
Article

Taxonomy of Vectorization Patterns of Programming
for FIR Image Filters Using Kernel Subsampling and
New One

Yoshihiro Maeda, Norishige Fukushima * and Hiroshi Matsuo

Department of Scientific and Engineering Simulation, Nagoya Institute of Technology, Gokiso-cho, Showa-ku,
Nagoya, Aichi 466-8555, Japan; y.maeda.406@stn.nitech.ac.jp (Y.M.); matsuo@nitech.ac.jp (H.M.)
* Correspondence: fukushima@nitech.ac.jp, Tel.: +81-052-735-5113

Received: 18 June 2018; Accepted: 24 July 2018; Published: 26 July 2018
����������
�������

Abstract: This study examines vectorized programming for finite impulse response image filtering.
Finite impulse response image filtering occupies a fundamental place in image processing, and has
several approximated acceleration algorithms. However, no sophisticated method of acceleration
exists for parameter adaptive filters or any other complex filter. For this case, simple subsampling
with code optimization is a unique solution. Under the current Moore’s law, increases in central
processing unit frequency have stopped. Moreover, the usage of more and more transistors is
becoming insuperably complex due to power and thermal constraints. Most central processing
units have multi-core architectures, complicated cache memories, and short vector processing units.
This change has complicated vectorized programming. Therefore, we first organize vectorization
patterns of vectorized programming to highlight the computing performance of central processing
units by revisiting the general finite impulse response filtering. Furthermore, we propose a new
vectorization pattern of vectorized programming and term it as loop vectorization. Moreover,
these vectorization patterns mesh well with the acceleration method of subsampling of kernels for
general finite impulse response filters. Experimental results reveal that the vectorization patterns
are appropriate for general finite impulse response filtering. A new vectorization pattern with
kernel subsampling is found to be effective for various filters. These include Gaussian range
filtering, bilateral filtering, adaptive Gaussian filtering, randomly-kernel-subsampled Gaussian
range filtering, randomly-kernel-subsampled bilateral filtering, and randomly-kernel-subsampled
adaptive Gaussian filtering.

Keywords: FIR image filtering; vectorization; SIMD; vectorization pattern; acceleration; kernel
subsampling

1. Introduction

Image processing is known as high-load processing. Accordingly, vendors of central processing
units (CPUs) and graphics processing units (GPUs) provide tuned libraries, such as the Intel
Integrated Performance Primitives (Intel IPP) and NVIDIA Performance Primitives (NPP). Open-source
communities also provide optimized image processing libraries, such as OpenCV, OpenVX, boost
Generic Image Library (GIL), and scikit-image.

Moore’s law [1] indicates that the number of transistors on an integrated circuit will double every
two years. Early in the development of integrated circuits, the increased numbers of transistors
were largely devoted to increase clock speeds of CPUs. Power and thermal constraints limit
increases in CPU frequency, and the utilization of the increased numbers of transistors has become
complex [2]. Nowadays, most CPUs have multi-core architectures, complicated cache memories,

Appl. Sci. 2018, 8, 1235; doi:10.3390/app8081235 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://www.mdpi.com/2076-3417/8/8/1235?type=check_update&version=1
http://dx.doi.org/10.3390/app8081235
http://www.mdpi.com/journal/applsci

Appl. Sci. 2018, 8, 1235 2 of 23

and short vector processing units. To maximize code performance, cache-efficient parallelized and
vectorized programming is essential.

Flynn’s taxonomy [3] categorizes multi-core parallel programming as multiple-instruction,
multiple data (MIMD) type and vectorized programming as single-instruction, multiple data
(SIMD) type. Single-instruction, multiple threads (SIMT) is the same concept as SIMD in GPUs.
Vectorization and parallelization can be simultaneously used in image processing applications.
Vectorized programming, however, requires harder constraints than parallel programming in data
structures. Vendor’s short SIMD architectures, such as MMX, Streaming SIMD Extensions (SSE),
Advanced Vector Extensions (AVX)/AVX2, AVX-512, AltiVec, and NEON, are expected to develop
rapidly, and vector lengths will become longer [4]. SIMD instruction sets are changed by the
microarchitecture of the CPU. This implies that vectorization is critical for effective programming.

Effective vectorization requires the consideration of three critical issues: memory alignment,
valid vectorization ratio, and cache efficiency. Memory alignment is critical for data loading because
SIMD operations load excessive data from non-aligned data in memory. This loading involves
significant penalties. In valid vectorization ratio issues, padding operations remain a major topic of
discussion. Padding data are inevitable in exception handling of extra data for vectorized loading.
Moreover, rearranging data with padding resolves alignment issues [5]. However, padding decreases
ratios of valid vectorized computing. For cache efficiency, there is a tremendous penalty for
cache-missing because the cost of loading data from main memory is approximately 100 times higher
than the cost of adding data. These issues can be moderated in various ways. Among such means
are data padding for memory alignment, loop fusion/jamming, loop fission, tiling, selecting a loop
number in multiple loops for parallelization and vectorization, data transformation [6], and so on.

We should completely utilize the functionality of the CPU/GPU for accelerating image processing
using hardware [7,8]. Vectorized programming matches image processing; thus, typical simple
algorithms can be accelerated [9]. Even in cases where algorithms have more efficient computing
orders, the parallelized and vectorized implementation of another higher-order algorithm would still be
faster than the optimal algorithm in many cases. In parallel computers, for example, a bitonic sort [10] is
faster than a quick sort [11]. In image processing, the brute-force implementation of box filtering proceeds
more rapidly than the integral image [12] for small kernel-size cases. In both cases, optimal algorithms,
i.e., the quick sort and integral image, do not have the appropriate data structure for parallelized and
vectorized programming.

In image processing, various algorithmic acceleration have been proposed other than hardware
acceleration. In particular, these include general and specific acceleration algorithms in finite impulse
response (FIR) filtering. General FIR filtering allows the acceleration of filters by separable filtering [13,14],
image subsampling [15], and kernel subsampling [16]. Separable filters reduce the computational order
from O(r2) to O(r), where r denotes the kernel radius. Separable filter requires the filtering kernel to be
separable. Image subsampling and kernel subsampling are approximated acceleration. Image subsampling
is faster than kernel subsampling; however, the accuracy of image subsampling is lower than that of kernel
subsampling. For specific filters, such as Gaussian filters [17–24], bilateral filters [25–32], box filters [12,33],
and non-local means filters [32], various acceleration algorithms exist.

In parameter-adaptive filters and other complex filters, however, there is no sophisticated way
for acceleration. In such filters, there is no choice but to apply separable filtering, image subsampling,
and kernel subsampling, with/without SIMD vectorization and MIMD parallelization. Separable
filtering requires the filtering kernel to be separable, and such filters are not usually separable.
Furthermore, image subsampling has low accuracy. Therefore, kernel subsampling with code
optimization is the only solution. However, discontinuous access occurs in kernel subsampling;
hence, the efficiency of vectorized programming greatly decreases.

Therefore, we summarize the vectorized patterns of programming for sub-sampled filtering
to verify the effective programming. Moreover, we propose an effective preprocessing of data
structure transformation and vectorized filtering with the data structure for this case. Note that the

Appl. Sci. 2018, 8, 1235 3 of 23

transformation becomes overhead; thus, we focus on the situation that can ignore the pre-processing
time. The situation is interactive filtering, such as photo editing. Once the data structure is transformed,
then we can filter an image to seek optimal parameters without preprocessing, because the filtering
image already has been converted.

In this paper, we contribute the following: We summarize a taxonomy of vectorized programming
of FIR image filtering as vectorization patterns. We propose a new vectorizing pattern. Moreover,
the proposed pattern is oriented to kernel subsampling. These patterns with kernel subsampling
accelerate FIR filters, which do not have sophisticated algorithms. Moreover, the proposed pattern is
practical for interactive filters.

The remainder of this paper is organized as follows. Section 2 reviews general FIR filters. Section 3
systematizes vectorized programming for FIR image filters as vectorization patterns. Section 4 proposes
a new vectorization pattern for FIR filtering. Section 5 introduces target algorithms of filtering for
vectorization. Section 6 shows experimental results. Finally, Section 7 concludes this paper.

2. 2D FIR Image Filtering and Its Acceleration

2.1. Definition of 2D FIR Image Filtering

2D FIR filtering is typical image processing. It is defined as follows:

Ī(p) =
1
η ∑

q∈N (p)
f (p, q)I(q), (1)

where I and Ī are the input and output images, respectively. p and q are the current and reference
positions, respectively. A kernel-shape function N (p) comprises a set of reference pixel positions,
and varies at every pixel p. The weight function f (p, q) is the weight of the position p with regard to
the position q of the reference pixel. The function f could change at pixel position p. η is a normalizing
function. If the FIR filter’s gain is 1, we set the normalizing function to be the following:

η = ∑
q∈N (p)

f (p, q). (2)

2.2. General Acceleration of FIR Image Filtering

Several approaches have been taken with regard to the acceleration of general FIR filters.
These include separable filtering [13], image subsampling [15], and kernel subsampling [16]. In the
separable filtering, the filtering kernel is separated into vertical and horizontal kernels as a 1D filter
chain using the separability of the filtering kernel. The general 2D FIR filter has the computational
order of O(r2) for each pixel, where r denotes the kernel radius of the filter. The computational
order of a separable filter is O(r). If the filtering kernel is not separable, either singular value
decomposition (SVD) or truncated SVD can be used to create separable kernels. When truncated
SVD is used, the image is forcefully smoothed with a few sets of separable kernels for acceleration.
However, when kernel weight changes for each pixel, we need SVD computation for every pixel. Here,
the separable approach is inefficient.

