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Featured Application: This work can be utilized to predict the flexural strength and the
compressive strength of ultra-high performance concrete (UHPC), determine the volume fraction
of steel fibers in ultra-high performance steel fiber reinforced concrete (UHPFRC), and optimize
the UHPFRC mixtures.

Abstract: Steel fibers enhance the flexural strength, the compressive strength and the ductility of
untra-high performance concrete, predicting the flexural strength and the compressive strength of
ultra-high performance steel fiber reinforced concrete (UHPFRC) accurately has significant influence
on controlling steel fiber volume fraction and optimizing UHPFRC mix proportion. In this study,
to evaluate the effects of steel fibers on the mechanical properties of UHPFRC, two artificial neural
networks were developed in order to predict the flexural strength and the compressive strength
of UHPFRC, respectively. 102 test data sets and 162 test data sets from literature were trained and
tested to establish the flexural strength model and the compressive strength model, respectively.
In these two models, the influential parameters, including the water to binder ratio, the diameter,
the length, the aspect ratio, and the volume fraction of steel fibers, as well as the compressive
strength and the flexural strength of concrete without fibers were investigated as the inputs, while
the compressive strength and the flexural strength of UHPFRC were the outputs. The results show
that the artificial neural network models predicted the compressive strength and flexural strength of
UHPFRC accurately. Then, by comparing with existing analytical models, it was determined that the
proposed models had high applicability and reliability with respect to predicting the compressive
strength and the flexural strength of UHPFRC.

Keywords: artificial neural model; compressive strength; flexural strength; ultra-high performance
concrete; steel fiber

1. Introduction

In ultra-high performance concrete (UHPC) mixture design, the compressive strength, and the
flexural strength are two key mechanic parameters to evaluate the strength and the ductility of
materials. Because UHPC is brittle, the steel fibers with high tensile strength and high ultimate
elongation, are always uniformly dispersed in UHPC to increase the ductility and the strength of
concrete. The UHPC with steel fibers is also called ultra-high performance steel fiber reinforced
concrete (UHPFRC). The steel fibers in UHPFRC improve the cohesive forces between fibers and
matrix, change the granular skeleton, and increase the anchorage length between fibers and the
surrounding matrix [1,2]. Besides, steel fibers bridge cracks and retard the propagation to increase
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the strength and the ductility of UHPFRC [3]. Unfortunately, too many steel fibers lead to fibers
inter-wrap and interlock with each other, affecting the workability of UHPFRC, to reduce the strength
of UHPFRC [4]. Furthermore, steel fibers are expensive and numerous steel fibers added to the
UHPFRC cost too much. Thus, predicting the compressive strength and the flexural strength of
UHPEFRC accurately can optimize mix proportion, control the volume fraction of steel fibers, and
decrease the costs of UHPFRC. However, evaluating the flexural strength and the compressive strength
of the UHPFRC is a huge challenge due to the complex composite behavior caused by the properties
steel fibers (diameter (D), length (L), aspect ratio (AR), and volume fraction (VF)) and concrete matrix
(water to binder ratio (W/B) and concrete strength without fibers).

Nowadays, the contribution of cement-based materials to sustainability is a topic of study [5-8]
and the performance of several additions in cement-based materials, such as silica fume, fly ash,
the water to cement ratio, and so on, has been analyzed, which could be also suitable for being
used in high performance concrete. This fact also makes it necessary to consider their influence on
the mechanical properties of these new concretes. In the past decades, different experimental and
theoretical investigations [9-30] have been carried out on the compressive strength and the flexural
strength of UHPFRC. Several analytical models have been constructed to predict the compressive
strength and the flexural strength of UHPFRC by proposing a series of assumptions about the
mechanism and developing the equilibrium equations. Furthermore, several empirical models [31-36],
including those used in the design codes, have been established based on the experimental studies
to predict the compressive strength and the flexural strength of UHPFRC. Additionally, the Chinese
standard JGJ/T 221 [31] only proposes the empirical model to predict the flexural strength of steel
fiber reinforced concrete. In general, these models mainly depend on the diameter, the length, and
the volume fraction of steel fibers and the compressive/flexural strength of UHPFRC without fibers.
However, the experimental data used to establish the empirical formula is limited, and most of them
mainly focus on the volume fraction of steel fibers and does not consider other parameters. Thus,
when new test data is available, the predictive accuracy and reliability of those empirical models have
to be re-evaluated.

