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Abstract: As much of metamaterials’ properties originate from resonances, the novel characteristics
displayed by acoustic metamaterials are a narrow bandwidth and high dispersive in nature. However,
for practical applications, broadband is often a necessity. Furthermore, it would even be better if
acoustic metamaterials can display tunable bandwidth characteristics, e.g., with an absorption
spectrum that is tailored to fit the noise spectrum. In this article we present a designed integration
strategy for acoustic metamaterials that not only overcomes the narrow-band Achilles’ heel for
acoustic absorption but also achieves such effect with the minimum sample thickness as dictated by
the law of nature. The three elements of the design strategy comprise: (a) the causality constraint,
(b) the determination of resonant mode density in accordance with the input target impedance,
and (c) the accounting of absorption by evanescent waves. Here, the causality constraint relates the
absorption spectrum to a minimum sample thickness, derived from the causal nature of the acoustic
response. We have successfully implemented the design strategy by realizing three structures of
which one acoustic metamaterial structure, comprising 16 Fabry-Perot resonators, is shown to exhibit
near-perfect flat absorption spectrum starting at 400 Hz. The sample has a thickness of 10.86 cm,
whereas the minimum thickness as dictated by the causality constraint is 10.55 cm in this particular
case. A second structure demonstrates the flexible tunability of the design strategy by opening
a reflection notch in the absorption spectrum, extending from 600 to 1000 Hz, with a sample thickness
that is only 3 mm above the causality minimum. We compare the designed absorption structure
with conventional absorption materials/structures, such as the acoustic sponge and micro-perforated
plate, with equal thicknesses as the metamaterial structure. In both cases the designed metamaterial
structure displays superior absorption performance in the target frequency range.

Keywords: acoustic metamaterials; causality constraint; impedance matching; design strategy;
mode density; oscillator strength

1. Introduction

Even in the 21st century, acoustic noise can still be a pernicious problem. An obvious question
facing the scientific and engineering community is: How can we do better to remediate this problem?
While doing by trial and error and learning by experience clearly constitute a path forward, occasionally
natural laws can offer us the ultimate limit on how well one can achieve. It is the purpose of this article
to show that acoustic absorption is one such case, and knowing the limit represents a tremendous
advantage since one can work backwards in designing strategies to achieve such limit. The relevant
limit in the case of acoustic absorption is that imposed by the causality principle, which, combined
with the resonant mode density determination based on the target absorption spectrum for a structure
backed by a reflecting substrate, is shown to yield a self-consistent strategy for achieving absorption
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by design. By considering the absorption through evanescent waves, we also address the practical
issue of using a finite number of resonances to best achieve the target absorption spectrum.

For absorption at least, our design approach presented in this article has overcome the Achilles’
heel of narrow frequency bandwidth and dispersive character [1,2] for acoustic metamaterials.

Acoustic response of materials and/or structures must obey the causality principle, which states
that the response at any moment of time can only depend on what occurred prior to that moment.
In other words, the future cannot affect what happens now. Translated into mathematical language, this
simple and intuitive statement can have deep consequences. In 1926–1927, Hans Kramers and Ralph
Kronig independently derived the well-known Kramers-Kronig relationship between the real and
imaginary parts of the dielectric function for electromagnetic waves, based on the causality principle [3].
Another, much less-known consequence of the causality principle is that for any electromagnetic
absorption spectrum, there is a minimum sample thickness [4,5]. Adapted to acoustics, we have
derived the following relationship for a flat structure sitting on a reflecting substrate [6]:

d ≥ 1
4π2

Beff
B0

∣∣∣∣∫ ∞

0
ln[1− A(λ)]dλ

∣∣∣∣ = dmin. (1)

Here, λ (= 2πv0/ω) denotes the sound wavelength in air, with v0 = 340 m/s being the speed of
air-borne sound, ω the angular frequency, A(λ) the absorption spectrum, Beff the effective bulk modulus of
the sound absorbing structure in the static limit, and B0 the bulk modulus of air. For the sake of making
the present article self-contained, we give a detailed derivation of Equation (1) in Appendix A that first
appeared in the Supplementary Information section of ref. [6]. Equation (1) tells us that the acoustic
absorption spectrum cannot be independent from the sample thickness. A somewhat interesting aspect of
Equation (1) is that only the bulk modulus appears in the causality constraint (in the electromagnetic case
only the magnetic permeability appears in the causality constraint), whereas it is well known in acoustics
that there are two material parameters: bulk modulus and mass density. This is attributed to the fact
that in the derivation, it is necessary to take the zero-frequency limit. Hence, no inertial effect can be
present. Some immediate implications of Equation (1) are that there cannot be 100% absorption over a finite
frequency range by a finite-thickness structure, and that closer the absorption gets to 100%, the thicker
the sample must be. Also, for the same frequency bandwidth, a lower central frequency implies a thicker
minimum sample thickness, and vice versa.

It should be mentioned that there have been numerous studies to broaden the frequency range
of absorption for acoustic metamaterials, some of which were quite successful [7–10]. The present
approach differs by delineating the ultimate limit as dictated by natural law, and using such constraint
as part of the design strategy to achieve tunable absorption by design.

2. Turning the Causality Constraint into a Design Tool

By setting d = dmin in Equation (1), we can interpret the resulting equation as a design tool.
That is, one can use the equation to find the solution to the following questions. For a given sample
thickness d and a fixed frequency (wavelength) range, what is the best absorption achievable? From the
causality constraint, it is clear that for a given sample thickness, there is only a limited amount of
absorption resources. Therefore, in this context the real question is: How to allocate these limited
resources, i.e., how to define “best”? If the purpose is noise remediation, then perhaps the best target
absorption spectrum is that which matches the noise spectrum. Alternatively, for a fixed d and a desired
absorption level, what is the broadest possible frequency range possible? But perhaps the most-often
encountered scenario would be: For a target absorption spectrum A(λ), what would be the minimum
sample thickness achievable? Below we show examples for what can be achieved from this perspective,
but first it is necessary to consider the requirement of impedance matching for a sample, which is the
complementary consideration to the causality constraint in our strategy to design a structure with
a tunable absorption spectrum.