Image subsampling resizes an input image and then filters it. Finally, the filtered image is
upsampled. This subsampling greatly accelerates filtering, but the accuracy of approximation is not
high. Further, the method has the significant drawback of losing high-frequency signals.

Kernel subsampling reduces the number of reference pixels in the filtering kernel as a similar
approach to image subsampling. Figure 1 represents kernel subsampling. The reduction of computational
time in kernel subsampling is not as extensive as that of image subsampling, while kernel subsampling
could keep a higher approximation accuracy than image subsampling. Thus, we focus on kernel
subsampling. In the Appendix A, we examine the processing time and accuracy of image subsampling and
kernel subsampling more closely. The approximation accuracy of these types of subsampling depends on

Appl. Sci. 2018, 8, 1235 4 of 23

the ratio and pattern of subsampling. Image and kernel subsampling generate aliasing, but a randomized
algorithm [34,35] moderates this negative effect. Random sampling reduces defective results from aliasing
for human vision [36]. Random-sampling algorithms were first introduced in accelerating ray tracing and
were utilized for FIR filtering in [15,16].

2r+1

2r+1

Input Image

Filtering Kernel

: Current Pixel

: Reference Pixel

Figure 1. Example of kernel subsampling. Only samples of current (red) and reference (yellow) pixels
are computed.

The main subject of this paper is the general acceleration of FIR filtering by using SIMD
vectorization. We adopt kernel subsampling for acceleration because kernel subsampling has a high
accuracy of approximation and is not limited by the type of kernel.

3. Design Patterns of Vectorized Programming for FIR Image Filtering

3.1. Data Loading and Storing in Vectorized Programming

The SIMD operations calculate multiple data at once; hence, the SIMD operations are high
performance. Such operations constrain all vector elements to follow the same control flow. That is,
only one element in a vector cannot be processed with a different operation as a conditional branch.
Therefore, we require data structures, wherein processing data are continuously in memory, for the
load and store instructions. Such instructions move continuous data from the memory/register to
the register/memory. For this case, spatial locality in memory is high. On the other hand, we can
relieve the restriction by performing discontinuous loading and storing. The operations are realized
with set instruction or scalar operations. These methods use scalar registers; thus, these methods are
slower than the load and store instructions. Recent SIMD instruction sets have the gather and scatter
instructions, which load and store for discontinuous positions in memory. However, such instructions
also have higher latency than the sequential load and store instructions. Discontinuous load and store
operations also decrease spatial locality in memory access; hence, cache-missing occurs. Cache-missing
decreases performance. Moreover, memory alignment is important for the load and store instructions.
Most CPUs are word-oriented. Data are aligned in word-length chunks, with 32 bits and 64 bits.
In aligned data loading and storing, CPUs access memory only once. In non-aligned data loading and
storing, CPUs access memory twice. Therefore, the performance of the load and store instructions
decreases if non-aligned data loading or storing occurs. Furthermore, vectorized programming requires
padding if the data size is smaller than the SIMD register size. This is because SIMD operations require
the number of register-size elements to be at least even if the data length is shorter than the SIMD
register size. In this case, the data are padded with a value such as zero, which reduces the valid
vectorization ratio.

3.2. Image Data Structure

An image data structure is a 1D array of pixels in memory. Such pixels have color channel
information, such as R, G, B, or the transparent channel A. The usual image structure is interleaved
with color channel information. In the image data structure, data are not continuously arranged in
spatial sampling because the other channel pixels intercept sequential access. Therefore, the image data

Appl. Sci. 2018, 8, 1235 5 of 23

structure should be transformed into SIMD-friendly structures. Some frequently used transformations
are split, which converts a multi-channel image into a plurality of images for each channel, and merge,
which converts a few images of each channel into one multi-channel image.

The transformed data structures correspond to structure of array (SoA) and array of
structures (AoS) [37]. Figure 2 shows data arrangements in memory for each data structure. AoS is
a default data structure for images. SoA is a data structure used in the split transformation for the
AoS structure. When pixels are accessed at different positions in the same channel, the accessing
cost in AoS is higher than that in SoA. However, for the access of pixels at the same positions with
different channels, the cost in AoS is lower than that in SoA. SoA is primarily used in vectorization
programming. The size of a pixel including RGB is smaller than the size of the SIMD register. Thus,
in vectorized programming, pixels are vectorized horizontally so that the size of the vectorized pixels
is the same as the size of the SIMD register.

R G B R G B R G B R G B … B
R G B R G B R G B R G B … B

R G B R G B R G B R G B … B

…

R G B R G B R G B R G B … B

R G B R G B R G B R G B … B
R G B R G B R G B R G B … B

R R R …

R R R…
…

G G G …

G G G…
…

B B B …

B B B…
…

(a) Array of structure (AoS). (b) Structure of Array (SoA).

Figure 2. Image data structure: (a) Array of structure (AoS); (b) Structure of Array (SoA).

3.3. Vectorization of FIR Filtering

FIR image filtering contains five nested loops. There are three types of loops: loops for scanning
image pixels, a kernel, and color channels. The loops for the image pixels and the kernel have four
nested loops, which comprise loops for both pixel and kernel loops in the vertical and horizontal
directions. Furthermore, when the filtering image has color channels, the processing for each channel is
also regarded as a loop. Note that the length of the color loop is obviously shorter than the other loops.
Figure 3 depicts the loops of the FIR filter, and Figure 4a indicates the code for general FIR filtering.
To vectorize the code, loop unrolling to group pixels is necessary. Three types of loop unrolling are
possible: pixel loop unrolling, kernel loop unrolling, and color loop unrolling. Here, we summarize
each pattern as vectorization patterns of basic vectorized programming for 2D FIR filtering.

B
G

R

Color Loop:

Pixel Loop:

Kernel Loop:

Processing Pixel

Reference Pixels

Figure 3. Loops in 2D finite impulse response filtering.

Appl. Sci. 2018, 8, 1235 6 of 23

1 for(int y=0; y<img_height; y++){ //pixel loop

2 for(int x=0; x<img_width; x++){

3 sum[channels] = {0};

4 weight_sum = 0;

5 for(int j=0; j<kernel_height; j++){ //kernel loop

6 for(int i=0; i<kernel_width; i++){

7 temp_weight = calcWeight(j, i, y, x);

8 for(int c=0; i<channels; c++){ //color loop

9 sum[c] += temp_weight * I[y+j][x+i][c];

10 }

11 weight_sum += temp_weight;

12 }

13 }

14 for(int c=0;i<channels;c++){

15 D[y][x][c] = sum[c]/weight_sum;

16 }

17 }

18 }

(a)

1 zeroPadding();

2 for(int y=0; y<img_height; y++){

3 for(int x=0; x<img_width; x++){

4 sum[4] = {0};

5 weight_sum = 0;

6 for(int j=0; j<kernel_height; j++){

7 for(int i=0; i<kernel_width; i++){

8 temp_weight = calcWeight(j, i, y, x);

9 sum[0] += temp_weight * I[y+j][x+i][0];

10 sum[1] += temp_weight * I[y+j][x+i][1];

11 sum[2] += temp_weight * I[y+j][x+i][2];

12 sum[3] += temp_weight * I[y+i][x+i][3];// always 0

13 weight_sum += temp_weight;

14 }

15 }

16 for(int c=0;i<channels;c++){

17 D[y][x][c] = sum[c]/weight_sum;

18 }

19 }

20 }

(b)

1 convertSoA();

2 for(int y=0; y<img_height; y++){

3 for(int x=0; x<img_width; x++){

4 sum[channels] = {0};

5 weight_sum = 0;

6 temp_weight_sum[4] = {0;}

7 for(int j=0; j<kernel_height; j++){

8 for(int i=0; i<kernel_width; i+=4){

9 temp_weight[4] = {0};

10 temp_weight[0] = calcWeight(j, i+0, y, x);

11 temp_weight[1] = calcWeight(j, i+1, y, x);

12 temp_weight[2] = calcWeight(j, i+2, y, x);

13 temp_weight[3] = calcWeight(j, i+3, y, x);

14 for(int c=0; i<channels; c++){

15 sum[c] += temp_weight[0] * I[c][y+j][x+i+0];

16 sum[c] += temp_weight[1] * I[c][y+j][x+i+1];

17 sum[c] += temp_weight[2] * I[c][y+j][x+i+2];

18 sum[c] += temp_weight[3] * I[c][y+j][x+i+3];

19 }

20 temp_weight_sum[0] += temp_weight[0];

21 temp_weight_sum[1] += temp_weight[1];

22 temp_weight_sum[2] += temp_weight[2];

23 temp_weight_sum[3] += temp_weight[3];

24 }

25 residual_processing();

26 }

27 weight_sum += temp_weight_sum[0];

28 weight_sum += temp_weight_sum[1];

29 weight_sum += temp_weight_sum[2];

30 weight_sum += temp_weight_sum[3];

31 for(int c=0;i<channels;c++){

32 D[y][x][c] = sum[c]/weight_sum;

33 }

34 }

35 }

(c)

1 convertSoA();

2 for(int y=0; y<img_height; y++){

3 for(int x=0; x<img_width; x+=4){

4 sum[channels][4] = {0};

5 weight_sum[4] = {0};

6 for(int j=0; j<kernel_height; j++){

7 for(int i=0; i<kernel_width; i++){

8 temp_weight[4] = {0};

9 temp_weight[0] = calcWeight(j, i, y, x+0);

10 temp_weight[1] = calcWeight(j, i, y, x+1);