In recent years, the artificial intelligence techniques of artificial neural networks (ANNs) have been
widely adopted to solve many engineering complex problems due to its high accuracy and adaptability.
The ANN model has been successfully used to evaluate the early-age autogenous shrinkage of
concrete [37], estimate the compressive strength of FRP-confined (FRP denotes fiber reinforced polymer)
concrete circular columns [38], optimize the mix compositions of steel fiber-reinforced concrete [39],
and so on. However, very few studies have been conducted on the application of ANNSs to predict
the compressive strength and the flexural strength of UHPFRC. A. Jayaranjini presented an ANN
model to predict the compressive strength of concrete containing industrial byproducts at the age of
28, 56, 90, and 120 days [40]. F. Altun et al. estimated the compressive strength of steel fiber reinforced
lightweight concrete by ANN [41]. Moreover, D. Zealakshmi et al. developed an ANN model to
predict the flexural performance of confined hybrid fiber reinforced high strength concrete beam with
varying the volume fraction of steel and polypropylene fibers [42]. As for predicting the effects of
steel fibers on the compressive strength and the flexural strength of UHPFRC, because of the high
adaptability and high accuracy, the ANN models are suitable for evaluating the mechanical behavior
of UHPFRC.

The objective of this study is to develop two ANN models to predict the compressive strength
and the flexural strength of UHPFRC. To achieve this purpose, 162 compressive strength data sets
and 102 flexural strength data sets were collected from published literature to develop models and to
evaluate the effects of steel fibers on the compressive strength and the flexural strength of UHPFRC,
respectively. Finally, the proposed models were compared with several analytical models to evaluate
their reliability and predictability. Furthermore, the ANN models can be utilized to predict the flexural
strength and the compressive strength of UHPC, determine the volume fraction of steel fibers in
UHPEFRC, and optimize the UHPFRC mixtures.
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2. Artificial Neural Network Approach

Artificial neural network (ANN) is a machine learning algorithm that attempted to simulate the
nervous system of human to process experimental data by classifying, clustering, regressing, and
predicting [43]. Multi-layer feed-forward perception network is one of a typical ANN, the topological
structure of this network has an input layer, one or more hidden layers, and an output layer, in which
the numerous neurons are distributed into layers (in Figure 1). In the network, all of the neurons in
each layer are connected to the next layer, and there is no connection among neurons in the same layer.
The conversion between the input and the output layer is accomplished by adjusting the weights and
thresholds among layers. If the problem can be learned, a set of weights will be stable and a good
result will be obtained.

For multi-layer feed forward networks, the back propagation neural network is one of the most
rudimentary and most important neural networks using nonlinear training methods. The training
method of the back propagation network is based on supervised learning, which minimizes the errors
between the calculated and experimental values by adjusting the weights in a small amounts each
time [40,41].

The training processes of a back propagation network have two stages: the forward stage and the
backward stage. The forward stage calculates the network outputs through the given initial connection
weights and the input data. In the process, the input data is passed from the input layer to the hidden
layer. Then, the neurons in the hidden layer calculate a weighted sum of the input data, processes
the sum by using an activation function, and finally pass the activation results to the output layer.
The weighted sum of the input data can be calculated by Equation (1) [43-46].

netj = Zwijxi + b]' 1)

where net; is the weighted sum of the jy; neuron received from the lower layer with n neurons, wj;
is the weight between the i;;, neuron in the lower layer and the j;; neuron in the upper layer, x; is
the output of the iy, neuron in the lower layer, and b; is the bias of the jy, layer in the upper layer.
The activation function in back propagation network generally is Sigmoid function or Linear function.
The Sigmoid function can be expressed in Equation (2).

netj = Zwijxl- + b] 2)
1
Oj = 1 _I_e*i’letj (3)

where 0; is the output of the jy, neuron in the upper layer.

In the backward stage, the errors between the calculated outputs and the experimental results are
calculated, and the errors are passed back to the network to modify the connection weights and bias.
This process is repeated until the errors reach an acceptable level. The adjusted value of the weights
can be summarized in Equation (4):

Awij(n) =1 x 5; X ot 4)

where Aw;; is the ny, value of weights adjustment between the iy, neuron in the lower layer and the jy,

neuron in the upper layer, # is the training rate, 5; is the local gradient of the jy, layer, and o’ is the
output of the input neurons.

In this study, the training method of the ANN models uses the LM (Levenberg-Marquardt)
algorithm, because the LM algorithm combines the advantages of the Quasi-Newton algorithm and
the Steepest Descent Back-propagation, which is suitable for non-linear least square problems and
curve fitting [45].
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Figure 1. System of typical artificial neural networks (ANN) model. A typical ANN model has input,
sum function, log-sigmoid activation function, and output.