We define any sound absorption sample to be “optimal” if it attains d = dmin.
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3. Impedance, Absorption and Green Function

At normal incidence, reflection coefficient R from a flat sample is given by

R =
Z− Z0

Z + Z0
(2)

where Z = ρv denotes the sample impedance, ρ is the mass density, and v is the sound speed. Here, Z0

is the impedance of air. If the sample sits on a reflecting hard surface, then there is no transmission,
and absorption A can be directly calculated as A = 1− |R|2. In other words, there is a one-to-one
correspondence between absorption and the impedance ratio Z/Z0. In what follows, we consider how
this impedance ratio can be tuned via acoustic resonances, i.e., through the use of metamaterials.

Impedance and Green Function

When the lateral sample dimension is much smaller than the wavelength so that the diffraction
effect can be neglected, impedance may be alternatively defined as

Z = p/
.
δ (3)

where p denotes pressure modulation, and
.
δ is the displacement velocity. The Green function is defined as

G = δ/p (4)

Hence, for harmonic waves we have a simple relationship between the impedance and the
Green function:

Z =
i

ωG
(5)

i.e., the two are essentially the inverse of each other, with the real and imaginary parts switched.
The advantage of expressing the impedance in this manner is that the Green function can be explicitly
written down through the eigenfunction expansion approach. For the acoustic metamaterials,
the eigenfunctions are the resonance modes, which must have the Lorentzian form. To illustrate
how the resonance can tune the impedance, let us consider the case of a system having two discrete
resonances with resonance frequencies Ω1 < Ω2:

Z(ω) =
iρ0d

ω

(
α1

Ω2
1 −ω2

+
α2

Ω2
2 −ω2

)−1

(6)

where ρ0 denotes the density of air, and α1(2) is the oscillator strength, to be made explicit later.
Here, we treat the dissipation to be negligibly small. It is clear that at ω = Ω1(2) the impedance is
zero, and there is always a frequency Ω1 < ω̃ < Ω2 where the sum of the two terms vanishes in
the parenthesis, so that the magnitude of the impedance diverges. This is denoted the antiresonace
point [11]. Hence, with resonances one can tune the impedance of a resonant metamaterial structure at
will by varying the frequency. Since there is a one-to-one correspondence between the impedance and
absorption, it follows that one might be able to obtain absorption by design, by properly integrating
together multiple resonances. Below we show precisely how this proper integration can be carried out
in accordance with the desired target absorption spectrum, and how the causality equality can be used
to fix a crucial design parameter so as to achieve consistency with the goal of attaining absorption by
design with the minimum sample thickness.

4. Integration Strategy for Achieving Absorption by Design

In order to be concrete, in the following we will consider the use of Fabry-Perot (FP) resonators to
realize our integration strategy.
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A simple-minded approach to putting together multiple resonances for achieving, e.g., broad-band
absorption, is by integrating within a single metamaterial unit multiple resonators with equally-spaced
resonance frequencies. However, we show below that there is a much better strategy than using
equally-spaced resonances. To see how such a strategy can be derived, let us consider an idealized
structure with a continuum of resonances so that its impedance can be written as [12]

Z(ω) = i lim
β→0

Z0d
ωv0

[∫ ∞

0

α(Ω)D(Ω)

Ω2 −ω2 − iβω
dΩ

]−1

(7)

where D(Ω) is the density of the resonant modes, and β is the dissipative constant that controls the
width of the absorption peak. It should be noted that letting β→ 0 does not imply the system to have
zero dissipation when integrated over frequency, since a zero β means that the imaginary part of the
quantity in the square bracket becomes a delta function with zero width, but which has a non-zero
integrated effect. It follows that from Equation (7) we have

Z(ω) ' Z0d
ωv0

[
−iP

∫ ∞

0

α(Ω)D(Ω)

Ω2 −ω2
dΩ+

∫ ∞

0
πα(Ω)D(Ω)δ(ω2 −Ω2)dΩ

]−1

(8)

Here, the symbol P denotes taking the principal value. In Equation (8), the integrant in the
imaginary part is oscillatory in nature. Hence, it can be small. If for the moment we ignore the
imaginary part in the square bracket and focus only on the real part, then

Z(ω)

Z0
=

2d
πv0

[α(ω)D(ω)]−1 (9)

Here, the mode density can be written as D(Ω) = (dΩ/dn)−1, where n is a continuous variable
that indexes the resonance modes, defined as n = lim

N→∞
(n− 1)/N, with n being an integer ranging

from 1 to N. By recognizing that [α(Ω)]−1 = πv0/4φΩd for the lowest-order FP resonances, from
Equation (9) we obtain the following simple differential equation for determining the mode density
from the target impedance:

dΩ
dn

= 2φ

[
Z(Ω)

Z0

]
Ω (10)

Here, φ is the area fraction of the FP resonators’ openings in the total surface area of the
metamaterial unit. It will be seen that the determination of φ requires the causal relationship to
achieve both minimum sample thickness as well as consistency with the target absorption spectrum.
Two comments are in order. First, since we want to target a certain absorption spectrum, then Z(Ω)/Z0

can be directly obtained from Equation (2) and the fact that A = 1− |R|2. Second, the mode density
obtained by solving Equation (10) cannot exactly reproduce the target absorption spectrum because
in the derivation of Equation (10) we have ignored the imaginary part of the impedance. In order
to illustrate this point, let us choose for the target absorption spectrum a flat, perfect absorption
spectrum starting at a lower cutoff frequency Ωc. In that case Z(Ω)/Z0 = 1 above Ωc and we have
Ωn = Ωc exp[2φn]. Then, α(Ω)D(Ω) = 2d/(πv0) is a constant, and Equation (7) can be integrated
to obtain:

Z(ω)

Z0
=

π

π − 2itanh−1(Ωc/ω)
(11)

This expression is graphically illustrated in Figure 1 below.
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Figure 1. (a) A plot of the normalized impedance as a function of frequency, calculated from Equation (11).
Here, the imaginary part of the impedance, denoted by the blue line, is seen to decay quickly, as expected
from the oscillatory nature of the integrant in Equation (8). The real part of the impedance approaches the
target value in an exponential fashion. (b) The calculated absorption coefficient is seen to approach 1 in
an exponential fashion. At frequencies close to the cutoff frequency, the effect of the imaginary part can be
significant, but its influence decreases quickly with increasing frequency.

From Equation (11) one can easily evaluate dmin as defined by Equation (1). If we take the effective
medium expression for Be f f = B0/φ, then dmin = 2v0/(φΩcπ).

So far we have neglected the effects of the higher order resonances in the FP resonators,
which would become more numerous as frequency increases. This is done for the clarity of presentation
so that the main thesis of this work can be cleanly delineated without the complications of mathematical
details, which are reproduced in Appendix B.