11 temp_weight[2] = calcWeight(j, i, y, x+2);

12 temp_weight[3] = calcWeight(j, i, y, x+3);

13 for(int c=0; i<channels; c++){

14 sum[c][0] += temp_weight * I[c][y+j][x+i+0];

15 sum[c][1] += temp_weight * I[c][y+j][x+i+1];

16 sum[c][2] += temp_weight * I[c][y+j][x+i+2];

17 sum[c][3] += temp_weight * I[c][y+j][x+i+3];

18 }

19 weight_sum[0] += temp_weight[0];

20 weight_sum[1] += temp_weight[1];

21 weight_sum[2] += temp_weight[2];

22 weight_sum[3] += temp_weight[3];

23 }

24 }

25 residual_processing();

26 for(int c=0;i<channels;c++){

27 D[c][y][x+0] = sum[c][0]/weight_sum[0];

28 D[c][y][x+1] = sum[c][1]/weight_sum[1];

29 D[c][y][x+2] = sum[c][2]/weight_sum[2];

30 D[c][y][x+3] = sum[c][3]/weight_sum[3];

31 }

32 }

33 }

34 convertAoS();

(d)

Figure 4. Code of vectorization patterns. (a) Brute-force implementation; (b) Color loop unrolling;
(c) Kernel loop unrolling; (d) Pixel loop unrolling. The size of the SIMD register is 4. Usually, the data
structure I[y][x][c] represents RGB interleaving, where x and y are the horizontal and vertical positions,
respectively, and c is the color channel. Splitting and merging the data by each channel are defined
as follows: I[y][x][c] ⇔ I[c][y][x]. For these data structures, the data in the final operator [·] can be
sequential access.

3.4. Color Loop Unrolling

In color loop unrolling, color channels in a pixel are vectorized to compute each color channel
in parallel. Figures 4b and 5a depict the code and vectorization approach to color loop unrolling.
In this pattern, a pixel that includes all color channels requires a length of SIMD register size.
Typically, the color represents three color channels, namely, R, B, and G. As it is known today, the SIMD
register has 4 elements in SSE, 8 elements in AVX/AVX2, and 16 elements in AVX512 for the case of
single-precision floating point numbers. Therefore, the size of a pixel, including all color channels,
remains smaller than the size of SIMD register, and we require zero padding. Using zero padding,
aligned data loading is always possible because every loading data address is aligned. However,
this pattern decreases valid vectorization efficiency by the amount of zero padding. Kernel weight is
scalar; thus, this pattern has no constraint in vector operations for weight handling. Since vectorization
is performed for color channels in all pixels, the pattern has no constraints in image size and
kernel shape.

Appl. Sci. 2018, 8, 1235 7 of 23

Difference weight for reference pixels

using set/gather instruction

∗

B
G

R

Pixels of interest

Reference pixels

Residual pixels

Same weight for reference pixels

∗

B
G

R

B
G

R

∗

Difference weight for reference pixels

using set/gather instruction

B

G

R

∗
Same weight for reference pixels

0

Pixel of interest

Reference pixels

(a) Color loop unrolling.

(d) Pixel loop unrolling

using the same weight.

Difference weight for reference pixels

using load instruction

∗

B
G

R

B
G

R

Pixel of interest

Residual pixels

Reference pixels

Difference weight for reference pixels

using load instruction

∗
(b) Kernel loop unrolling.

Non-processing pixels

(e) Pixel loop unrolling

using different weights.

(f) Arbitrary pixel loop

unrolling.

(c) Arbitrary kernel loop

unrolling.

Figure 5. Vectorization pattern of vectorized programming: (a) indicates color loop unrolling.
(b) indicates kernel loop unrolling. (c) indicates arbitrary kernel loop unrolling. (d) indicates pixel
loop unrolling using the same weight for the reference pixels. (e) pixel loop unrolling using different
weights for the reference pixels is shown. (f) indicates arbitrary pixel loop unrolling.

3.5. Kernel Loop Unrolling

In kernel loop unrolling, reference pixels in a kernel are vectorized to calculate kernel convolution
processing for a pixel of interest in parallel. Figures 4c and 5b indicate the code and vectorization
approach to kernel loop unrolling. If the kernel width, which depends on parameters, is a multiple of
the size of the SIMD register, reference pixels are able to be efficiently loaded into the SIMD register.
However, in most cases, kernel width is not a multiple of the SIMD register size. In such a case,
residual processing is necessary for residual reference pixels, which generally occur at the lateral
edge of the kernel. The set/gather instruction or scalar operations, which do not assume sequential
access, are used for residual processing. The kernel loop steps incrementally; thus, the loading
memory address must cross unaligned addresses. In this pattern, weights are vectorially calculated
by reference pixels. If the kernel weight depends only on the position relative to the pixel of interest,
it is possible to efficiently load the weight into the SIMD register. Because only reference pixels are
vectorized, no restriction exists on image size. In this pattern, reference pixels are required to have
continuous loading; thus, kernel shape is constrained. Kernel subsampling, where reference pixels are
discontinuous, cannot use the pattern (see Figure 5c). The set/gather instruction is used for kernel
subsampling. We call kernel loop unrolling with the set/gather instruction arbitrary kernel loop
unrolling. Arbitrary kernel loop unrolling is slower than kernel loop unrolling because the set/gather
instruction is inefficient.

This pattern can be achieved on SoA, but the image data structure is usually AoS. Therefore,
color channel splitting must be performed before processing. Output data structure should be AoS,
and this pattern outputs scalar data; thus, the data are stored with scalar instructions. The pattern has
more constraints than color loop unrolling, but the vectorization efficiency of the pattern is significantly
better than that of color loop unrolling.

3.6. Pixel Loop Unrolling

In pixel loop unrolling, pixels of interest and reference pixels are vectorized to calculate in parallel
the multiplicity of kernel convolutions for multiple pixels of interest. We realize the processing by

Appl. Sci. 2018, 8, 1235 8 of 23

extending the kernel convolution processing as vector operations between pixels of interest and
reference pixels. Figures 4d and 5d depict the code and vectorization approach to pixel loop unrolling.
If image width is a multiple of the SIMD register size, the pixels of interest and reference pixels are
efficiency loaded. If image width is not a multiple of SIMD register size, residual processing is required
at the lateral edge of the image. For residual processing, the image is padded so that its width is
a multiple of the SIMD register size, or the set/gather instruction or the scalar operation is executed
similarly to kernel loop unrolling. Access to the reference pixels is incrementally stepping, as is
kernel loop unrolling; thus, loading memory address must cross unaligned addresses. Kernel weight
must be calculated for each reference pixel among vectorized elements. However, if the calculated
weight depends only on relative position, it must be the same for each reference pixel in a vector.
This is because the relative positions of the pixel of interest and the reference pixel are the same
in the vector (see Figure 5d). There are no restrictions for the pattern in kernel width because the
calculation for the pixel of interest and the reference pixel is vectorized. If the kernel shapes remain
identical in all pixels of interest, the pattern can be used. However, if the kernel shapes are variant for
each pixel of interest in a vector, the pattern cannot be used. Such condition is filtering with random
kernel subsampling and adaptive spatial kernel filtering (see Figure 5f). In these filters, the relative
positions of the pixel of interest and the reference pixel are not the same in a vector; thus, the access for
the reference pixels is not continuous. The set/gather instruction resolves this discontinuous issues.
We call this pattern arbitrary pixel loop unrolling. This pattern can accommodate different kernel
shapes. The kernel size of this pattern must be adjusted to the largest number of reference pixels.
Arbitrary pixel loop unrolling is slower than pixel loop unrolling as with the case of arbitrary kernel
loop unrolling. If the weights are not the same for all reference pixels in a vector, the result is more
expensive than using the same weight for all (see Figure 5e).

Before filtering in this pattern, we perform color channel splitting to adjust the data layout to
acquire horizontally sequential data. The output of this pattern is SoA, and a usual image should be
AoS; thus, postprocessing is needed for AoS conversion. In this pattern, parallel computing is used in
the outermost loop; the vectorization of that loop is highly efficient. However, this pattern has greater
constraints than kernel loop unrolling.

4. Proposed Design Pattern of Vectorization

In this section, we propose a new vectorization pattern in FIR image filtering with kernel
subsampling, which we call loop vectorization. We summarize characteristics of the previous
vectorization patterns and our new one in Table 1. The proposed pattern encounters none of the
constraints that exist in the previous patterns.

Table 1. Characteristics of the vectorization patterns of vectorization in finite impulse response
image filtering.

Vectorization Pattern Arbitrary Parameter/Non-Limitation Restriction Parameter/Limitation

loop vectorization image width, kernel width, kernel shape, aligned load long preprocessing time, huge memory usage
color loop unrolling image width, kernel width, kernel shape, aligned load requiring color image with padding
kernel loop unrolling image width kernel width, kernel shape, non-aligned load
arbitrary kernel loop unrolling image width, kernel shape kernel width, inefficient load, non-aligned load
pixel loop unrolling kernel width image width, kernel shape, non-aligned load
arbitrary pixel loop unrolling kernel width, kernel shape image width, inefficient load, non-aligned load

In this proposed pattern, reference pixels are extracted in the kernel and the pixels are grouped
as a 1D vector. This vector must be multiple times as long as the SIMD register size. To adjust the
length of the vector, extra data are padded with zero. We collect the vector for all pixels and construct
volume data using the vectors. This rearrangement scheme is called loop vectorization. Figure 6
indicates an example of loop vectorization for kernel loop, which is called kernel loop vectorization.
As a prepossessing for filtering, we transform an input image into volume data by loop vectorization.
Let the number of elements in the kernel be K and the size of the image be S. The volume data size is

Appl. Sci. 2018, 8, 1235 9 of 23

KS. Figure 7 depicts the code of proposed pattern. The pattern on color images is shown in Figure 6c.
This pattern interleaves individual R, G, and B vectors whose length is the size of an SIMD register.
Zero paddings in kernel loops are required for each color channel. The proposed pattern has a data
structure that is the array of structure of array (AoSoA) [37]. AoSoA is preferable for contiguous
memory access, and its data structure has a high spatial locality in memory. Therefore, AoSoA has the
greater efficiency than SoA and AoS in memory prefetching.