3. Database and Models

3.1. Data Collection

To explore the effects of steel fibers on the compressive strength and the flexural strength of
UHPERC, a reliable database was established. 162-group compressive strength experimental data and
102-group flexural strength experimental data were gathered from the literature [9-30] (Tables 1 and 2).

The specimens for compressive strength testing varies in shapes and sizes, due to lack of proper
standards. According to GB/T 31387 [47], cube specimen of 100 x 100 x 100 mm is considered as
standard for homogeneity of data, The test specimens were converted to standard cube compressive
strength by the correlation techniques suggested by researchers [48-51] and the equations are
as follows.

feu,100 = 0.959 feu,70.7 ®)

fe = 0.845fc707 (6)
feutso = 0911, 100 + 3.62 (7)
feu150 = feytin100x200 + 6-41 8
feyting0x100 = 1.07 feylin,100x200 )

where, fe 707 feu100, and foy 150 are the compressive strength of 70.7 mm cube, 100 mm cube, and
150 mm cube, respectively; fcylin,50><100 and fcylin,lOOxZOO are the compressive strength of 50 x 100 mm
cylinder and 100 x 200 mm cylinder, respectively; f! is the axis compressive strength of UHPFRC,
the size effects are not obvious in axis compressive strength.
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Table 1. Experimental Data used for establishing Compressive Strength Artificial neyral network

(ANN) model.
Specimen Steel Fiber
No. Dimension *W/B *Dimm_ * L/mm * AR *VEI% *PCS **CS Reference
1 0.30 0.20 1300  65.00 0.00 9417 9417 9]
2 0.30 0.20 1300 65.00 0.50 9417  96.13 [9]
3 0.30 0.20 13.00  65.00 1.00 9417 98.90 [9]
4 0.30 0.20 13.00  65.00 2.00 9417  103.05 [9]
5 0.25 0.20 1300 65.00 000 10305 12017 [9]
6 0.25 0.20 1300 65.00 050 10305 122.90 [9]
7 , 0.25 0.20 13.00  65.00 100 10305 127.80 9]
8 Cylinder 0.25 0.20 13.00 6500 200 10305 133.19 [9]
D x H 100 mm X