To complete the description of the integration strategy, we now focus on the determination of
the value for φ through the condition of d = dmin and Equation (1). For the total absorption example
described above, Ωn = Ωc exp[2φn] gives the optimal form for the distribution of the resonance
frequencies. If we specialize to the case of a discrete number of resonators, e.g., by using 16 FP
resonators as a single, 4 × 4 acoustic metamaterial unit, then N = 16, and the length of the nth FP
resonator is given by `n = πv0/(2Ωn). If we can fold the longer FP resonators so as to make the
metamaterial unit a compact cuboid, then the minimum thickness d of the unit is determined by
volume conservation, i.e.,

d =
1
16

16

∑
n=1

`n =
πv0

32Ωc

16

∑
n=1

exp[−2φ(n− 1)/16] ∼=
πv0

4φΩc
[1− exp(−2φ)] (12)

In Equation (12), the final expression is noted to be exact when N → ∞ . By setting d = dmin, one
obtains an explicit expression for φ:

φ = −1
2

log(1− 8/π2) = 0.832 (13)

It is noted that since dmin is calculated by using the target absorption spectrum, hence
self-consistency is achieved, simultaneous with attaining the minimum sample thickness. It is clear
that φ sets the channel length for each FP resonator. It also plays a role in the area fraction of the
reflecting surface. One might ask what happens if φ deviates from its optimal value. For example,
if one makes φ smaller, it is clear from Equation (12) that d can be smaller. However, the price to pay is
that the resulting absorption spectrum would deviate from the target absorption spectrum.

The most important consequence of neglecting the higher order FP resonances is in the
determination of the φ value, as well as in the form for the distribution of the resonance frequencies.
If we use as the target absorption spectrum the one described above, then the consideration of all the
higher order FP resonances (shown in Appendix B) would lead to a value of φ = 0.982. Also, whereas
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in the above we have derived an expression log Ωn ∝ n, the inclusion of higher order modes makes
log Ωn super-linear in n. Here Ωn denotes the lowest-order FP resonance, and hence it is inversely
proportional to the FP channel length. Since φ = 0.982 implies very thin walls separating the different
FP channels, in actual implementation it is necessary to deviate from this optimal value. However,
there is nothing to prevent us from setting the FP channel lengths by using the correct optimal value of
φ in conjunction with the corrected Ωn distribution, which would guarantee maximum consistency.
The area fraction of the reflecting surface, however, would be larger in such case, which implies some
degradation in the absorption performance from the optimal target.

The above scheme can be schematically illustrated below by the “circle of consistency” shown
in Figure 2.
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It should be noted that while we have used a particular target absorption spectrum as an example
(flat, total absorption for frequencies greater than Ωc), the design strategy presented above is applicable
to any desired target absorption spectrum.

5. Adverse Effect of a Finite Number of Resonators and Its Remediation

In any actual implementation of the above design strategy, it is always the case that there can
only be a discrete, finite number of resonators. In Figure 3a we show an illustration and a photo
image of an acoustic metamaterial unit comprising 16 FP channels, designed in accordance with
the integration strategy presented in the previous section and fabricated by 3D-printed polyactide.
As we cannot fabricate the sample with the wall thickness as thin as that required by the φ = 0.982
requirement, the final measured results are affected by the increased reflection surface due to the
thicker walls. However, the effect is minimal. In Figure 3b, we plot the measured impedance as
a function of frequency by blue circles. The solid line represents the analytical theory given below.
Oscillations around Z/Z0 are seen. This is the consequence of having only 16 resonators, which are
not enough to insure a smooth, flat absorption spectrum. Since deviation from impedance matching
implies imperfect absorption, we expect oscillations in the absorption spectrum as well.
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Figure 3. Metamaterial unit and its features. (a) Schematics of the metamaterial unit consisting of
16 Fabry-Perot (FP) channels, arrayed in a 4 × 4 square lattice. A photo image of a sample comprising
4 units arranged in a mirror-symmetric pattern is shown in the lower left panel. (b) The surface
impedance of the metamaterial unit plotted as functions of frequency. The circles are deduced from
the measured reflection coefficient while the curves are the theory predictions. The arrow denotes the
frequency at which the simulations were carried out on the sound pressure field, shown in the right
panel below. (c) Right panel: The simulated sound pressure field at 0.22 mm above the front surface of
the metamaterial unit at 612 Hz, which is the anti-resonance frequency between the FP resonances of
the 5th and 6th channels (blue and red squares), shown in the left panel. The color is indicative of the
pressure amplitude normalized to that of the incident wave. At anti-resonance, there is no coupling to
the propagating modes; only an evanescent mode exists as explained in the text.

In order to remedy the oscillations, we look into the underlying cause of a peak, indicated by the
red arrow in Figure 3b. By using COMSOL to carry out full-waveform simulations, we obtained the
picture shown in Figure 3c. It turns out that at the indicated peak frequency, the pressure modulation
at a little distance away from the surface of the metamaterial unit is as shown in the right panel in
Figure 3c. The most important feature is that there is lateral pressure modulation which averages to
zero over the surface. Since the lateral size of the metamaterial unit is much less than the relevant
wavelength range, such lateral pressure modulation feature implies lateral wavevector k‖ values much
larger than the sound wavevector in air, k0. Since k2

‖ + k2
⊥ = k2

0, at the indicated frequency the wave
must decay exponentially away from the surface of the metamaterial unit, i.e., k⊥ is purely imaginary.
This is precisely the characteristic of the anti-resonance point. Moreover, as the right-hand side panel
shows, lateral pressure modulations imply lateral oscillating pressure gradient. This intuitively tells
us that there are interactions between the FP resonators. Hence, theoretically the individual Green
function of the resonator should be renormalized by a self-energy term arising from the interactions,
so that (

g(e)n

)−1
= g−1

n −ω2ρ0(τ + iβ/ω)Λ (14)

where the last term on the right-hand side is the self-energy term, with gn = φ tan
[
ω`n

√
ρ0/B0

]
/(ωZ0)

denoting the bare Green function and g(e)n denoting the renormalized effective Green function of the
nth resonator. Here, we have used the expression for the effective mass density of a porous medium,
with ρ0 being the density of air, τ being a dimensionless parameter on the order of 1, to account for
the tortuosity of the pores, and β being the dissipative coefficient particular to the porous medium.
The value of β is fairly small for air, so we have neglected it in the expression for the bare Green
function. The expression for Λ is derived in Appendix C. The blue theoretical curve in Figure 3b
is calculated by using the following formula since the 16 FP resonators are integrated in parallel;
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hence, the inverse of the impedance (which is just the Green function apart from the factor i/ω) must
be additive:

Z =
i
ω

(
1

16

16

∑
n=1

g(e)n

)−1

(15)

Very good agreements with the experiment are seen in Figures 3b and 4, both shown as solid lines.
There is a reason why we use the effective mass density for a porous medium in Equation (14).