Input image

・ ・ ・

・ ・ ・

・
・
・

Kernel

vectorization

Vectorized volume data

・
・
・

・・・

・・・

・
・
・

(a)

Kernel

vectorization

1 2 3

4 5 6
7 8 9

1 2 3 4 5 6 7 8 9

Vectorized data

Padding

(b)

Kernel

vectorization

𝐑𝟏𝐆𝟏 𝐁𝟏 𝐑𝟐𝐆𝟐 𝐁𝟐 𝐑𝟑𝐆𝟑 𝐁𝟑
𝐑𝟒𝐆𝟒 𝐁𝟒 𝐑𝟓𝐆𝟓 𝐁𝟓 𝐑𝟔𝐆𝟔 𝐁𝟔
𝐑𝟕𝐆𝟕 𝐁𝟕 𝐑𝟖𝐆𝟖 𝐁𝟖 𝐑𝟗𝐆𝟗 𝐁𝟗

𝐑𝟏𝐑𝟐𝐑𝟑𝐑𝟒 𝐆𝟏 𝐆𝟐 𝐆𝟑 𝐆𝟒 𝐁𝟏 𝐁𝟐 𝐁𝟑 𝐁𝟒

𝐑𝟓𝐑𝟔𝐑𝟕𝐑𝟖 𝐆𝟓 𝐆𝟔 𝐆𝟕 𝐆𝟖 𝐁𝟓 𝐁𝟔 𝐁𝟕 𝐁𝟖

𝐑𝟗 0 0 0 𝐆𝟗 0 0 0 𝐁𝟗 0 0 0

(c)

Figure 6. Kernel vectorization. (a) Rearrange approach; (b) Data structure of a pixel in gray image;
(c) Data structure of a pixel in color image. The size of the SIMD register is 4.

1 loop_vectorization_for_kernel_loop();

2 for(int y=0; y<img_height; y++){

3 for(int x=0; x<img_width; x++){

4 sum[channels] = {0};

5 weight_sum = 0;

6 temp_weight_sum[4] = {0;}

7 for(int j=0; j<kernel_height; j++){

8 for(int i=0; i<kernel_width; i+=4){

9 temp_weight[4] = {0};

10 temp_weight[0] = calcWeight(j, i+0, y, x);

11 temp_weight[1] = calcWeight(j, i+1, y, x);

12 temp_weight[2] = calcWeight(j, i+2, y, x);

13 temp_weight[3] = calcWeight(j, i+3, y, x);

14 for(int c=0; i<channels; c++){

15 sum[c] += temp_weight[0] * LV[y][x][j][c][i+0];

16 sum[c] += temp_weight[1] * LV[y][x][j][c][i+1];

17 sum[c] += temp_weight[2] * LV[y][x][j][c][i+2];

18 sum[c] += temp_weight[3] * LV[y][x][j][c][i+3];

19 }

20 temp_weight_sum[0] += temp_weight[0];

21 temp_weight_sum[1] += temp_weight[1];

22 temp_weight_sum[2] += temp_weight[2];

23 temp_weight_sum[3] += temp_weight[3];

24 }

25 }

26 weight_sum += temp_weight_sum[0];

27 weight_sum += temp_weight_sum[1];

28 weight_sum += temp_weight_sum[2];

29 weight_sum += temp_weight_sum[3];

30 for(int c=0;i<channels;c++){

31 D[y][x][c] = sum[c]/weight_sum;

32 }

33 }

34 }

(a)

1 loop_vectorization_for_pixel_loop();

2 for(int y=0; y<img_height; y++){

3 for(int x=0; x<img_width; x+=4){

4 sum[channels][4] = {0};

5 weight_sum[4] = {0};

6 for(int j=0; j<kernel_height; j++){

7 for(int i=0; i<kernel_width; i++){

8 temp_weight[4] = {0};

9 temp_weight[0] = calcWeight(j, i, y, x+0);

10 temp_weight[1] = calcWeight(j, i, y, x+1);

11 temp_weight[2] = calcWeight(j, i, y, x+2);

12 temp_weight[3] = calcWeight(j, i, y, x+3);

13 for(int c=0; i<channels; c++){

14 sum[c][0] += temp_weight * LV[y][j][i][c][x+0];

15 sum[c][1] += temp_weight * LV[y][j][i][c][x+1];

16 sum[c][2] += temp_weight * LV[y][j][i][c][x+2];

17 sum[c][3] += temp_weight * LV[y][j][i][c][x+3];

18 }

19 weight_sum[0] += temp_weight[0];

20 weight_sum[1] += temp_weight[1];

21 weight_sum[2] += temp_weight[2];

22 weight_sum[3] += temp_weight[3];

23 }

24 }

25 for(int c=0;i<channels;c++){

26 D[c][y][x+0] = sum[c][0]/weight_sum[0];

27 D[c][y][x+1] = sum[c][1]/weight_sum[1];

28 D[c][y][x+2] = sum[c][2]/weight_sum[2];

29 D[c][y][x+3] = sum[c][3]/weight_sum[3];

30 }

31 }

32 }

(b)

Figure 7. Code of loop vectorization. (a) Loop vectorization for kernel loop; (b) Loop vectorization for
pixel loop. The size of the SIMD register is 4. LV represents the data structure transformed by loop
vectorization. For the data structure, the data in the final operator [·] can be sequential access. The data
structure is always accessed sequentially.

The FIR filtering is related convolutional neural network (CNN) [38] based deep learning.
The proposed pattern is similar approach to convolution lowering (im2col) [39–41], which is CNN
acceleration method. In the proposed pattern, we convert it to a data structure specialized for
vector operation in CPU by considering data alignment and data arrangement of the color channel.
In addition, parallelization efficiency is improved by the proposed pattern for the pixel loop. Therefore,
the proposed pattern can also be effective for CNN-based deep learning in CPU.

The proposed pattern can also vectorize pixel loop. In the proposed pattern of pixel loop
vectorization, a vector is created with the accessed pixels through pixel loop unrolling; thus, a vector
is created in the units of the pixels of interest to be unrolled. Pixel loop vectorization is highly
parallelization efficient because it parallelizes the outermost loop as well as the case of pixel loop

Appl. Sci. 2018, 8, 1235 10 of 23

unrolling. However, if the filtering parameters are different per each kernel, pixel loop vectorization
requires the set instruction for the different parameters for each pixel of interest. The limitations of this
pattern are the same as those of pixel loop unrolling.

The advantages of the proposed pattern include the fact that, unlike other patterns, these patterns
are not restricted by the image width, kernel width, and kernel shape. In addition, data alignment
will clearly be consistent in any conditions. The disadvantage is that the proposed pattern requires
huge memory capacity. Kernel subsampling, however, moderates the memory footprint of loop
vectorization. Furthermore, the proposed pattern is particularly effective in its use of kernel
subsampling, because memory accesses of the other patterns are not sequential in filtering with kernel
subsampling but those of the proposed pattern are sequential. In random subsampling, performance
will be more outstanding. The proposed pattern is also effective for cases where kernel radius or image
size is large. In such conditions, cache-missing frequently occurs in the other patterns.

A limitation of the proposed pattern is the rearrangement processing is overhead. However,
the proposed pattern is practical for certain applications, such as image editing, where the same image
is processed multiple times. In image editing, rearrangement is only performed when the process
begins. In this application, a user interactively changes parameters and repeats filtering several times
to seek more desirable results. In interactive filtering, the overhead caused by the rearrangement
may be simply a waiting time for interactive photo editing to begin. The characteristics of interactive
filtering can also be utilized in feature extraction of scale-space filtering, e.g., SIFT [42].

5. Material and Methods

We here vectorize six filtering algorithms, namely, the Gaussian range filter (GRF), the bilateral
filter (BF) [43], the adaptive Gaussian filter (AGF) [44], the randomly-kernel-subsampled Gaussian
range filter (RKS-GRF), the randomly-kernel-subsampled bilateral filter (RKS-BF) [16], and the
randomly-kernel-subsampled adaptive Gaussian filter (RKS-AGF). The main characteristics of these
filters are summarized in Table 2. Note that the BF has various acceleration algorithms [25–29], but we
select a naïve BF to cover types of the general FIR filter. In this paper, we deal with two types
of implementation of these filters: the calculating weights with SIMD instructions and calculated
weights with lookup tables (LUTs). The kinds of implementation differ in their characteristics.
In calculating weights, it is possible to focus on data loading, and in using LUTs, it focuses on
the case of optimal implementation.

Table 2. Characteristics of the Gaussian range filter (GRF), the bilateral filter (BF), the adaptive
Gaussian filter (AGF), the randomly-kernel-subsampled Gaussian range filter (RKS-GRF),
the randomly-kernel-subsampled bilateral filter (RKS-BF), and the randomly-kernel-subsampled
adaptive Gaussian filter (RKS-AGF).