9 o 0.20 0.20 1300 65.00 000 16827 16827 [9]
10 0.20 0.20 13.00  65.00 050 16827 17427 [9]
11 0.20 0.20 13.00  65.00 100 16827  179.28 9]
12 0.20 0.20 1300 65.00 200 16827 18231 [9]
13 0.17 0.20 1300 65.00 000 22098 22098 [9]
14 0.17 0.20 13.00  65.00 050 22098 22583 9]
15 0.17 0.20 13.00  65.00 100 22098 23415 [9]
16 0.17 0.20 1300 65.00 200 22098 24075 [9]
17 0.16 0.16 13.00 8125 250 12659 17259 [10]
18 Cube 0.16 0.16 13.00 8125 200 12659 16331 [10]
19 70.7 mm x 0.16 0.16 1300 8125 000 12659 12659 [10]
20 70.7 mm x 0.16 0.16 6.00 3750 250 12659 17137 [10]
21 70.7 mm 0.16 0.16 6.00 37.50 200 12659  157.28 [10]
2 0.16 0.16 6.00 3750 000 12659 12659 [10]
23 Cube 0.24 0.20 2000 10000 000  111.00 111.00 [11]
24 100mm x 100mm 024 0.20 2000 10000 100  111.00  101.00 [11]
25 « 100 mm 0.24 0.20 2000 10000 200  111.00  112.00 [1]
2 , 0.14 0.50 3000  60.00 000 14172 14172 [12]
27 Cylinder 0.14 0.50 3000 60.00 100 14172 146.99 [12]
28 D> HI00mm x 0.14 0.50 3000 6000 200 14172 15357 [12]
29 200 mm 0.15 0.50 3000 60.00 300 14172 15433 [12]
30 0.18 0.24 135 56.25 000 12992 12992 [13]
31 0.18 0.24 135 56.25 100 12992 13589 [13]
2 0.18 0.24 135 56.25 200 12992 14246 [13]
33 0.18 0.24 135 56.25 300 12992 155.09 [13]
34 Cube 0.18 0.24 135 56.25 000 13388  133.88 [13]
5 omm o e 018 0.24 135 56.25 100 13388  141.06 [13]
36 0 0.18 0.24 135 56.25 200 13388  150.62 [13]
37 0.18 0.24 135 56.25 300 13388 16043 [13]
38 0.18 0.24 135 56.25 000 14238 14238 [13]
39 0.18 0.24 135 56.25 100 14238 15325 [13]
40 0.18 0.24 135 56.25 200 14238 169.01 [13]
4 0.18 0.24 135 56.25 300 14238 17252 [13]
0 0.20 0.20 1300  65.00 0.00 8849 8849 [14]
83 0 %ﬂﬁ y 0.20 0.20 13.00  65.00 0.50 8849 10537 [14]
44 o7 mm 0.20 0.20 1300 65.00 150 8849 11229 [14]
45 D7 mm 0.20 0.20 1300 65.00 2.50 8849 12891 [14]
46 : 0.20 0.20 13.00  65.00 3.50 8849  132.32 [14]
47 0.24 0.25 1300 5200 000 11586 11586 [15]
48 Prism 0.24 0.25 1300 52.00 100 11586 12515 [15]
49  40mm x40mm x 024 0.25 13.00  52.00 150 11586  126.40 [15]
50 160 mm 0.24 0.25 13.00 5200 200 11586 13269 [15]
51 0.24 0.25 1300 5200 250 11586 13732 [15]
5 b 0.23 0.20 1300 65.00 200 14555 16130 [16]
5 ome 023 0.20 13.00  65.00 400 14555 18630 [16]
54 0.23 0.20 1300 65.00 500 14555 20130 [16]
55 > 100 mm 0.23 0.20 1300 65.00 000 14555  145.55 [16]
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Specimen . Steel Fiber X .
No. Dimension W/B * Dimm_* L/mm * AR “ VEI% PCS CS Reference
56 Cube 0.20 0.22 1300  59.09 0.00 7215 7215 [17]
57 70.7 mm x 0.20 0.22 1300  59.09 1.00 7215 12510 [17]
58 70.7 mm x 0.20 0.22 1300 59.09 2.00 7215  147.86 [17]
59 70.7 mm 0.20 0.22 1300  59.09 3.00 7215 160.17 [17]
60 025 0.24 13.00 5417 0.00 108.04  108.04 [18]
61 Prism 0.16 0.24 1300 5417 0.50 108.04 11339 [18]
62 40 mm x 40 mm x 0.16 0.24 13.00 5417 1.00 108.04  117.40 [18]
63 160 mm 0.16 0.24 13.00 5417 1.50 108.04  135.66 [18]
64 0.16 0.24 13.00 5417 2.00 108.04  167.67 [18]
65 Prism 0.17 0.16 9.00 56.25 0.00 14754 14754 [19]
66 oo oo 0.19 0.16 9.00 56.25 1.10 14754 156.62 [19]
67 o 0.19 0.16 9.00 56.25 210 14754 19407 [19]
68 0.19 0.16 9.00 56.25 420 14754 22471 [19]
69 . 0.19 0.22 1300 59.09 0.00 10592  105.92 [20]
70 Cylinder 0.19 0.22 13.00 59.09 1.00 10592  141.86 [20]
71 DxH50mmx 0.19 0.22 1300  59.09 2.00 10592  179.88 [20]
72 100 mm 0.19 0.22 1300  59.09 400 10592 24741 [20]
73 0.20 0.22 1300  59.09 0.00 162.86  162.86 [21]
74 0.20 0.22 1300 59.09 0.50 162.86 18261 [21]
75 0.20 0.22 1300 59.09 1.00 162.86  188.70 [21]
76 0.20 0.22 1300 59.09 1.50 162.86  208.61 [21]
77 0.20 0.22 1300  59.09 2.00 162.86 21558 [21]
78 Prism 0.20 0.22 1300 59.09 2.50 162.86  221.88 [21]
79 40 mm x 40 mm x 0.20 0.22 1300  59.09 3.00 162.86  224.94 [21]
80 160 mm 0.20 0.22 1300  59.09 3.50 162.86  229.25 [21]
81 0.20 0.65 2500 3846 0.00 162.86  162.86 [21]
82 0.20 0.65 2500 3846 1.50 162.86  174.08 [21]
83 0.20 0.65 2500 3846 2.00 162.86  182.15 [21]
84 0.20 0.65 2500 3846 2.50 162.86  190.97 [21]
