiner about the phase of
compression or decompression on which the image is acquired, enabling the use of SR from similar
phases of tissue straining. One study on breast imaging concluded that peak SR performs better than
average SR in breast tumor characterization [6].

Several studies reported high accuracy of SR in determining focal breast lesions as malignant
or benign. In a meta-analysis, Sadigh et al. reported a sensitivity and a specificity of 88% and
83%, respectively, for SR with a receiver operating characteristic-area under curve (ROC-AUC) of
0.92. Strain elastography with SR has been compared to evaluation using a strain histogram with
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similar good results [7]. SR was reported to be better than magnetic resonance imaging (MRI) for
breast tumor characterization, but the combination of the two modalities had a better ROC-AUC of
0.914 [8]. Furthermore, for the evaluation of axillary lymph nodes in breast cancer patients, a combined
evaluation of B-mode ultrasound (US) and Real-Time Elastography (RTE) increased specificity [9]. Also,
in the characterization of thyroid nodules as malignant or benign, SR was reported to have sensitivity
of 85–89% with specificity of 80–82% in two meta-analyses [10,11]. In trans-rectal applications in
prostate and rectal tumors, SR has been used to improve B-mode identification of malignant tumors
with adequate accuracy (ROC-AUC > 90%) [12,13].

The aim of this study was to retrospectively compare variability in strain-based elastography
quantified by SR, recorded in three different applications using Real-Time Elastography in
homogeneous tissue-mimicking media, in resected tissue from bowel lesions, and during the
endoscopic ultrasound (EUS) of focal pancreatic lesions. We chose to calculate the inter-quartile range
(IQR) and median for all applications based on previous studies, since this has become a much-used
quality-indicator in transient- and shear-wave elastography platforms. Our hypothesis is that SR
measurement variability would increase substantially from phantom scanning to an endoscopic
application on pancreatic lesions, which may limit the usefulness of the method in some applications.

2. Materials and Methods

The SR data in this study were recorded on the Hitachi (Hitachi Medical Corporation, Tokyo,
Japan) Extended Combined Autocorrelation Method (ECAM) also known as Real-Time Elastography
(RTE) operated on Hitachi HV-900 and Ascendus platforms (version: V16-04 STEP 2). US data were
acquired using external linear probes (L54, 9–13 MHz). The phantom used was a standard model
made of Zerdine® (US pat no. 5196343) embedded in a firm box including eight spherical inclusions
with elasticities of 8, 14, 45, and 80 kPa in a background of 25 kPa (CIRS, model 49, Norfolk, Virginia,
USA) (Figure 1).
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them, and proceeded directly to scanning in a designated scanning box with the bottom covered with 
1 cm of agar. Bowel specimens were then fixated in formalin when attached to the bottom with 
colored pins, marking the scan-planes. A Hitachi HV-900 scanner was used with a L54 M linear probe, 
9–13 MHz. We included 9 specimens from patients with Crohn’s disease (16 sections scanned), 16 
patients with adenocarcinomas (18 tumor sections scanned), and 3 patients with adenomas (4 lesion 
sections scanned). One patient had both an adenocarcinoma and an adenoma. Altogether, 38 sections 

Figure 1. The Zerdine phantom used for scanning with a visualization of the inclusions inside.
Red lesions: 8 kPa, yellow: 14 kPa, green: 45 kPa, and blue: 80 kPa in a background of 25 kPa.

To study surgical bowel specimens, we collected the specimens in the operation room, washed
them, and proceeded directly to scanning in a designated scanning box with the bottom covered
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with 1 cm of agar. Bowel specimens were then fixated in formalin when attached to the bottom with
colored pins, marking the scan-planes. A Hitachi HV-900 scanner was used with a L54 M linear
probe, 9–13 MHz. We included 9 specimens from patients with Crohn’s disease (16 sections scanned),
16 patients with adenocarcinomas (18 tumor sections scanned), and 3 patients with adenomas (4 lesion
sections scanned). One patient had both an adenocarcinoma and an adenoma. Altogether, 38 sections
of separate lesions were included. Histology was the reference standard. For further details on the
patients and method, please refer to the original publication [14].