Filter Weight Depending LUT Kernel Shape

GRF pixel value range invariant
BF pixel value, pixel position space, range invariant

AGF parameter map, pixel position space variant
RKS-GRF pixel value range variant
RKS-BF pixel value, pixel position space, range variant

RKS-AGF parameter map, pixel position space variant

5.1. Gaussian Range Filter

The weight of the GRF is defined as follows:

f (p, q) := exp(
‖I(p)− I(q)‖2

2
−2σ2

r
), (3)

where ‖ · ‖2 is the L2 norm, and σr is a standard deviation.

Appl. Sci. 2018, 8, 1235 11 of 23

The weight depends on the intensities of the nearest pixels. The values of the nearest pixels
are different; thus, the LUT of the Gaussian range weight is discontinuously accessed for each pixel
differential. In direct weight computation, the vectorized exponential operation is not including in
the SIMD instruction set, although the Intel compiler extendedly provides the vectorized exponential
operation. Hence, we use the Intel compiler.

5.2. Bilateral Filter

The BF is a representative filter of edge-preserving filtering. The weight of the BF is denoted in
the following way:

f (p, q) := exp(
‖p− q‖2

2
−2σ2

s
) exp(

‖I(p)− I(q)‖2
2

−2σ2
r

), (4)

where σs and σr are the standard deviations for the space and range kernels, respectively.
The weight can be decomposed into spatial and range weight. The spatial weight, which is

the first exponential function, matches the weight in Gaussian filtering. The range weight, which is
the second exponential function, matches the weight in the GRF. The LUT of the space weights is
continuously accessed because relative positions of the reference pixels are continuous. On the other
hand, the LUT of the range weight is not continuous as with the GRF.

5.3. Adaptive Gaussian Filter

The AGF operates in a slightly different manner from Gaussian filtering. The standard deviation
dynamically changes, pixel by pixel. The weight of the AGF is defined as follows:

f (p, q) := exp(
‖p− q‖2

2
−2σs(p)2), (5)

where σs(p) is a pixel-dependent parameter found in a parameter map.
Here, we use this filter for refocusing. In this application, we change the parameter of the Gaussian

distribution using a depth map [45,46] as the parameter map. The detail of the AGF based on the
depth map is defined as follows:

f (p, q) := exp(
‖p− q‖2

2
−2(σs + α|d− D(p)|)2), (6)

where D is the depth map, d is the focusing depth value, and α is a parameter of the range of the depth
of field. The function of the kernel shape N (p) in Equations (1) and (2) is different for each pixel of
interest p.

Blurring is minimal at the focused pixel, and most of the kernel weights may become zero. In this
case, the region whose kernel weights are not zero can be regarded as an arbitrary kernel depending
on r′, which is less than the actual r, due to the property of the Gaussian distribution. This means
that, if the processing pixel of interest is in focus, we can only process a small kernel depending on r′.
Pixel loop vectorization, pixel loop unrolling, and kernel loop unrolling are restricted in terms of the
kernel shape function. Therefore, the largest kernels in a vector of the pixel of interest should be used
to maintain the restriction. Further, within kernel loop vectorization, arbitrary kernel loop unrolling,
and color loop unrolling, the amount of processing can be reduced using small kernels.

In the AGF, multiple LUTs are prepared to compute kernel weights whose size is D × (2r + 1)×
(2r + 1). D is the number of elements in the depth range. The utilized LUT is switched by the depth
value. In kernel loop vectorization, kernel loop, and color loop unrolling, the LUT is sequentially
accessed within a single LUT. In pixel loop vectorization and pixel loop unrolling, the LUT is instead
discontinuously accessed across multiple LUTs.

Appl. Sci. 2018, 8, 1235 12 of 23

5.4. Randomly-Kernel-Subsampled Filter

The randomly-kernel-subsampled filter is an approximation of FIR filtering. This filter uses
a different kernel shape function N (p) to randomly subsample pixels in a kernel. The kernel shape
functions N (p) of the GRF, BF, and AGF return permanent positions. The kernel functions N (p) of
the RKS-GRF, RKS-BF, and RKS-AGF return variable positions for a pixel-by-pixel p. The RKS-GRF,
RKS-BF, and RKS-AGF are represented as follows:

Ī(p) ' Ī′(p) =
∑n

j=1 f (p, Rj(p))I(Rj(p))

∑n
j=1 f (p, Rj(p))

, (7)

where n = |N (p)| denotes the number of samples, and Rj(p) randomly returns the
positions of support pixels around p. R similarly works for kernel subsampling. Note
that N (p) can be decomposed into Rj(p) and the partial summation operation ∑n

j=1 in the
randomly-kernel-subsampled filter.

6. Experimental Results

We verified all the vectorization patterns and proposed vectorization pattern using kernel
subsampling for the GRF, BF, AGF, RKS-GRF, RKS-BF, and RKS-AGF. Further, we compared the two
types of proposed loop vectorization, which were kernel loop vectorization and pixel loop vectorization,
with pixel loop, kernel loop, and color loop unrolling. Importantly, arbitrary kernel loop unrolling
was used instead of kernel loop unrolling in kernel subsampling and randomly-kernel-subsampling
conditions. Further, arbitrary pixel loop unrolling was used in the place of pixel loop unrolling
in randomly-kernel-subsampled filters. This step was taken because kernel loop unrolling
cannot be used in (randomly) kernel subsampling, and pixel loop unrolling cannot be used in
randomly-kernel-subsampled filters. These filters were implemented in C++ using AVX2 and
FMA instructions as SIMD instruction sets. Additionally, multi-core parallelization was used with
concurrency. The CPU used was an Intel Core-i7 6850X 3.0 GHz, and the memory used was DDR4
16 GBytes. Windows 10 64 bits was used for the OS, and Intel Compiler 18.0 was employed as the
compiler. The experimental code reached around 100,000 lines.

Figures 8–20 indicate the processing time and speedup ratio for each filter. The time for
computation is judged to be the median value of 100 trials. In addition, the time for computation does
not include rearrangement time in all patterns because we focus on interactive filters. The speedup ratio
relates the kernel loop vectorization vs. another pattern. If the speedup ratio exceeds 1, the other pattern
is faster than kernel loop vectorization. Figures 8 and 9 show the results of the GRF. The computational
times for the two types of the proposed pattern are almost the same as those for pixel loop unrolling,
and such patterns are faster than other patterns. In the two types of proposed pattern, the non-aligned
load does not occur, in contrast with other patterns; hence, the two types of the proposed pattern
are fast. Pixel loop unrolling has the most cache-efficiency because the locality of the input image
is high. Cache-missing errors, however, occur in the large kernel radius and/or large images cases
because of the gaps in the discontinuous access due to memory increase. Kernel loop unrolling is
less rapid in conditions of kernel subsampling because arbitrary kernel loop unrolling is present in
kernel-subsampling conditions. Color loop unrolling is the slowest pattern.

Appl. Sci. 2018, 8, 1235 13 of 23

0

200

400

600

800

1000

1200

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(a)

0

200

400

600

800

1000

1200

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(b)

0

200

400

600

800

1000

1200

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(c)

0

200

400

600

800

1000

1200

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(d)

0

200

400

600

800

1000

1200

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(e)

0

200

400

600

800

1000

1200

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(f)

Figure 8. Processing time for Gaussian range filtering (GRF) with respect to the kernel radius of
FIR filtering. (a) Full sample in weight computation; (b) 1/4 subsample in weight computation;
(c) 1/16 subsample in weight computation; (d) Full sample in LUT; (e) 1/4 subsample in LUT; (f) 1/16
subsample in LUT. Note that arbitrary kernel loop unrolling is used instead of kernel loop unrolling
under kernel-subsampling conditions.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

16 32 48 64 80 96 112 128 144 160 176 192

R
a
ti

o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(a) .

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

16 32 48 64 80 96 112 128 144 160 176 192

R
a
ti

o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(b)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

16 32 48 64 80 96 112 128 144 160 176 192

R
a
ti

o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(c)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

16 32 48 64 80 96 112 128 144 160 176 192

R
a
ti

o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(d)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

16 32 48 64 80 96 112 128 144 160 176 192

R
a
ti

o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(e)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

16 32 48 64 80 96 112 128 144 160 176 192

R
a

ti
o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(f)

Figure 9. The speedup ratio for Gaussian range filtering (GRF) with respect to the kernel radius
of FIR filtering. (a) Full sample in weight computation; (b) 1/4 subsample in weight computation;
(c) 1/16 subsample in weight computation; (d) Full sample in LUT; (e) 1/4 subsample in LUT; (f) 1/16
subsample in LUT. If the ratio exceeds 1, the given pattern is faster than the kernel loop vectorization.

Figures 10 and 11 indicate the results for the BF. The BF has a Gaussian spatial kernel added to
the GRF’s kernel. The accessing pattern to the spatial kernel is sequential for all vectorization patterns;
for this reason, the spatial kernel does not dramatically change the efficiency of all patterns in this filter.
Therefore, the BF results follow almost the same trend as the GRF results.