85 0.20 0.65 2500 3846 3.00 162.86  195.61 [21]
86 0.17 0.22 1400  63.64 0.00 88.68  88.68 [22]
87 Cube 0.17 0.22 1400  63.64 0.50 88.68  102.52 [22]
88  100mm x 100mm  0.17 0.22 1400  63.64 1.00 88.68  127.00 [22]
89 « 100 mm 0.17 0.22 1400  63.64 1.50 8868  130.02 [22]
90 0.17 0.22 1400 63.64 2.00 88.68  142.87 [22]
91 0.17 0.15 1300  86.67 0.00 107.60  107.60 23]
92 Cube 0.17 0.15 1300 86.67 1.00 107.60 12520 [23]
B omm o aoomm 17 0.15 13.00  86.67 2.00 107.60  140.90 23]
94 S 0.17 0.15 13.00  86.67 0.00 10760  131.80 [23]
95 0.17 0.15 1300  86.67 1.00 107.60 17970 [23]
9 0.17 0.15 1300  86.67 2.00 107.60  211.80 [23]
97 0.22 0.23 1300  57.78 0.00 10723 107.23 [24]
98 0.22 0.23 13.00 5778 0.50 10723 119.58 [24]
99 0.22 0.23 1300  57.78 1.00 10723 10478 [24]
100 0.22 0.23 1300  57.78 2.00 10723 105.74 [24]
101 022 0.23 1300  57.78 3.00 10723 104.68 [24]
102 Prisin 0.22 0.23 1300  57.78 0.00 14710 147.10 [24]
03 0 T 0 0.23 1300  57.78 0.50 14710 16157 [24]
104 o0 0.22 0.23 1300  57.78 1.00 14710 163.59 [24]
105 0.22 0.23 13.00 5778 2.00 14710 159.21 [24]
106 0.22 0.23 1300  57.78 3.00 14710 151.94 [24]
107 0.22 0.23 1300  57.78 0.00 16052 160.52 [24]
108 0.22 0.23 1300  57.78 1.00 16052 165.13 [24]
109 0.22 0.23 1300  57.78 2.00 16052  166.03 [24]
110 022 0.23 1300 5778 3.00 16052 167.99 [24]
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Specimen Steel Fiber
No. Dimension *W/B * Dimm__* L/mm * AR * VEI% *PCS ** CS Reference
111 0.16 0.22 1350 6136 000 12580 12580 [25]
112 0.16 0.22 1350 6136 200 12580 14520 [25]
113 0.16 0.22 1350  61.36 300 12580 15030 [25]
114 0.16 0.22 1350  61.36 400 12580  152.20 [25]
115 Prism 0.16 0.22 1350 6136 000 12860 12860 [25]
S SR ST 0.22 1350 6136 200 12860  151.20 [25]
117 o 0.16 0.22 1350 61.36 300 12860 15470 [25]
118 0.16 0.22 1350 6136 400 12860 15680 [25]
119 0.16 0.22 1350 6136 000 13490 13490 [25]
120 0.16 0.22 1350  61.36 200 13490 15690 [25]
121 0.16 0.22 1350  61.36 300 13490 16230 [25]
122 0.16 0.22 1350 6136 400 13490 16550 [25]
123 0.20 0.25 1400  56.00 000 10170 10170 [26]
124 0.20 0.25 1400  56.00 100 10170  113.40 [26]
125 0.20 0.25 1400 56.00 200 10170 12520 [26]
126 0.20 0.25 1400  56.00 350 10170  133.60 [26]
127 0.20 0.25 1400  56.00 500 10170 12030 [26]
128 0.20 0.25 1400  56.00 0.00 9250 9250 [26]
129 0.20 0.25 1400 56.00 1.00 9250 10210 [26]
130 0.20 0.25 1400  56.00 2.00 9250  115.80 [26]
131 Cube 0.20 0.25 1400  56.00 3.50 9250 11230 [26]
B e 0 0.25 1400  56.00 5.00 9250  106.60 [26]
133 S 0.20 0.25 1400  56.00 000 11340 11340 [26]
134 0.20 0.25 1400  56.00 100 11340  121.20 [26]
135 0.20 0.25 1400  56.00 200 11340 13270 [26]
136 0.20 0.25 1400  56.00 350 11340 14430 [26]
137 0.20 0.25 1400  56.00 500 11340  140.50 [26]
138 0.20 0.25 1400  56.00 000 12409  124.90 [26]
139 0.20 0.25 1400 56.00 100 12409  135.60 [26]
140 0.20 0.25 1400 56.00 200 12409 14320 [26]
141 0.20 0.25 1400  56.00 350 12409  160.80 [26]
142 0.20 0.25 1400  56.00 500 12409 16210 [26]
143 0.14 0.22 1300 59.09 000 10872 10872 [27]
144 Cube 0.14 0.22 1300 59.09 050 10872 12136 [27]
145 100mm x 100mm 0.4 0.22 1300  59.09 100 10872 13697 [27]
146 « 100 mm 0.14 0.22 1300 59.09 150 10872 15219 [27]
147 0.14 0.22 1300 59.09 200 10872 16737 [27]
148 0.16 0.19 1500  79.00 000 13504 13505 28]
149 Prism 0.16 0.19 1500  79.00 100 13504 18329 [28]
150 40mm x 40mm x  0.16 0.19 1500  79.00 200 13504  190.67 28]
151 160 mm 0.16 0.19 1500  79.00 300 13504 22585 [28]
152 0.16 0.19 1500  79.00 400 13504  249.68 [28]
153 0.13 0.20 6.00 30.00 000 11513 115.13 [29]
154 0.13 0.20 6.00 30.00 100 11513  134.16 [29]
155 0.13 0.20 6.00 30.00 200 11513 13695 [29]
156 , 0.13 0.20 6.00 30.00 300 11513  144.94 [29]
157 X?—Iy;lg(]dre;m . 0.13 0.20 6.00 30.00 400 11513 15164 [29]
158 0.13 0.55 1800 3273 000 11513 115.13 [29]
159 200 mm 0.13 0.55 1800 3273 100 11513 12122 [29]
160 0.13 0.55 1800 3273 200 11513  117.29 [29]
161 0.13 0.55 1800 3273 300 11513 12122 [29]
162 0.13 0.55 1800 3273 400 11513 11503 [29]