Since there are lateral pressure gradient oscillations, in practical terms it can imply lateral displacement
of air on the surface of the metamaterial unit at the anti-resonance point. Hence, a thin layer of acoustic
sponge placed on top of the acoustic metamaterial unit can serve as a very effective absorber at the
anti-resonance point. This expectation is indeed borne out, as shown by the absorption performance
of the metamaterial unit in Figure 4, after a 3 mm thick layer of acoustic sponge is placed on top
of the metamaterial unit. For this particular example, the sample thickness d = 10.86 cm, whereas
dmin = 10.55 cm. Hence, the sample is only 3 mm over the minimum thickness as dictated by the
causal constraint.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  8 of 19 

dimensionless parameter on the order of 1, to account for the tortuosity of the pores, and b  being 

the dissipative coefficient particular to the porous medium. The value of b  is fairly small for air, so 

we have neglected it in the expression for the bare Green function. The expression for   is derived 

in Appendix C. The blue theoretical curve in Figure 3b is calculated by using the following formula 

since the 16 FP resonators are integrated in parallel; hence, the inverse of the impedance (which is 

just the Green function apart from the factor /i w ) must be additive:  

1

1

16
( )1

16
e

n
n

i
Z g

w

-

=

 
=  

 
 . (15) 

Very good agreements with the experiment are seen in Figures 3b and 4, both shown as solid 

lines.  

There is a reason why we use the effective mass density for a porous medium in Equation (14). 

Since there are lateral pressure gradient oscillations, in practical terms it can imply lateral 

displacement of air on the surface of the metamaterial unit at the anti-resonance point. Hence, a thin 

layer of acoustic sponge placed on top of the acoustic metamaterial unit can serve as a very effective 

absorber at the anti-resonance point. This expectation is indeed borne out, as shown by the absorption 

performance of the metamaterial unit in Figure 4, after a 3 mm thick layer of acoustic sponge is placed 

on top of the metamaterial unit. For this particular example, the sample thickness d = 10.86 cm, 

whereas 
min

10.55d =  cm. Hence, the sample is only 3 mm over the minimum thickness as dictated 

by the causal constraint. 

 

Figure 4. Absorption performance of the metamaterial unit with a thin layer of acoustic sponge placed 

on top. Red circles are the data points measured by the impedance tube, and the red solid line is the 

calculated absorption by using the impedance evaluated from Equation (15). Here, the value of b  

used in the calculation is 1420 Hz, and   = 1.4. The dashed line indicates the designed cutoff 

frequency. Excellent agreement between theory and experiment is seen. The absorption below the 

cutoff frequency is largely due to the acoustic sponge. 

For the particular sample shown in Figure 4, one may ask how far the near-perfect absorption 

can be extended to the higher frequencies, beyond those shown in the figure, which is 3000 Hz as 

limited by the impedance tube measurement. In Appendix B we show analytically that owing to the 

plurality of the higher-order resonances of the FP resonators and their equally-spaced frequency 

characteristics, the absorption actually becomes better and better with increasing frequency and 

approaches 1 in an exponential fashion (see Equation (A17)). Such behavior is actually substantiated 

by numerical simulations up to 8000 Hz.  

As an illustration of our integration strategy to attain the goal of absorption-by-design, in Figure 

5 we show the performance of another sample with a reflection “notch” in its absorption spectrum. 

Again, theory and experimental results show excellent agreement. Here, the sample thickness d = 9.33 

cm, whereas 
min

9d =  cm.  

Figure 4. Absorption performance of the metamaterial unit with a thin layer of acoustic sponge placed
on top. Red circles are the data points measured by the impedance tube, and the red solid line is the
calculated absorption by using the impedance evaluated from Equation (15). Here, the value of β = 1.4.
The dashed line indicates the designed cutoff frequency. Excellent agreement between theory and
experiment is seen. The absorption below the cutoff frequency is largely due to the acoustic sponge.

For the particular sample shown in Figure 4, one may ask how far the near-perfect absorption can
be extended to the higher frequencies, beyond those shown in the figure, which is 3000 Hz as limited
by the impedance tube measurement. In Appendix B we show analytically that owing to the plurality
of the higher-order resonances of the FP resonators and their equally-spaced frequency characteristics,
the absorption actually becomes better and better with increasing frequency and approaches 1 in
an exponential fashion (see Equation (A17)). Such behavior is actually substantiated by numerical
simulations up to 8000 Hz.

As an illustration of our integration strategy to attain the goal of absorption-by-design, in Figure 5
we show the performance of another sample with a reflection “notch” in its absorption spectrum.
Again, theory and experimental results show excellent agreement. Here, the sample thickness d = 9.33
cm, whereas dmin = 9 cm.
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Figure 5. A designed absorption spectrum as indicated by the dashed line. The performance of the
actual implementation with 16 FP resonators, with 3 mm of acoustic sponge on top, is shown by red
circles. The red solid line is the theory prediction. It agrees very well with the experimental data as
measured by the impedance tube.
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It should be mentioned that owing to the subwavelength lateral dimension of our metamaterial
units, the angular dependence of absorption is nearly flat up to 60 degrees. After that the absorption
smoothly drops as the angle of incidence approaches 90 degrees. Such behavior is shown by simulation
results presented in Appendix D.

6. Comparison with Conventional Acoustic Absorbers

It has to be emphasized that causal optimality can be attained in conventional acoustic absorbers
such as micro-perforated panel (MPP) and acoustic sponge [13]. However, they lack freedom for
adjusting the absorption spectrum to a dictated target. Therefore, within the same thickness, although
the causal integral Equation (1) can give the same value, the proposed absorption-by-design strategy
can concentrate the absorption resources into the frequency region of interest, e.g., the peak region in
the noise spectrum, thereby achieving better noise remediation.