Appl. Sci. 2018, 8, 1235 14 of 23

0

200

400

600

800

1000

1200

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(a)

0

200

400

600

800

1000

1200

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(b)

0

200

400

600

800

1000

1200

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(c)

0

200

400

600

800

1000

1200

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(d)

0

200

400

600

800

1000

1200

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(e)

0

200

400

600

800

1000

1200

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(f)

Figure 10. Processing time for bilateral filtering (BF) with respect to the kernel radius of FIR
filtering. (a) Full sample in weight computation; (b) 1/4 subsample in weight computation; (c) 1/16
subsample in weight computation; (d) Full sample in LUT; (e) 1/4 subsample in LUT; (f) 1/16
subsample in LUT. Note that arbitrary kernel loop unrolling is used instead of kernel loop unrolling in
kernel-subsampling conditions.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

16 32 48 64 80 96 112 128 144 160 176 192

R
a
ti

o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(a)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

16 32 48 64 80 96 112 128 144 160 176 192

R
a
ti

o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(b)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

16 32 48 64 80 96 112 128 144 160 176 192

R
a

ti
o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(c)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

16 32 48 64 80 96 112 128 144 160 176 192

R
a
ti

o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(d)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

16 32 48 64 80 96 112 128 144 160 176 192

R
a
ti

o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(e)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

16 32 48 64 80 96 112 128 144 160 176 192

R
a
ti

o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(f)

Figure 11. The speedup ratio of bilateral filtering (BF) with respect to the kernel radius of FIR filtering.
(a) Full sample in weight computation; (b) 1/4 subsample in weight computation; (c) 1/16 subsample
in weight computation; (d) Full sample in LUT; (e) 1/4 subsample in LUT; (f) 1/16 subsample in LUT.
If the ratio exceeds 1, the given pattern is faster than the kernel loop vectorization.

Figures 12 and 13 indicate the results of the AGF. In the case of weight computation, the figures
indicate that kernel loop vectorization is the fastest pattern. If LUTs are used, kernel loop vectorization
is the fastest when r is large. When r is small, pixel loop unrolling is the fastest. Where LUTs are used,
the implementation of pixel loop unrolling is efficient. However, where r is large, cache-missing occurs
and the speed decreases.

Appl. Sci. 2018, 8, 1235 15 of 23

0

100

200

300

400

500

600

700

800

900

1000

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(a)

0

100

200

300

400

500

600

700

800

900

1000

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(b)

0

100

200

300

400

500

600

700

800

900

1000

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(c)

0

50

100

150

200

250

300

350

400

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(d)

0

50

100

150

200

250

300

350

400

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(e)

0

50

100

150

200

250

300

350

400

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(f)

Figure 12. Processing time for adaptive Gaussian filtering (AGF) with respect to the kernel radius of FIR
filtering. (a) Full sample in weight computation; (b) 1/4 subsample in weight computation; (c) 1/16
subsample in weight computation; (d) Full sample in LUT; (e) 1/4 subsample in LUT; (f) 1/16
subsample in LUT. Note that arbitrary kernel loop unrolling is used instead of kernel loop unrolling in
the kernel-subsampling conditions.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

16 32 48 64 80 96 112 128 144 160 176 192

R
a

ti
o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(a)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

16 32 48 64 80 96 112 128 144 160 176 192

R
a

ti
o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(b)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

16 32 48 64 80 96 112 128 144 160 176 192

R
a
ti

o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(c)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

16 32 48 64 80 96 112 128 144 160 176 192

R
a
ti

o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(d)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

16 32 48 64 80 96 112 128 144 160 176 192

R
a

ti
o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(e)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

16 32 48 64 80 96 112 128 144 160 176 192

R
a
ti

o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(f)

Figure 13. The speedup ratio for adaptive Gaussian filtering (AGF) with respect to kernel radius of FIR
filtering. (a) Full sample in weight computation; (b) 1/4 subsample in weight computation; (c) 1/16
subsample in weight computation; (d) Full sample in LUT; (e) 1/4 subsample in LUT; (f) 1/16
subsample in LUT. If the ratio exceeds 1, this pattern is faster than the kernel loop vectorization.

Figures 14 and 15 present the results of the RKS-GRF. The two types of the proposed pattern
have the greatest speed of all the patterns. The two types of the proposed pattern continuously access
reference pixels. However, other vectorization patterns cannot continuously access reference pixels.
In particular, pixel loop unrolling is the most affected by this.

Appl. Sci. 2018, 8, 1235 16 of 23

0

200

400

600

800

1000

1200

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(a)

0

200

400

600

800

1000

1200

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(b)

0

200

400

600

800

1000

1200

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(c)

0

200

400

600

800

1000

1200

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(d)

Figure 14. Processing time for randomly-kernel-subsampled Gaussian range filtering (RKS-GRF)
with respect to the kernel radius of FIR filtering. (a) 1/4 subsample in weight computation; (b) 1/16
subsample in weight computation; (c) 1/4 subsample in LUT; (d) 1/16 subsample in LUT. Arbitrary
pixel loop unrolling and arbitrary kernel loop unrolling are used in the place of pixel loop unrolling
and kernel loop unrolling, respectively.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

16 32 48 64 80 96 112 128 144 160 176 192

R
a

ti
o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(a)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

16 32 48 64 80 96 112 128 144 160 176 192

R
a

ti
o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(b)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

16 32 48 64 80 96 112 128 144 160 176 192

R
a

ti
o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(c)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

16 32 48 64 80 96 112 128 144 160 176 192

R
a

ti
o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(d)

Figure 15. The speedup ratio of randomly-kernel-subsampled Gaussian range filtering (RKS-GRF)
with respect to the kernel radius of FIR filtering. (a) 1/4 subsample in weight computation; (b) 1/16
subsample in weight computation; (c) 1/4 subsample in LUT; (d) 1/16 subsample in LUT. If the ratio
exceeds 1, the pattern is faster than kernel loop vectorization.

Figures 16 and 17 present the results of the RKS-BF. Kernel loop vectorization is the fastest pattern.
Pixel loop vectorization is slower than kernel loop vectorization. Pixel loop vectorization and pixel
loop unrolling discontinuously access the spatial LUTs. Kernel loop vectorization and kernel loop
unrolling continuously access spatial LUT.

Appl. Sci. 2018, 8, 1235 17 of 23

0

200

400

600

800

1000

1200

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(a)

0

200

400

600

800

1000

1200

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(b)

0

200

400

600

800

1000

1200

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(c)

0

200

400

600

800

1000

1200

16 32 48 64 80 96 112 128 144 160 176 192
P

ro
ce

ss
in

g
 T

im
e

[m
s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(d)

Figure 16. Processing time for randomly-kernel-subsampled bilateral filtering (RKS-BF) with respect
to the kernel radius of FIR filtering. (a) 1/4 subsample in weight computation; (b) 1/16 subsample
in weight computation; (c) 1/4 subsample in LUT; (d) 1/16 subsample in LUT. Arbitrary pixel loop
unrolling and arbitrary kernel loop unrolling are used in place of pixel loop unrolling and kernel loop
unrolling, respectively.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

16 32 48 64 80 96 112 128 144 160 176 192

R
a

ti
o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(a)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

16 32 48 64 80 96 112 128 144 160 176 192

R
a

ti
o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(b)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

16 32 48 64 80 96 112 128 144 160 176 192

R
a

ti
o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(c)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

16 32 48 64 80 96 112 128 144 160 176 192

R
a

ti
o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(d)

Figure 17. The speedup ratio of randomly-kernel-subsampled bilateral filtering (RKS-BF) with respect
to the kernel radius of FIR filtering. (a) 1/4 subsample in weight computation; (b) 1/16 subsample
in weight computation; (c) 1/4 subsample in LUT; (d) 1/16 subsample in LUT. If the ratio exceeds 1,
the given pattern is faster than kernel loop vectorization.

Figures 18 and 19 present the results of the RKS-AGF. These figures indicate that the fastest pattern
is kernel loop vectorization. The kernel loop vectorization continuously accesses reference pixels and

Appl. Sci. 2018, 8, 1235 18 of 23

LUTs. Together, these results indicate a special efficiency for proposed kernel loop vectorization in the
kernel-adaptive sampling technique.

0

100

200

300

400

500

600

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(a)

0

100

200

300

400

500

600

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(b)

0

50

100

150

200

250

300

350

400

450

500

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

R
a

ti
o

(c)

Radius of Kernel [pixel]

0

50

100

150

200

250

300

350

400

450

500

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(d)

Figure 18. Processing time for randomly-kernel-subsampled adaptive Gaussian filtering (RKS-AGF)
with respect to the kernel radius of FIR filtering. (a) 1/4 subsample in weight computation; (b) 1/16
subsample in weight computation; (c) 1/4 subsample in LUT; (d) 1/16 subsample in LUT. Arbitrary
pixel loop unrolling and arbitrary kernel loop unrolling are used in place of pixel loop unrolling and
kernel loop unrolling, respectively.

0.0

0.2

0.4

0.6

0.8

1.0

16 32 48 64 80 96 112 128 144 160 176 192

R
a

ti
o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(a)

0.0

0.2

0.4

0.6

0.8

1.0

16 32 48 64 80 96 112 128 144 160 176 192

R
a

ti
o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(b)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

16 32 48 64 80 96 112 128 144 160 176 192

R
a

ti
o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

(c)

Radius of Kernel [pixel]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

16 32 48 64 80 96 112 128 144 160 176 192

R
a

ti
o

Radius of Kernel [pixel]

Proposed (Kernel Loop)
Proposed (Pixel Loop)
Pixel
Kernel
Color

R
a

ti
o

(d)

Figure 19. The speedup ratio for randomly-kernel-subsample adaptive Gaussian filtering (RKS-AGF)
with respect to the kernel radius of FIR filtering. (a) 1/4 subsample in weight computation; (b) 1/16
subsample in weight computation; (c) 1/4 subsample in LUT; (d) 1/16 subsample in LUT. If the ratio
exceeds 1, the given pattern is faster than the kernel loop vectorization.