To examine pancreatic lesions, the data were recorded prospectively over a three-year period.
We used Hitachi HV-900 with software version V16-04 STEP2. The echoendoscope was a Pentax
EG-3870 UTK (Pentax Medical, Hamburg, Germany). We included 48 lesions from 39 patients:
11 adenocarcinomas, 7 malignant neuroendocrine tumors (NETs), 11 benign/indeterminate NET, 8 focal
lesions in pancreatitis, 2 microcystic adenomas, and 9 other benign lesions. The reference standard
was histology, EUS fine-needle-aspiration (FNA), or follow-up for at least 6 months. For further details
and the diagnostic accuracy, please refer to the original publication [15].

Statistical Methods

We used the mean of the median SR values for each class of lesion, the range of values (max–min)
and the interquartile range (IQR) for different objects or lesions. The IQR is a measure of the variability
based on the two central quartiles from the 25th–75th percentile. The remaining 50% in the eccentric
quartiles are not part of the IQR, but are accounted for by the range, representing the gap between
the highest and lowest measured value. Kolmogorov–Smirnov’s test was used to determine the
distribution of data, and one-way Analysis of variance (ANOVA) or non-parametric tests were used
accordingly. We then used the Kruskal–Wallis test for individual samples to compare the median SR,
the IQR, and the IQR/median for the three applications of Real-Time Elastography with SR. We also
analyzed the difference in median SR, IQR and IQR/median between observer A and B in the phantom
and for benign or malignant pancreatic lesions by EUS elastography using one-way ANOVA and t-test.
A difference with a p-value < 0.05 was considered statistically significant. We also used the intraclass
correlation coefficient (ICC) to calculate inter observer agreement when possible.

All patients had signed a consent form to participate in the two studies that provided SR data for
comparison of variability. For statistical analysis, we used SPSS, version 24 (SPSS, IBM, New York,
NY, USA). Study protocols as well as patient information and consent forms were approved by the
institutional committee for Research in Medicine and Biology. The studies were conducted according
to the Helsinki Declaration for Research in Medicine and Biology. A excel file (Microsoft Corporation,
Redmond, WA, USA) with the pooled data for phantom inclusions, surgical specimens and pancreatic
lesions by entity is included as a Supplementary Materials file.

3. Results

In a homogeneous, tissue-mimicking phantom, four spherical inclusions with elasticity different
from the background were examined by two different observers. Observer A had little experience with
US scanning and observer B had extensive experience with both phantom and clinical application of
US strain imaging methods. An image of inclusion 4 (80 ± 12 kPa) is shown in Figure 2.

In Table 1, the median values of 10 repeated SR measurements are reported for observer A and
B, their range and interquartile range (IQR), and the IQR/median. The last measure represents the
variability of 50% of the central observations divided by the median value. The common mean value
for observers A and B was 0.07. The IQR for all median SR values for all inclusions was ≤0.17.
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Table 1. Elastography strain ratio (SR) in four inclusions in a tissue-mimicking phantom.

Lesion
Background 25 kPa

1
8 kPa

2
14 kPa

3
45 kPa

4
80 kPa

Observer A B A B A B A B
Median SR 0.52 0.68 0.96 0.82 1.91 1.35 2.50 2.82

Range 0.09 0.08 1.04 0.10 0.18 0.11 0.91 0.24
IQR 1 25–75 0.06 0.03 0.15 0.06 0.12 0.04 0.17 0.07

IQR/Median 0.118 0.044 0.156 0.073 0.063 0.030 0.068 0.025
1 IQR: Inter Quartile Range. Mean IQR/median for phantom lesions: 0.07.
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Figure 2. Elastogram from a tissue-mimicking phantom displaying a spherical inclusion (80 kPa) with
a diameter of two cm in a background of 25 kPa. Right side: B-mode image with area markings.
A (lesion) and B (reference). Left side: elastogram in color coding. The stress source was working
from above in the axial direction. The lesion is speckled and green-blue, whereas the background
material is mostly homogeneously green. Between the lesion and the probe, the red color indicates
strain concentration between the stress source and the harder lesion. The strain ratio (SR) is mean
strain in B/mean strain in A = 1.80.

3.1. Interobserver Variability

The interobserver variability in the phantom lesions expressed by the mean of the SR medians
showed no significant difference between the two observers (p = 0.937 ANOVA). The IQR/median SR
ranged from 0.063 to 0.156 (mean: 0.101) for observer A who had the least experience, and 0.025–0.073
(mean 0.043) for observer B who had more experience, but the difference was not significant (p = 0.055,
ANOVA).