MPP is a well-known conventional resonance absorber, utilizing the acoustic resonance of the
back cavity to enhance the dissipation provided by the micro-pores in the front panel. It can achieve
relatively high absorption at low frequencies. In the original paper of Maa [14,15], an MPP comprising
a 0.2 mm-thick aluminum plate perforated by 0.2 mm diameter circular holes with an area fraction
of 2%, backed by a 6 cm cavity, can display an absorption spectrum as shown by the blue symbols
(experiment) and blue line (theory) in Figure 6. The absorption peaks at 640 Hz and rapidly drop
away at higher frequencies. In contrast, fiberglass is a commonly used porous material that dissipates
sound by the frictions in its porous structures. Its absorption is thereby naturally broadband. A layer
of 6-cm thick fiberglass (denoted by green symbols) is noted to have a flat absorption around 90%
(10 dB) for frequencies higher than 800 Hz. Compared with the designed metamaterial absorber
with the same thickness (5.63-cm metamaterial with 3 mm sponge in front), shown by the red circles
(experiment) and line (theory), it is clear that within the target absorption frequency range of above
800 Hz, our designed metamaterial structure is 5 to 10 dB better than the fiberglass. This is achieved
precisely by concentrating the absorption resources in the target frequency regime.
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Figure 6. Reflection loss (dB) for the 5.93-cm thick designed metamaterial absorber (red curve (theory)
and symbols (experiment, measured by using the impedance tube)), the micro-perforated panel (MPP)
absorber with 6-cm back chamber (blue curve (theory) and symbols (experiment)), and a layer of 6-cm
thick fiberglass (green symbols (experiment)). The blue curve is from Maa’s theoretical model and
pentagons are the experimental data from Maa’s original paper [14,15]. It is seen that the solid red curve
is about 3 to 5 dB above the red open circles, which represent the measured results. This difference is
due to the fabrication error of not being able to achieve the required (very thin) thickness of the walls
separating the FP channels.

The above comparisons emphasize the point that under the constraint of causality, the absorption-
by-design approach can provide an efficient way to utilize the limited absorption resources to achieve
the optimal sound attenuation in frequencies of interest. This feature is particularly essential for
solving noise problems in mechanical systems like large machines, transformers, and aircraft engines,
etc., in which the noise is broadband but with featured spectra.
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7. Conclusions

In this work we have presented a new approach, comprising the use of causality constraint and
impedance matching to the target absorption spectrum, for the fabrication of acoustic metamaterial structures
that can display for the first time the desired absorption by design tunability, without a theoretical upper
frequency limit. The whole design concept can be summarized by a circle of consistency (Figure 2), and the
implementation by using 3D-printed FP resonator structures has yielded measured results in excellent
agreement with the theory prediction. A theoretical formalism for treating the evanescent waves is also
presented, which not only can accurately predict the shifts in the resonance frequencies of the FP resonators
when they are placed in close proximity to each other, but also reveals an effective way to remediate the
negative absorption effects resulting from using a small, finite number of resonators. The whole approach
amounts to a self-consistent algorithm, amenable to computerized sample fabrication starting with a desired
target absorption spectrum.

Author Contributions: As this is a review paper, P.S. wrote the initial draft; both authors contributed to the
revisions and the final draft.

Funding: This research was funded by the Hong Kong Government grants AoE/P-02/12 and ITF UIM292.

Acknowledgments: P.S. wishes to thank Louiza Law for the help in formatting the manuscript. M.Y. wishes to
thank Songwen Xiao for the help in numerically simulating absorption at oblique incidence angles.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A Causality Constraint on Sound Absorbing Structures

Consider a layer of composite material backed by a rigid reflective wall (Figure A1a). In response
to an incident sound wave, the reflected sound pressure pr(t) is the superposition of the direct reflection
of the incoming sound pressure at that instant, pi(t) plus those in response to the incoming sound
wave at earlier time, pi(t− τ), with τ > 0. Hence,

pr(t) =
∫ ∞

0
K(τ)pi(t− τ)dτ (A1)

where K(τ) is the response kernel in the time domain. By carrying out Fourier transform
pi/r(ω) =

∫ ∞
−∞ pi/r(t)eiωtdt, the reflection coefficient for each frequency may be expressed as

R(ω) ≡ pr(ω)

pi(ω)
=
∫ ∞

0
K(τ)eiωτdτ (A2)

From Equation (A2), R(ω) is an analytic function of complex ω in the upper half of the complex
ω plane. In terms of the wavelength λ = 2πv0/ω, where v0 is the speed of sounds in air, that means
R(λ) has no singularities in the lower half-plane of complex λ, but may have zeros that represent total
absorptions of incoming energy. Here, the imaginary part of λ reflects dissipation.

To determine the constraint on the reflection coefficient R(λ) by the causality principle,
we introduce an ancillary function R̃(λ) after Fano and Rozanov [4,5],

R̃(λ) ≡ R(λ)∏
n

λ− λ∗n
λ− λn

(A3)

where λn, satisfying R(λn) = 0, are the zeros located in the lower half-plane of complex λ, and ∗ stands
for complex conjugation. Since R̃ has neither zeros nor poles at Im(λ) < 0, ln R̃ is an analytic function
in the lower half-plane of complex λ, and the Cauchy theorem is valid. That is, the integral over
a closed contour C in the lower half-plane of complex λ should yield zero, where the contour consists
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of the real axis of and the semi-circle C∞ that lies in the lower half-plane and has infinite radius as
shown in Figure A1b. Hence

∫
C

lnR̃dλ =
∫ +∞

−∞
lnR̃dλ +

∫
C∞

lnR̃dλ = 0 (A4)

Note that |R̃| = |R| at real wavelengths and ln |R| is an even function of λ according to its
definition Equation (A2). Taking the real part of Equation (A4) yields

Re
∫

C
lnR̃dλ = 2

∫ ∞

0
ln|R|dλ + Re

∫
C∞

lnRdλ + Re∑
n

∫
C∞

ln
λ− λ∗n
λ− λn

dλ = 0 (A5)
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To calculate the second integral on the right-hand-side of Equation (A5), we consider the
infinite-wavelength limit of R, i.e., the static limit. The reflection from a composite material layer can
be characterized by an effective bulk modulus Beff relating to its surface responses [12]. The surface
displacement u under a pressure p is therefore given by the relationship (pressure) = (effective
bulk modulus) × (strain), or u = pd/Beff with d being the sample thickness. The resulting surface
impedance is given by Z = ip/(ωu) = iZ0Beffλ/(2πB0d) with Z0 = B0/v0 being the air impedance
and B0 the bulk modulus of air. Therefore, the reflection coefficient R = (Z− Z0)/(Z + Z0) is given by