Appl. Sci. 2018, 8, 1235 19 of 23

Figure 20 depicts the accuracies of GRF, BF, AGF, RKS-GRF, RKS-BF, and RKS-AGF. Here, we
compare the results of a full sampling with the results of a subsampling using peak signal noise ratio
(PSNR). In this figure, PSNR is found to be around 40 dB for all cases; thus, the filtered image has
sufficient accuracy of approximation for all filters.

0

10

20

30

40

50

60

70

16 32 48 64 80 96 112 128 144 160 176 192

P
S

N
R

 [
d

B
]

Radius of Kernel [pixel]

1/4 Sample
1/16 Sample

(a)

0

10

20

30

40

50

60

70

16 32 48 64 80 96 112 128 144 160 176 192
P

S
N

R
 [

d
B

]

Radius of Kernel [pixel]

1/4 Sample
1/16 Sample

(b)

0

10

20

30

40

50

60

70

16 32 48 64 80 96 112 128 144 160 176 192

P
S

N
R

 [
d

B
]

Radius of Kernel [pixel]

1/4 Sample
1/16 Sample

(c)

0

10

20

30

40

50

60

70

16 32 48 64 80 96 112 128 144 160 176 192

P
S

N
R

 [
d

B
]

Radius of Kernel [pixel]

1/4 Sample
1/16 Sample

(d)

0

10

20

30

40

50

60

70

16 32 48 64 80 96 112 128 144 160 176 192

P
S

N
R

 [
d

B
]

Radius of Kernel [pixel]

1/4 Sample
1/16 Sample

(e)

0

10

20

30

40

50

60

70

16 32 48 64 80 96 112 128 144 160 176 192

P
S

N
R

 [
d

B
]

Radius of Kernel [pixel]

1/4 Sample
1/16 Sample

(f)

Figure 20. PSNR with respect to kernel radius of FIR filtering. (a) Gaussian range filter;
(b) Bilateral filter; (c) Adaptive Gaussian filter; (d) Randomly-kernel-subsampled Gaussian range
filter; (e) Randomly-kernel-subsampled filter; (f) Randomly-kernel-subsampled adaptive Gaussian
filter. Image size is 512 × 512.

Offset computing time for loop vectorization in data structure transformation is discussed.
Figure 21 presents the processing time required for loop vectorization. Processing time increases
with increases in kernel radius and image size. Computing time is linearly proportional to the number
of elements in the loop-vectorized data, namely, (2r+ 1)2× s, where the kernel radius is r and the image
size is s. However, for interactive filtering, this drawback can be neglected. Rearranged processing
time must occur before filtering can be done at first in the proposed pattern, but it is not required for
subsequent filtering. Therefore, rearrangement of processing time does not lead to significant problems
in interactive filtering. If images show continuous change, such as in video, the second-fastest pattern
should be used instead of the proposed one. The pattern that is proposed requires rearrangement for
every image.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

16 46 76 106 136 166 196

P
ro

ce
ss

in
g
 T

im
e

[m
s]

Radius of Kernel [pixel]

512×512

900×750

Full Sample

1/4 Sample

1/16 Sample

1/64 Sample

Figure 21. Processing time for loop vectorization with respect to the kernel radius of FIR filtering.
There are 2 × 4 lines, and their combinations represent image resolution (512 × 512 and 900 × 750) and
kernel subsampling ratio (full, 1/4, and 1/16).

Appl. Sci. 2018, 8, 1235 20 of 23

7. Conclusions

In this paper, we summarize a taxonomy of vectorized programming for FIR image filtering.
We also propose a new vectorization pattern of vectorized programming, which we call loop
vectorization. These vectorization patterns are combined with an acceleration method of kernel
subsampling for general FIR filters. The experimental results indicate that the patterns are appropriate
for FIR filtering, and a new pattern with kernel subsampling can be profitably used for Gaussian range
filtering (GRF), bilateral filtering (BF), adaptive Gaussian filtering (AGF), randomly-kernel-subsampled
Gaussian range filtering (RKS-GRF), randomly-kernel-subsampled bilateral filtering (RKS-BF),
and randomly-kernel-subsampled adaptive Gaussian filtering (RKS-AGF).

The results are summarized as follows:

1. The two types of the proposed pattern, which are kernel loop vectorization and pixel loop
vectorization, are both effective for adaptive kernel shapes, that is, randomized filters and the AGF.

2. There remains, however, a trade-off in weight and data loading for changing spatial LUTs in each
filtering pixel. Kernel loop unrolling is more suitable for weight loading, and loop vectorization is
more suitable for data loading. Kernel loop vectorization is effective for weight and data loading;
thus, the kernel loop vectorization is suitable for AGF, RKS-AGF, and RKS-BF.

3. For the large-radius condition, the two types of the proposed pattern have moderate effectivity
for other filters in the above effective cases, that is, the GRF and BF.

Author Contributions: Conceptualization, Y.M. and N.F.; Data curation, Y.M.; Formal analysis, Y.M.; Investigation,
Y.M.; Methodology, Y.M. and N.F.; Project administration, N.F. and H.M.; Resources, N.F.; Software, Y.M.;
Supervision, N.F. and H.M.; Validation, Y.M. and N.F.; Visualization, Y.M.; Writing—original draft, Y.M.; and
Writing—review and editing, Y.M. and N.F.

Funding: This research was funded by JSPS KAKENHI Grant Numbers JP18K19813 and JP17H01764.

Acknowledgments: This work was supported by JSPS KAKENHI Grant Numbers JP18K19813 and JP17H01764.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In this section, we compare image subsampling to kernel subsampling in bilateral filtering.
Figure A1 indicates the processing time, as well as the accuracy of image and kernel subsampling.
It is indicated in the figure that processing time for image subsampling is reduced relative to that for
kernel subsampling. However, the PSNR for image subsampling remains lower than that for kernel
subsampling. In Figure A1c, kernel subsampling is greater than image subsampling. This indicates
that kernel subsampling has a greater accuracy for the same processing time.

0

200

400

600

800

1000

1200

16 32 48 64 80 96 112 128 144 160 176 192

P
ro

ce
ss

in
g

 T
im

e
[m

s]

Radius of Kernel [pixel]

1/4 Kernel subsample
1/16 Kernel subsample
1/4 Image subsample
1/16 Image subsample

(a)

0

10

20

30

40

50

60

16 32 48 64 80 96 112 128 144 160 176 192

P
S

N
R

 [
d

B
]

Radius of Kernel [pixel]

1/4 Kernel subsample
1/16 Kernel subsample
1/4 Image subsample
1/16 Image subsample

(b)

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200

P
S

N
R

 [
d

B
]

Processing Time [ms]

1/4 Kernel subsample

1/16 Kernel subsample

1/4 Image subsample

1/16 Image subsample

(c)

Figure A1. Processing time for and accuracy of image subsampling and kernel subsampling with
respect to kernel radius of FIR filtering. (a) Processing time; (b) PSNR; (c) PSNR vs. processing time.
Image size is 512 × 512.

Appl. Sci. 2018, 8, 1235 21 of 23

References

1. Moore, G.E. Cramming more components onto integrated circuits, Reprinted from Electronics, volume 38,
number 8, April 19, 1965, pp.114 ff. IEEE Solid-State Circuits Soc. Newsl. 2006, 11, 33–35. [CrossRef]

2. Rotem, E.; Ginosar, R.; Mendelson, A.; Weiser, U.C. Power and thermal constraints of modern
system-on-a-chip computer. In Proceedings of the 19th International Workshop on Thermal Investigations of
ICs and Systems (THERMINIC), Berlin, Germany, 25–27 September 2013; pp. 141–146.

3. Flynn, M.J. Some computer organizations and their effectiveness. IEEE Trans. Comput. 1972, 100, 948–960.
[CrossRef]

4. Hughes, C.J. Single-instruction multiple-data execution. Synth. Lect. Comput. Archit. 2015, 10, 1–121.
[CrossRef]

5. Rivera, G.; Tseng, C.W. Data Transformations for Eliminating Conflict Misses. SIGPLAN Not. 1998, 33, 38–49.
[CrossRef]

6. Henretty, T.; Stock, K.; Pouchet, L.N.; Franchetti, F.; Ramanujam, J.; Sadayappan, P. Data Layout
Transformation for Stencil Computations on Short-vector SIMD Architectures. In Proceedings of the
International Conference on Compiler Construction: Part of the Joint European Conferences on Theory and
Practice of Software (CC’11/ETAPS’11), Saarbrücken, Germany, 26 March–3 April 2011, pp. 225–245.

7. Saegusa, T.; Maruyama, T.; Yamaguchi, Y. How fast is an FPGA in image processing? In Proceedings
of the International Conference on Field Programmable Logic and Applications, Heidelberg, Germany,
8–10 September 2008; pp. 77–82.

8. Asano, S.; Maruyama, T.; Yamaguchi, Y. Performance comparison of FPGA, GPU and CPU in image
processing. In Proceedings of the International Conference on Field Programmable Logic and Applications,
Prague, Czech Republic, 31 August–2 September 2009; pp. 126–131.

9. Kurafuji, T.; Haraguchi, M.; Nakajima, M.; Nishijima, T.; Tanizaki, T.; Yamasaki, H.; Sugimura, T.; Imai, Y.;
Ishizaki, M.; Kumaki, T. et al. A Scalable Massively Parallel Processor for Real-Time Image Processing.
IEEE J. Solid-State Circuits 2011, 46, 2363–2373. [CrossRef]

10. Batcher, K.E. Sorting networks and their applications. In Proceedings of the Spring Joint Computer
Conference (SJCC), Atlantic City, NJ, USA, 30 April–2 May 1968; pp. 307–314.