Note: * W/B, D, L, AR, VR, PCS and CS denote the water to binder ratio, diameter, length, aspect ratio, volume
fraction, and compressive strength of concrete without and with steel fibers.



Appl. Sci. 2018, 8, 1120

Table 2. Experimental Data used for establishing Flexural Strength ANN Model.

8 of 21

Specimens Steel Fiber . .
No. Dimension W/B Dimm /mm AR VEI% PFS FS Reference
1 015 040 1300 3250 000 1800 18.00 [30]
2 . 017 040 13.00 3250 020 1800 2750 [30]
3 Prism 0.18 0.40 13.00 32.50 0.20 18.00  22.00 [30]
4 A0mmod0dmmox g 0.40 13.00 3250 000 1900 19.00 [30]
5 160 mm 017 040 1300 3250 020 1900  29.00 [30]
6 018 040 1300 3250 020 1900 2250 [30]
7 030 020 1300 65.00 000 1095 1095 [9]
8 030 020 1300 6500 050 1095 1254 [9]
9 030 020 1300 6500 100 1095 1455 [9]
10 030 020 1300 65.00 200 1095 1623 [9]
11 025 020 1300 65.00 000 1154 1154 [9]
12 025 020 1300 6500 050 1154 1351 [9]
13 Prismn 025 020 1300 65.00 100 1154 1502 [9]
oo P 025 00 1300 65.00 200 1154 1651 [9]
15 T 020 020 13.00 6500 000 1397 1397 9]
16 020 020 1300  65.00 050 1397 1524 [0]
17 020 020 1300 6500 100 1397 17.24 [9]
18 020 020 1300 65.00 200 1397 1840 [9]
19 017 020 1300 65.00 000 1511 1843 [9]
20 017 020 1300 65.00 050 1511 1624 [9]
21 017 020 1300 65.00 100 1511 1811 [9]
2 017 020 1300 65.00 200 1511  19.04 9]
23 Prism 024 020 2000 10000 000 823 823 [11]
24 100mm x 100mm 024 0.0 2000 10000 100 823 7.4 [11]
25 « 500 mm 024 020 2000 10000 200 823  9.34 [11]
26 014 050 3000  60.00 000 922 922 [12]
27 Prisml00mm x 0.4 050 3000  60.00 100 922 1507 [12]
28 100mm x 500mm 0.4  0.50 3000  60.00 200 922 2457 [12]
29 015 050 3000 60.00 300 922 2924 [12]
30 020 020 1300 65.00 000 1013  10.13 [14]
B Lo 020 020 1300 6500 050 1013 1255 [14]
2 iemi0MM X 020 020 1300 65.00 150 1013 1517 [14]
33 020 020 1300 65.00 250 1013 1651 [14]
34 020 020 1300 65.00 350 1013 2066 [14]
35 024 025 1300 5200 000 1102 1102 [15]
36 Prism 024 025 1300 5200 100 1102 12.33 [15]
37 40mm x40mm x 024 025 1300 5200 150 1102 1651 [15]
38 160 mm 024 025 1300 5200 200 1102 19.25 [15]
39 024 025 1300 5200 250 1102 2536 [15]
40 . 020 022 1300 59.09 200 2668 29.90 [16]
41 Prism 0.20 0.22 13.00 59.09 4.00 26.68  50.63 [16]
g A0mmocAdmmox o0 g5 1300 59.09 500 2668 7367 [16]
43 160 mm 020 022 1300  59.09 000 2668 2668 [16]
44 016 024 1300 5417 000 1025 10.25 [18]
45 Prism 016 024 1300 5417 050 1025 1138 [18]
46  40mm x40mm x 016 024 1300 5417 100 1025 2075 [18]
47 160 mm 016 024 1300 5417 150 1025  27.66 [18]
48 016 024 13.00 5417 200 1025 3038 [18]
49 ‘ 017 016 9.00 56.25 000 2260 2260 [19]
50 Prism 0.19 0.16 9.00 56.25 1.10 2260  25.80 [19]
51 40mmxddmmx 549 g 9.00 56.25 210 2260 5140 [19]
52 160 mm 019 0.6 9.00 56.25 420 2260 6030 [19]