R =
1 + i2πdB0/(λBeff)

1− i2πdB0/(λBeff)
(A6)

Since lim
|λ|→∞

ln R = i4πdB0/(λBeff), the contour integral is therefore given by

∫
C∞

lnRdλ = lim
|λ|→0

∫ −π

0
iλ ln Rdθ = 4π2dB0/Beff (A7)

where θ is the argument of complex λ. By taking the limit of |λ| → ∞ in the above contour integral,
one is essentially counting all the poles of ln R in the lower half of the complex λ plane, with the
imaginary part of each pole being relevant to the absorption of each resonance of the system. This is
evident from the fact that in our previous work [12], it has been shown that the static limit the effective
bulk modulus Beff(λ→ ∞) = ρ0d2(∑n αn/Ωn)

−1 with Ωn being the nth resonance frequency of the
system and αn the relevant oscillator strength defined in the main text. Hence, taking the limit of
|λ| → ∞ implies all the absorptions related to the resonances of the system are taken into account.
In fact, for the designed structures shown in this work, if we let d = d as defined in Equation (A19)
below, then the above formula for Beff(λ→ ∞) is accurately equal to B0/ϕ with porosity ϕ ≡ Vair/Vtot

being the volume fraction of the air phase. This is in agreement with Wood’s formula for the composite
effective bulk modulus in the static limit, given by B−1

eff = ϕB−1
0 + (1− ϕ)B−1

solid. Since Bsolid >> B0,
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Beff = B0/ϕ follows. In addition, for samples with identical FP channels either straight or folded,
ϕ = φ = Sair/Stot where Sair is the area of FP channels’ total surface cross sectional area and Stot

being the total area of the sample surface exposed to incident sound. Hence in this work we have
Beff = B0/φ.

For the third integral on the right-hand-side of Equation (A5), since lim
|λ|→∞

ln[(λ−λ∗n)/(λ−λn)] =

i2Im(λn)/λ, we have∫
C∞

ln
λ− λ∗n
λ− λn

dλ = lim
|λ|→∞

∫ −π

0
iλ ln

λ− λ∗n
λ− λn

dθ = 2πIm(λn) (A8)

Substitution of Equations (A7) and (A8) into Equation (A5) yields

−
∫ ∞

0
ln|R(λ)|dλ = 2π2d(B0/Beff) + π∑

n
Im(λn) (A9)

As [1− A(λ)] = |R(λ)|2, where A(λ) stands for the absorption coefficient, and all λn are in the
lower half-plane, i.e., Im(λn) < 0, we therefore have the inequality

dmin =
1

4π2
Beff
B0

∣∣∣∣∫ ∞

0
ln[1− A(λ)]dλ

∣∣∣∣ ≤ d (A10)

It follows from Equation (A9) that the equality in (A10) is attained when R(λ) has no zeros in
the lower half-plane of complex λ. Such R(λ) corresponds to the minimum phase-shift frequency
dependence [4,5] for which the variation of the phase of the reflection coefficient with λ does not
exceed 2π, in the domain 0 < λ < ∞.

Appendix B Inclusion of Higher Order FP Resonances in the Design Strategy

In this section we give the derivation of the design algorithm that includes all the higher order
FP resonances. For a FP channel with length `n, its surface impedance is defined at its mouth, z = 0,
by Z = p(0)/v(0), with

p(z) = cos
[

ω(z + `n)
√
(1 + iβ/ω)ρ0/B0

]
v(z) = −i sin

[
ω(z + `n)

√
(1 + iβ/ω)ρ0/B0

]
/Z0

For an array of N FP channels with various lengths facing the incident sound wave in parallel,
their total impedance is given by

Z = iZ0

{
φ

N
∑

n=1
tan
[
ω`n

√
(1 + iβ/ω)ρ0/B0

]}−1

= i Z0d
ωv0

[
N
∑

n=1

∞
∑

m=1

αn
(2m−1)2Ω2

n−ω2−iβω

]−1 (A11)

where φ is the structure’s surface porosity (fraction of the total surface area occupied by the open
mouths of the FP channels), Ωn = πv0/(2`n) is the 1st-order FP resonance of the nth FP resonator, the
terms with m > 1 stand for higher order FP resonances, and oscillator strength αn = 2dφ/(`nN) =

4dφΩn/(πv0N). It is easy to see that Equation (A11) is equivalent to Equation (7) in the main text if
we take only the terms with m = 1.
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In the ideal case, `n is continuously distributed, i.e., Ωn is a continuous variable, Equation (A11)
can be converted into an integral:

Z ' i lim
β→0

Z0d
ωv0

[∫ ∞
0

∞
∑

m=1

α(Ω)D(Ω)

(2m−1)2Ω2−ω2−iβω
dΩ
]−1

= i lim
β→0

Z0d
ωv0

[∫ ∞
0

∑∞
m=1 α(ω̃)D(ω̃)/(2m−1)

ω̃2−ω2−iωβ
dω̃
]−1 (A12)

where ω̃ = (2m− 1)Ω, and D(Ω) is the modes density of the 1st-order FP resonances. For β→ 0 , the
real part of the integral in Equation (A12) contributes negligibly, owing to the oscillatory nature of the
integrant. The imaginary part of limβ→0(ω̃

2 −ω2 − iβω)
−1 can be accurately approximated by a delta

function; hence, we have

Z(ω) ' Z0d
πωv0

[∫ ∞
0

∞
∑

m=1

α(ω̃)D(ω̃)
2m−1 δ(ω2 − ω̃2)dω̃

]−1
= 2Z0d

πv0

[
∞
∑

m=1

α(Ω)D(Ω)
2m−1

∣∣∣∣
Ω=ω/(2m−1)

]−1

(A13)

If we omit the higher order FP resonances and consider only the term m = 1, then by recalling that
D(Ω) = ∆n/∆Ω, we have ∆Ω/∆n = πv0α(Ω)Z(Ω)/(2Z0d). Since α(Ω) = 4dφΩ/(Nπv0), we have
∆Ω/∆n = (2φΩ/N)[Z(Ω)/Z0]. By letting ∆n/N → dn in the limit of N → ∞ , where n = (n− 1)/N,
we have thus derived Equation (10) in the main text.