The distributions of median SR and IQR/median were not significantly different between
observers A and B. The mean IQR alone was significantly different between observer A, at 0.125
(SD: 0.050), and observer B 0.050 (SD: 0.018) (p = 0.027 ANOVA). The range was not significantly
different between the observers. The interobserver agreement assessed by intra-class correlation (ICC)
for average measures between observer A and B was 0.661 (p = 0.040).
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3.2. Strain Ratio in Surgical Specimens

One observer scanned surgically removed bowel specimens including tumors or resected Crohn
lesions. The image of a scanned bowel wall with an adenocarcinoma is shown in Figure 3. The data
on SR were previously published, but IQR/median was not used as a variability parameter [14].
SR was recorded between the normal bowel wall and peri-colic fat/connective tissue and the lesion of
interest. SR results including range, IQR and IQR/median for the entities adenoma, Crohn lesions,
and adenocarcinomas are reported in Table 2. Crohn lesions had a wide range in measurements (21.44),
but they had the lowest IQR/median of 0.31. For adenocarcinomas, the IQR/median was 0.66 and for
adenomas, represented by a limited number (4); the IQR/Median was 0.88. For all SR measurements of
resected bowel tissue, the variability expressed by IQR was ≤0.88. The mean IQR/mean in all resected
tissue was 0.62.Appl. Sci. 2018, 8, x FOR PEER REVIEW  6 of 12 
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Figure 3. Elastogram of a newly resected bowel lesion from the colon containing a malignant tumor
(adenocarcinoma). The hypoechoic tumor mass (right) is imaged with a blue-green color indicating
harder tissue (left). The SR measured between pericolic fat and connective tissue, as well as part of the
proper muscle and the tumor tissue, was 1.56. The lesion and reference are positioned at similar depth
and distance from the stress source and the bottom.

Table 2. Elastography strain ratio (SR) in resected surgical bowel specimens.

Entity Adenoma Crohn Adenocarcinoma

Number 4 16 18
Median SR 1.25 2.09 2.18

Range 1.38 21.44 4.53
IQR 1 (25–75) 1.10 0.64 1.44
IQR/Median 0.88 0.31 0.66

1 IQR: Inter Quartile Range. Mean IQR/Median SR for ex vivo tissue: 0.62. Previously published in [14].
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3.3. Strain Ratios in Live Tissue Using Endoscopic Ultrasound (EUS)

The data on pancreatic lesions representing various focal entities is reported in Table 3. The mean
and range of these data had previously been published [15], but the IQR/median was not calculated
and was not used as a variability parameter previously. The mean of median SR of the malignant
pancreatic lesions was 7.05 (SD 1.85) and for the benign lesions, 2.15 (SD 1.22), (p = 0.035 t-test). For all
entities, the IQR was higher than the median SR value, indicating substantial variability. For the
malignant lesions the mean IQR/Median SR was 1.79 (SD 0.69) and for the benign lesions the mean
IQR/Median SR was 2.21 (SD 1.29). The difference was not significant (p = 0.713, t-test). The mean
IQR/Median SR for all pancreatic focal lesions by EUS elastography was 2.04. The IQR/Median SR
value for lesions in focal pancreatitis was the highest (3.68), reflecting the large variability observed in
focal pancreatitis as well as a relatively low median SR for this entity (0.91).

Table 3. Elastography strain ratio of focal pancreatic lesions by Endoscopic Ultrasound (EUS).

Entity Neuroendocrine Tumors (NETs)
Undetermined or Benign

NET
Malignant Adenocarcinoma Focal

Pancreatitis
Other Benign

Lesion

Number 11 7 11 8 11
Median SR 2.19 5.74 8.36 0.91 3.34

Range 7.93 17.5 24.5 8.33 35.3
IQR 1 (25–75) 2.80 13.1 10.9 3.55 5.53
IQR/Median 1.28 2.28 1.30 3.68 1.66

1 IQR: Inter Quartile Range. Mean IQR/Median SR for pancreatic lesions: 2.04. SR data with median values and
IQR previously published as box-plots [15].