11. Hoare, C.A.R. Quicksort. Comput. J. 1962, 5, 10–16. [CrossRef]
12. Viola, P.; Jones, M. Rapid object detection using a boosted cascade of simple features. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Kauai, HI, USA, 8–14 December
2001; pp. 511–518.

13. Gonzalez, R.C.; Woods, R.E. Digital Image Processing; Prentice Hall: Upper Saddle River, NJ, USA, 2008.
14. Treitel, S.; Shanks, J.L. The Design of Multistage Separable Planar Filters. IEEE Trans. Geosci. Electron. 1971,

9, 10–27. [CrossRef]
15. Lou, L.; Nguyen, P.; Lawrence, J.; Barnes, C. Image Perforation: Automatically Accelerating Image Pipelines

by Intelligently Skipping Samples. ACM Trans. Graph. 2016, 35, 153:1–153:14. [CrossRef]
16. Banterle, F.; Corsini, M.; Cignoni, P.; Scopigno, R. A Low-Memory, Straightforward and Fast Bilateral Filter

Through Subsampling in Spatial Domain. In Computer Graphics Forum; Wiley: Hoboken, NJ, USA, 2012;
Volume 31, pp. 19–32.

17. Deriche, R. Recursively Implementating the Gaussian and its Derivatives. In Proceedings of the IEEE
International Conference on Image Processing (ICIP), Singapore, 7–11 September 1992; pp. 263–267.

18. Young, I.T.; Van Vliet, L.J. Recursive implementation of the Gaussian filter. Signal Process. 1995, 44, 139–151.
[CrossRef]

19. Van Vliet, L.J.; Young, I.T.; Verbeek, P.W. Recursive Gaussian derivative filters. In Proceedings of the IEEE
International Conference on Pattern Recognition, Brisbane, Australia, 20 August 1998; Volume 1, pp. 509–514.

20. Wells, W.M. Efficient synthesis of Gaussian filters by cascaded uniform filters. IEEE Trans. Pattern Anal.
Mach. Intell. 1986, 234–239. [CrossRef]

21. Elboher, E.; Werman, M. Cosine integral images for fast spatial and range filtering. In Proceedings of the
IEEE International Conference on Image Processing, Brussels, Belgium, 11–14 September 2011; pp. 89–92.

22. Sugimoto, K.; Kamata, S. Fast Gaussian filter with second-order shift property of DCT-5. In Proceedings
of the International Conference on Image Processing (ICIP), Melbourne, Australia, 15–18 September 2013;
pp. 514–518.

http://dx.doi.org/10.1109/N-SSC.2006.4785860
http://dx.doi.org/10.1109/TC.1972.5009071
http://dx.doi.org/10.2200/S00647ED1V01Y201505CAC032
http://dx.doi.org/10.1145/277652.277661
http://dx.doi.org/10.1109/JSSC.2011.2159528
http://dx.doi.org/10.1093/comjnl/5.1.10
http://dx.doi.org/10.1109/TGE.1971.271457
http://dx.doi.org/10.1145/2904903
http://dx.doi.org/10.1016/0165-1684(95)00020-E
http://dx.doi.org/10.1109/TPAMI.1986.4767776

Appl. Sci. 2018, 8, 1235 22 of 23

23. Sugimoto, K.; Kamata, S. Efficient Constant-time Gaussian Filtering with Sliding DCT/DST-5 and
Dual-domain Error Minimization. ITE Trans. Media Technol. Appl. 2015, 3, 12–21. [CrossRef]

24. Getreuer, P. A survey of Gaussian convolution algorithms. Image Process. Line 2013, 2013, 286–310. [CrossRef]
25. Durand, F.; Dorsey, J. Fast Bilateral Filtering for the Display of High-Dynamic-Range Images. ACM Trans.

Graph. 2002, 21, 257–266. [CrossRef]
26. Sugimoto, K.; Fukushima, N.; Kamata, S. Fast Bilateral Filter for Multichannel Images via Soft-assignment

Coding. In Proceedings of the 2016 Asia-Pacific Signal and Information Processing Association Annual
Summit and Conference (APSIPA ASC), Jeju, Korea, 13–16 December 2016.

27. Sugimoto, K.; Kamata, S. Compressive Bilateral Filtering. IEEE Trans. Image Process. 2015, 24, 3357–3369.
[CrossRef] [PubMed]

28. Chen, J.; Paris, S.; Durand, F. Real-Time Edge-Aware Image Processing with the Bilateral Grid. ACM Trans.
Graph. 2007, 26, 103. [CrossRef]

29. Paris, S.; Durand, F. A Fast Approximation of the Bilateral Filter Using A Signal Processing Approach. Int. J.
Comput. Vis. 2009, 81, 24–52. [CrossRef]

30. Fukushima, N.; Fujita, S.; Ishibashi, Y. Switching Dual Kernels for Separable Edge-Preserving Filtering.
In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Brisbane, Australia, 19–24 April 2015.

31. Pham, T.Q.; Vliet, L.J.V. Separable bilateral filtering for fast video preprocessing. In Proceedings of the
International Conference on Multimedia and Expo (ICME), Amsterdam, The Netherlands, 6–8 July 2005.

32. Chaudhury, K.N. Acceleration of the Shiftable O(1) Algorithm for Bilateral Filtering and Nonlocal Means.
IEEE Trans. Image Process. 2013, 22, 1291–1300. [CrossRef] [PubMed]

33. Crow, F.C. Summed-Area Tables for Texture Mapping. In Proceedings of the ACM SIGGRAPH, Minneapolis,
MN, USA, 23–27 July 1984; pp. 207–212.

34. Mitzenmacher, M.; Upfal, E. Probability and Computing: Randomized Algorithms and Probabilistic Analysis;
Cambridge University Press: New York, NY, USA, 2005.

35. Motwani, R.; Raghavan, P. Randomized Algorithms; Cambridge University Press: New York, NY, USA, 1995.
36. Cook, R.L. Stochastic Sampling in Computer Graphics. ACM Trans. Graph. 1986, 5, 51–72. [CrossRef]
37. Asahi, Y.; Latu, G.; Ina, T.; Idomura, Y.; Grandgirard, V.; Garbet, X. Optimization of Fusion Kernels on

Accelerators with Indirect or Strided Memory Access Patterns. IEEE Trans. Parallel Distrib. Syst. 2017, 28,
1974–1988. [CrossRef]

38. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition.
Proc. IEEE 1998, 86, 2278–2324. [CrossRef]

39. Chellapilla, K.; Puri, S.; Simard, P. High Performance Convolutional Neural Networks for Document
Processing. In Proceedings of the International Workshop on Frontiers in Handwriting Recognition, La Baule,
France, 23–26 October 2006.

40. Chetlur, S.; Woolley, C.; Vandermersch, P.; Cohen, J.; Tran, J.; Catanzaro, B.; Shelhamer, E. cuDNN: Efficient
Primitives for Deep Learning. arXiv 2014, arXiv:1410.0759.

41. Vasudevan, A.; Anderson, A.; Gregg, D. Parallel Multi Channel convolution using General Matrix
Multiplication. In Proceedings of the IEEE International Conference on Application-specific Systems,
Architectures and Processors (ASAP), Seattle, WA, USA, 10–12 July 2017; pp. 19–24.

42. Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110.
[CrossRef]

43. Tomasi, C.; Manduchi, R. Bilateral Filtering for Gray and Color Images. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), Bombay, India, 7 January 1998; pp. 839–846.

44. Deng, G.; Cahill, L. An adaptive Gaussian filter for noise reduction and edge detection. In Proceedings of the
IEEE Nuclear Science Symposium and Medical Imaging Conference, San Francisco, CA, USA, 31 October–
6 November 1993; pp. 1615–1619.

http://dx.doi.org/10.3169/mta.3.12
http://dx.doi.org/10.5201/ipol.2013.87
http://dx.doi.org/10.1145/566654.566574
http://dx.doi.org/10.1109/TIP.2015.2442916
http://www.ncbi.nlm.nih.gov/pubmed/26068315
http://dx.doi.org/10.1145/1276377.1276506
http://dx.doi.org/10.1007/s11263-007-0110-8
http://dx.doi.org/10.1109/TIP.2012.2222903
http://www.ncbi.nlm.nih.gov/pubmed/23060338
http://dx.doi.org/10.1145/7529.8927
http://dx.doi.org/10.1109/TPDS.2016.2633349
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94

Appl. Sci. 2018, 8, 1235 23 of 23

45. Bae, S.; Durand, F. Defocus magnification. In Computer Graphics Forum; Wiley: Hoboken, NJ, USA, 2007;
Volume 26, pp. 571–579.

46. Zhang, W.; Cham, W.K. Single image focus editing. In Proceedings of the IEEE International Conference on
Computer Vision Workshops (ICCV Workshops), Kyoto, Japan, 27 September–4 October 2009; pp. 1947–1954.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	2D FIR Image Filtering and Its Acceleration
	Definition of 2D FIR Image Filtering
	General Acceleration of FIR Image Filtering

	Design Patterns of Vectorized Programming for FIR Image Filtering
	Data Loading and Storing in Vectorized Programming
	Image Data Structure
	Vectorization of FIR Filtering
	Color Loop Unrolling
	Kernel Loop Unrolling
	Pixel Loop Unrolling

	Proposed Design Pattern of Vectorization
	Material and Methods
	Gaussian Range Filter
	Bilateral Filter
	Adaptive Gaussian Filter
	Randomly-Kernel-Subsampled Filter

	Experimental Results
	Conclusions
	
	References