To include the higher order FP resonances, we recognize that the additional impedances that arise
from the higher order resonances are in parallel to those arising from the 1st order FP resonances.
Since now we have to deal with multiple impedances even from a single FP resonator, we would like
to denote that impedance related to the 1st order FP resonance to be Z̃(Ω). In that case

dΩ
dn

=
πv0

2d

[
Z̃(Ω)

Z0

]
α(Ω) (A14)

Substitution of Equation (A14) into Equation (A13) and separating out the term m = 1 from the
m-summation, yields an equation for Z̃(Ω),

Z̃(ω)−1 = Z(ω)−1 −
∞

∑
m=2

Z̃(Ω)−1

2m− 1

∣∣∣∣∣
Ω=ω/(2m−1)

(A15)

The value of Z̃ can be obtained from Equation (A15) through iterations, based on a given target
impedance Z. Simultaneously, Equation (A15) also expresses the fact that the target impedance at
frequency ω is now the consequence of impedance from the order FP resonance, plus the impedance
from all the higher order FP resonances, added in parallel.

For example, if the target Z = Z0 for ω > Ωc and divergent for ω < Ωc, then the value of Z̃
can be determined in a piecewise fashion as follows. The piecewise fashion of the result is a natural
consequence (upon iteration) of the step-function nature of the target impedance. The iteration results
show that Z0/Z̃1 = 1 in the first frequency range Ω ∈ [Ωc, 3Ωc], Z0/Z̃2 = 2/3 in the second frequency
range Ω ∈ [3Ωc, 5Ωc], Z0/Z̃3 = 7/15 in the third frequency range Ω ∈ [5Ωc, 7Ωc], Z0/Z̃4 = 34/105 in the
fourth frequency range Ω ∈ [7Ωc, 9Ωc], Z0/Z̃5 = 269/1155 in the fifth frequency range Ω ∈ [9Ωc, 11Ωc],
etc. In each frequency interval i, i.e., for Ω ∈ [(2i− 1)Ωc, (2i + 1)Ωc], the 1st-order FP resonance frequency
distribution can be determined by Equation (14). That is, with the initial condition Ω = (2i− 1)Ωc when
the continuous variable n = (n− 1)/N = ni = Ni/N, where Ni denotes the total number of 1st-order
FP resonances below (2i− 1)Ωc, Equation (A14) gives Ωn = (2i− 1)Ωc exp[2φ(n− ni)Z̃i/Z0]. From such
1st order FP resonance frequencies one can easily determine the required lengths of the FP resonators in
the design.
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In Figure A2a we plot the natural logarithm of Ωn as a function of (n− 1)/N. Here, the value
of φ, needed for the evaluation of Ωn, is taken to be the causally optimal value determined below.
The function ln Ωn versus (n − 1)/N is seen to be piecewise hyper-linear. By using this result,
discretization of the resonators in the actual design can be easily determined by locating the frequencies
on the vertical axis with the associated (equally-spaced) values of (n− 1)/N with N being the total
number of FP channels one wants to use. For the broadband absorber presented in the main text with
N = 16, these frequencies are explicitly indicated by the red dotted lines in Figure A2a.

One important feature for the sequence Z0/Z̃i is that it decays to zero very quickly (Figure A2b),
i.e., the required 1st-order FP modes density in the high frequency regime is very low. This fact is
relevant to the high frequency absorption behavior for the broadband absorber presented in the main
text. That is, since ∑∞

m=1 α(Ω)D(Ω)/(2m− 1)|Ω=ω/(2m−1) = 2d/(πv0) (this can be easily deduced
from Equations (A13)–(A15)), Equation (A12) can be integrated to yield

Z
Z0

=
π

π − 2itanh−1(Ωc/ω)
(A16)

The relevant reflection coefficient R = (Z− Z0)/(Z + Z0) is given by

R =
tanh−1(Ωc/ω)

π − itanh−1(Ωc/ω)
(A17)

That is, at high frequencies the reflection is zero, i.e., the absorption coefficient must approach 1.
Therefore, in the broadband absorber design one can use a relatively small number of FP channels,
designed for the low frequencies by following the proposed recipe above, and high absorption in the
high frequencies regime is guaranteed. In particular, this would ensure high absorption above 5000 Hz
for the broadband absorber presented in the main text, where there are no measured data.
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Figure A2. (a) Natural logarithm of the 1st order FP resonance frequency plotted as a function of
the variable (n − 1)/N as defined in the text. The discretized frequencies are picked off from the
curve with equally-spaced intervals on the horizontal axis. They are indicated by the red dotted lines.
(b) The iterated target impedance Z̃ in Equation (A14) for the 1st-order FP resonances in the broadband
absorber design, in which the contributions of higher order FP modes for each channel are taken into
account. Here, Z̃ is obtained from iterations through Equation (A15) based on a target impedance that
is equal to Z0 above a cutoff frequency Ωc and Z/Z0 ∼= 1.2 below the cutoff. The fast decay of Z0/Z̃
(to zero) guarantees that Z = Z0 can be automatically satisfied by the higher order FP modes if the
channels are designed in accordance to the recipe.
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So far, the parameter φ remains un-determined. Below, we show that its value should not be
arbitrary. Instead, it serves as the critical link between the designed mode density, the sample thickness,
and the causal constraint.

In the broadband absorber, the channel length of the FP resonator is given by

`n =
πv0

2Ωn
= πv0

exp[2φ(ni − n)Z̃i/Z0]

2(2i− 1)Ωc
(A18)

provided its 1st-order resonance is located in the frequency range Ω ∈ [(2i − 1)Ωc, (2i + 1)Ωc].
Since the channel length can vary, we wish to know the minimum thickness of the sample by
optimally folding the FP channels, without changing the overall area exposed to the incident
wave. This minimum thickness d can be obtained through volume conservation of the FP channels.
Here, we evaluate d by focusing on only the air channels of the FP resonators. Since the FP channels’
cross sections occupy a fraction φ of the surface area, d is given by

d = lim
N→∞

N

∑
n=1

`n

N
= πv0 lim

N→∞

∫ Ωe(φ)

Ωc

1
Ω

dn
dΩ

dΩ/(2N) (A19)

where the upper limit of the integral, Ωe(φ) = lim
N→∞

Ω(n = N, φ), is determined by the total number

of 1st order mode number N, which is equal to the FP channel number. The numerical evaluation
of Equation (A9), with N = 16, gives d = [0.6395 − 859.74 exp(−12.82φ)]v0/(φΩc). By requiring
d = dmin = 2v0/(φΩcπ) given in the main text, we obtain the causally optimal value φoptimal = 0.982,
with the upper limit Ωe = 28.4Ωc (indicated in Figure A2a by the blue dotted line). Since in
experimental implementation the value of φ is determined by the wall thickness in our design,
such a high value of φoptimal is not realizable in practice. However, a lower value of the actual φ is seen
to only degrade the absorption somewhat, as long as the mode distribution (and hence the length of
the channels) is designed in accordance with the ideal value φoptimal .