Appl. Sci. 2018, 8,1120 90f 21

Table 2. Cont.

Specimens Steel Fiber X .
No. Dimension W/B Dimm /mm AR VEI% PFS ES Reference
53 0.20 0.22 13.00 59.09 0.00 16.60 16.60 [21]
54 0.20 0.22 13.00 59.09 0.50 16.60 17.24 [21]
55 0.20 0.22 13.00 59.09 1.00 16.60 19.60 [21]
56 0.20 0.22 13.00 59.09 1.50 16.60 21.30 [21]
57 Prism 0.20 0.22 13.00 59.09 2.00 16.60 26.10 [21]
58 40 mm x 40 mm x 0.20 0.22 13.00 59.09 2.50 16.60 33.00 [21]
59 160 mm 0.20 0.22 13.00 59.09 3.00 16.60 35.20 [21]
60 0.20 0.22 13.00 59.09 3.50 16.60 36.50 [21]
61 0.20 0.65 13.00 38.46 1.50 16.60 17.60 [21]
62 0.20 0.65 13.00 38.46 2.00 16.60 18.50 [21]
63 0.20 0.65 13.00 38.46 2.50 16.60 19.00 [21]
64 0.20 0.65 13.00 38.46 3.00 16.60 21.00 [21]
65 0.16 0.22 13.50 61.36 0.00 17.02 17.02 [25]
66 0.16 0.22 13.50 61.36 2.00 17.02 20.58 [25]
67 Prism 0.16 0.22 13.50 61.36 3.00 17.02  23.36 [25]
68 100 mm x 100 mm 0.16 0.22 13.50 61.36 4.00 17.02 18.38 [25]
69 400 mm 0.16 0.22 13.50 61.36 0.00 22.11 22.11 [25]
70 0.16 0.22 13.50 61.36 2.00 22.11 24.10 [25]
71 0.16 0.22 13.50 61.36 3.00 22.11 21.63 [25]
72 0.16 0.22 13.50 61.36 4.00 22.11 25.06 [25]
73 0.20 0.25 14.00 56.00 0.00 14.60 14.60 [26]
74 0.20 0.25 14.00 56.00 1.00 14.60 19.40 [26]
75 0.20 0.25 14.00 56.00 2.00 14.60 27.10 [26]
76 0.20 0.25 14.00 56.00 3.50 14.60 35.90 [26]
77 0.20 0.25 14.00 56.00 5.00 14.60 38.60 [26]
78 0.20 0.25 14.00 56.00 0.00 11.50 11.50 [26]
79 0.20 0.25 14.00 56.00 1.00 11.50 17.90 [26]
80 0.20 0.25 14.00 56.00 2.00 11.50 25.20 [26]
81 Prism 0.20 0.25 14.00 56.00 3.50 11.50 30.40 [26]
82 100 mm. x 100 mm 0.20 0.25 14.00 56.00 5.00 11.50 31.70 [26]
83 « 400 mm 0.20 0.25 14.00 56.00 0.00 18.20 18.20 [26]
84 0.20 0.25 14.00 56.00 1.00 18.20 26.30 [26]
85 0.20 0.25 14.00 56.00 2.00 18.20 31.40 [26]
86 0.20 0.25 14.00 56.00 3.50 18.20 33.70 [26]
87 0.20 0.25 14.00 56.00 5.00 18.20 35.60 [26]
88 0.20 0.25 14.00 56.00 0.00 19.40 19.40 [26]
89 0.20 0.25 14.00 56.00 1.00 19.40 24.10 [26]
90 0.20 0.25 14.00 56.00 2.00 19.40 32.80 [26]
91 0.20 0.25 14.00 56.00 3.50 19.40 38.90 [26]
92 0.20 0.25 14.00 56.00 5.00 19.40 40.50 [26]
93 0.14 0.22 13.00 59.09 0.00 10.85 10.85 [27]
94 Prism 0.14 0.22 13.00 59.09 0.50 10.85 14.54 [27]
95 100 mm x 100 mm 0.14 0.22 13.00 59.09 1.00 10.85 17.03 [27]
96 x 400 mm 0.14 0.22 13.00 59.09 1.50 10.85 19.13 [27]
97 0.16 0.22 13.00 59.09 2.00 10.85 21.37 [27]
98 0.16 0.19 15.00 79.00 0.00 21.30 21.30 [28]
99 Prism 0.16 0.19 15.00 79.00 1.00 21.30 25.40 [28]
100 40 mm X 40 mm Xx 0.16 0.19 15.00 79.00 2.00 21.30 32.50 [28]
101 160 mm 0.16 0.19 15.00 79.00 3.00 21.30 41.60 [28]
102 0.16 0.19 15.00 79.00 4.00 21.30 45.20 [28]