3.4. IQR/Median SR for Three Applications of Strain Elastography

For the three applications reported here, the IQR/median SR increased from scanning a tissue
mimicking phantom to ex-vivo surgical specimens of bowel pathology, and increased further when
the strain imaging was performed endoscopically focusing on focal pancreatic lesions. The difference
between the IQR/median SR was significant (p = 0.002, Kruskal-Wallis; Figure 4).
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Figure 4. Box plots of the interquartile range (IQR)/median SR for the different applications of strain
based elastography (Real-Time Elastography) reported here. There is significant difference between
this quality parameter for the three applications (p = 0.002). In liver elastography using Transient
Elastography, the suggested maximum IQR/Median Shear-Wave speed for good quality assessment in
10 repeated measurements in the same liver is 0.30, which is marked with the dotted horizontal line.
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3.5. Reference Area Variability

Figure 5a–c demonstrate three different frames of strain images obtained with EUS elastography,
including SR measurements of the same pancreatic tumor using slightly different but relevant reference
areas. The three SRs obtained ranged from 8.43 to 16.36 to 25.70. All the variation was caused by
variability in the reference tissue, in which strain varied between 0.08% to 0.16% to 0.27%. The lesion
strain was 0.01% in all images.
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Figure 5. Three images of the same pancreatic tumor visualized by endoscopic ultrasound (EUS)
elastography. Tumor tissue is blue in the elastograms with a predominantly green reference tissue.
The position and size of the reference tissue vary slightly between the three different images, and exhibit
different strains in all three images: (a) 0.16%; (b) 0.08%; and (c) 0.27%, whereas the strain in the lesion
remained at 0.01%. This causes the SR values to vary from 8.43 to 26.7.
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4. Discussion

In this paper, we presented SR measurement in a tissue-mimicking phantom and in resected tissue,
where the stress was applied by pushing gently with the probe itself, focusing on the measurement
variability. We also presented data from EUS elastography of focal pancreatic lesions where arterial
pulsations, particularly from the aorta, acted as an internal stress source. We showed that the IQR
increased with application to more complex anatomical structures and inability to control the stress
source to a level that surpasses the median SR value. The mean value of the IQR/median increased
8.6 times from the phantom (0.07) to resected tissue (0.62) and 28.3 times with endosonographic
application (2.04).

When applying strain elastography in an endoscopic application, the strain is dependent on
endogenic stress sources, such as aortic pulsation and respiratory movements. These sources may vary
considerably between patients and can hardly be standardized. Also, the availability of stable reference
tissue that should be subject to similar stress as the lesion, may be hard to find in this application.
Moreover, further differences may be caused by variable levels of pre-compression and applied stress
caused by the endoscope. Since soft tissues have non-linear elastic properties, the tissue will appear
harder with more applied stress or increased pre-compression [5,16]. An endoscopic application is
also challenging because the probe is inserted into the gastrointestinal cavity and cannot be controlled
directly by the observer’s hands, as is the case with external strain imaging ultrasonography. Lu et al.
performed a meta-analysis of EUS elastography in pancreatic lesions evaluated qualitatively with
a visual score, strain histograms, SR, contrast enhanced EUS, and EUS FNA. They identified a large
range in SR cut-off values based on previous published cut-off values or the ROC curves (3.05 to 24.82).
This caused large heterogeneity for the specificity, and three-eighths of the studies were identified as
outliers. After removing the outliers, the evaluation for identification of malignant lesions based on
qualitative visual scores and strain histograms outperformed the SR-based evaluation (sensitivity: 0.94,
specificity: 0.54, diagnostic odds ratio (OR): 29.42 [17]. However, strain elastography and SR-based
assessment of rectal tumors using a dedicated radial rectal probe, which allows induction of strain
by rapid water-inflation of a balloon around the US probe, was used to improve patient selection for
organ-sparing treatment compared to standard multidisciplinary assessment [18].