As another example, other than the broadband absorber presented in the main text, we have
also considered a target absorption spectrum which starts with near-perfect absorption from 345 Hz
and has a notch in the frequency interval [562 Hz, 995 Hz] where the absorption is close to zero.
The target impedance is given by Z(ω) = Z0[2− A(ω) + 2

√
1− A(ω)]/A(ω). Based on this target

impedance the impedance Z̃(ω) can be obtained from Equation (A15) through iterations. Substitution
of Z̃ into Equation (A14) gives the designed resonance frequencies Ωn(N, φ) as a function of total
channel number N and the parameter φ. The associated FP channel length `n can then be determined.
The minimum thickness of the absorber, dmin = 9 cm, is determined from the casual integral (A10)
of the absorption spectrum shown by the dashed line in Figure 5 in the main text, which is based on
the integral of Equation (A12) with N → ∞ . In this case the value φoptimal = 0.81 is determined from
dmin = d = lim

N→∞
∑N

n=1 `n/N. The experimentally measured absorption for this design, with N = 16,

is presented in the main text as Figure 5 by the symbols. The result shown in Figure 5 in the main text
has a 3-mm layer of sponge placed in front; the total thickness of the sample is 9.33 cm.

Appendix C Derivation of Self-Energy Due to Cross-Channel Coupling by Evanescent Waves

Since the surface impedance of the metamaterial unit is laterally inhomogeneous, it follows that
the sound pressure field p(x), where x denotes the lateral coordinate at the plane z = 0, must necessarily
be inhomogeneous as well. By decomposing the pressure field as p(x) = p + δp(x), where p is the
surface-averaged value, it has been shown in the main text that δp(x) is only coupled to the evanescent
waves that decay exponential away from z = 0. In contrast, p couples to the far-field propagating
modes. Therefore, the measured surface impedance should be given by Z = p/v with v = du/dt
being the surface-averaged z component of the air displacement velocity. The reflection coefficient is
given by R = (Z− Z0)/(Z + Z0).
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We expand δp(x) in terms of the normalized Fourier basis function fα(x) = exp[ikα·x]/L,
where α = (αx, αy) is discretized by the condition that the area integral of fα over the surface of
the metamaterial unit must vanish, due to the fact that the same condition applies to δp(x). That means

|kα| = (2π/L)
√

α2
x + α2

y, with αx, αy = ±1,±2, · · · :

δp(x, z) = ∑
α

δpα fα(x)e−
√

k2
α−k2

0z (A20)

where δpα denotes the expansion coefficient, and k0 = 2π/λ. The exponential variation of δp(x, z)
means that it can couple to the z component of the air displacement velocity through Newton’s law,
∂δp/∂z = −iωρ0δv, so that

δv(x) = δv(x, z = 0) =
−i

ωρ0
∑
α

δpα

√
|kα|2 − k2

0 fα(x) (A21)

By multiplying both sides of Equation (A21) by f ∗α′(x) and integrating over the surface of the
metamaterial unit’s surface, we can solve for δpα:

δpα = iωρ0

∫
sur f ace

v(x) f ∗α (x)dx√
|kα|2 − k2

0

(A22)

where v(x) = v + δv(x). It should be noted that in the above, the integral of v(x) f ∗α (x) is the same
as the integral of δv(x) f ∗α (x), since the integral of v fα(x) is zero. By substituting Equation (A22) into
Equation (A20) and then interchanging the order of summation and integration, we obtain

δp(x) = δp(x, z = 0) = iωρ0

∫
sur f ace

Λ(x, x′)v(x′)dx′ (A23)

where Λ(x, x′) ≡ ∑α f ∗α (x′) fα(x)/
√
|kα|2 − k2

0. Since |kα| � k0, we can approximate
√
|kα|2 − k2

0 by

|kα|. By discretizing the 2D coordinate x by its 16 values, xn, that denotes the center position of the nth

FP channel, and replacing dx′ by L2/16 and the integral by summation, we have:

δpn = iωρ0

16

∑
m=1

Λnmvm (A24)

Λnm = 16
L2

∫
σn fα(x)dx

∫
σm f ∗α (x′)dx′

|kα |

= 16∑
α

sin2(αxπ/4) sin2(αyπ/4)
π4α2

xα2
y |kα |

exp[ikα•(xm − xn)]
(A25)

where σn denotes the cross-sectional area of the nth FP channel, and vm = v(xm), δpn = δp(xn).
According to the definition of the Green function, at the mouth of the nth FP channel, we have

vn = −iωgn(p + δpn) (A26)

Substitution of Equation (A24) into Equation (A26) gives

vn = −iω
(

gn + ω2ρ0∑
m

gnΛnmgm + · · ·
)

p

= −iω

[(
gn + ω2ρ0g2

nΛnn + ω4ρ2
0g3

nΛ2
nn + · · ·

)
+ ω2ρ0 ∑

m 6=n
gnΛnmgm + · · ·

]
p

= −iω
(

gn
1−ω2ρ0gnΛnn

+ ∑
m

Πnm

)
p

(A27)
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We have rearranged the series by separating the terms involving only Λnn, since Λnn >> Λnm

(m 6= n) by orders of magnitude. Numerically, the last term in the bracket is also small and hence
only constitutes small adjustment to the results. According to the Equation (8) in the main text,
the renormalized impedance is given by Z(e) = 16p/∑16

n=1 vn. Substitution of Equation (A27) (with the
∑m Πnm term neglected) into this expression for Z(e) gives

Z(e) = i

(
ω

16

16

∑
n=1

g(e)n

)−1

(A28)

where the effective Green function can be expressed in the form of the Dyson equation with a self-
energy term: (

g(e)n

)−1
= g−1

n −ω2ρ0Λ (A29)

Here Λ ≡ Λnn.

Appendix D Absorption under Oblique Incidence

Because of the subewavelength lateral scale of the FP tubes, the acoustic absorption level at
oblique incidence remains essentially flat up to 50 degrees. This is seen from the numerically simulated
results shown in Figure A3. Eight scenarios with the incident angle varying from 0 to 80 degrees have
been simulated. At 80 degrees incidence angle, the absorption is around 50%.
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