In our experience, the variability in SR measurements increases when we transitioned from
application with good access to relevant reference tissue, which allows for hand-eye coordination
of inflicted stress, made possible by the real-time strain-feedback to the examiner on the screen.
Selection of the reference area for comparison with a focal lesion also introduces variability that may
influence the resulting SR more than the strain variability of the lesion itself, as illustrated in Figure 5.
To avoid the variability induced by the reference area, some researchers recorded the strain values in
the lesion of interest using the Strain Histogram (SH) function and found that it performed equally as
well as the SR in some applications. However, this is dependent on a near standardized application
of stress to the lesions of interest. The SH function displays the distribution of the different colors
representing different strain intervals in a 256 scale, from no strain (0) to maximum strain (256), as set
by the scanner software. From a histogram, quantifying the distribution of recorded strains it is also
possible to evaluate if the lesion and reference tissue is homogeneous or heterogeneous by using
kurtosis and range. Carlsen et al. showed that the SH (cut-off: 189) performed equally well as SR
(cut-off: 1.44) in differentiating malignant from benign breast lesions, but the modality could not
improve diagnostics when compared with radiological Breast Imaging-Reporting and Data System in
a limited material [7]. The median value of the histogram represents the median hardness of the lesion.
Opacic et al. suggested using the median histogram value of the reference tissue divided by the median
value of the lesion histogram to create a histogram ratio. In a study of pancreatic lesions, this did
not perform better than SR with a ROC-AUC of 0.843 and a cut-off selection yielding a specificity of
98%, a sensitivity of only 50%, and an accuracy of 69% [19]. Unfortunately, we did not record the
strain histograms in our studies of surgical specimens and pancreatic lesions as this function was not
available at the time.
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Visual evaluation of the elastogram is direct and intuitive and requires no post-processing.
Several scoring systems for categorical scoring of strain images have been proposed. For breast imaging,
the five-point Tsukuba scale was proposed by Itoh et al. [20]. In two meta-analyses, SR measurements
were found to differentiate malignant from benign breast lesions better than using the visual scoring
range of one to five [21,22]. Amended versions of this visual score have been proposed for other
organs, such as for the pancreas and lymph nodes by EUS elastography. Both the continuous visual
analog scale (VAS) score and categorical visual scores for endoscopic assessment of rectal tumors has
shown comparable results with SR measurements [23]. In a comparative study of SR and the five-point
visual elastography breast scale, SR was more accurate. However, the direct visual impression of an
experienced examiner using elastography imaging may contain more information than a five-step
visual score can comprehend, which is useful in many cases for lesions in doubt. With training,
different aspects of the elastogram, such as strain concentration and artefacts caused by veins and
natural sliding surfaces, can be recognized. These findings can hardly be recognized by SR, histograms,
or other formal quantification methods. One group investigated the use of automated pattern and color
recognition of elastography of focal pancreatic lesions in 258 patients. They used an artificial neural
network image analysis and information about the histological diagnosis from endoscopic elastography
as the input. This improved the accuracy, with a ROC-AUC of 0.94, significantly better compared
to using only lesion strain histograms that had a ROC-AUC of 0.85. This evaluation was performed
using collected data in a multicenter study [24] but required substantial post-processing. In the future,
automated tissue recognition or a material of standardized hardness, serving as a reference within the
field-of-view, may be ways to improve SR in endoscopic applications. Also, averaging strain values
over several frames or filtering noisy strain areas in the elastograms may improve SR measurements.
We may possibly also soon see shear-wave elastography for flexible endoscopes.

Limitations

This study was based on previously recorded strain ratios from a tissue mimicking phantom
and real tissues, both in vitro and in vivo. The data are based on different numbers of lesions
for each application. For the resected tissue and the EUS elastography of pancreatic focal lesions,
all recordings were performed by the same observer, whereas the phantom inclusions were performed
by two observers. Because the data on surgical specimens and pancreatic lesions in this study were
collected from individual lesions and patients, whereas the phantom inclusions represent only four
different cases, this also limits the variability in the phantom SR measurements. The same strain
elastography system was used for all scans (Hitachi, Real-Time Elastography), but both scanners and
software were upgraded between the scanning of surgical specimens, EUS, and the phantom scanning.
The ECAM algorithm was applied throughout all scans, but since elastograms are based on B-mode
data, improvements in B-mode images through scanner software upgrades may have influenced the
results. The scanning of the phantom was completed with the latest version of the scanner software.

5. Conclusions

SR measurements are useful for quantifying local differences in tissue strain and the evaluation
method is well documented for several applications. We showed that SR, as a semi-quantitative
method of strain elastography, has increasing variability when used in a tissue mimicking phantom,
in resected surgical specimens, and for focal pancreatic lesions examined by endoscopic ultrasound.
When the probe does not represent the source of stress or when a stable reference tissue cannot be
obtained, SR may be subject to large variability and should be interpreted with caution.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/8/8/1273/s1,
Table 3, Pooled median SR values for phantom inclusions, surgical specimens and pancreatic focal lesions
by diagnose.
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