Note: * PFS and FS denotes the flexural strength of concrete without and with steel fibers, respectively, which is
tested by 3-point bending test. ** The specimens for flexural strength testing varies in sizes, due to lack of proper
standards. According to GB/T 31387 [46], prism specimen of 100 x 100 x 300 mm is regarded as standard for
homogeneity of data. Researches shows that the size effects have no significant in flexural strength and the convert
coefficient between standard and other size specimens can be taken as 1.0 [48].

Therefore, a total of 166 compressive strength experimental data sets and 102 flexural strength
experimental data sets were obtained to establish the training-testing database. Among the data, 80%
(133 and 80) data sets were selected as training sets, and the remaining data sets (20% of the total data)
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were used for testing, respectively. The testing data were selected randomly to eliminate the effects
of artificial selection on the results. In accordance with existing calculation models [31-38], the water
to binder ratio (W/B), the diameter (D), the length (L), the aspect ratio (AR), and the volume fraction
(VF) of steel fibers, and the compressive strength (PCS) or the flexural strength (PFS) of UHPFRC
without steel fibers were selected as the main input parameters, and the compressive strength (CS) or
flexural strength (FS) of UHPFRC was used as the output variable. Table 3 shows the ranges of the
input and the output variables in the compressive strength database and the flexural strength database
in this study.

Table 3. Ranges of Parameters in Compressive Strength and Flexural Strength Data base.

Compressive Strength Flexural Strength
Variables . . . :
Minimum Maximum Minimum Maximum
W/B 0.13 0.30 — —
D/mm 0.15 0.65 0.16 0.65
L/mm 6 30 9 30
AR 100 30 32.5 100
VF/% 0.00 5.00 0.00 5.00
PCS/MPa 72.15 220.98 8.23 26.88
CS/MPa 72.15 249.68 8.23 73.67

3.2. Proposed ANN Model

The ANN models proposed in this paper have three layers: an input layer, a hidden layer, and an
output layer (in Figure 1). The number of input and output nodes are determined by the parameters of
the research problems. However, because of reliable mathematical formulas for calculating the number
of hidden layer nodes are not available, the initial number of hidden layer nodes should be estimated
by trials. The Log-Sigmoid activation function is used in the hidden layer, and the linear activation
function is used in the output layer.

To develop the ANN model for predicting the flexural strength and the compressive strength
of UHPFRC, a series of trials were carried out in order to determine the number of layers and other
parameters of the ANN models by the minimum mean square error (MSE) of the training data.
The length (L), the diameter (D), the aspect ratio (AR), and the volume fraction (VF) of steel fibers
and the flexural strength (PFS) of UHPFRC without fibers are investigated as inputs, and the flexural
strength (FS) of UHPFRC is as output, meanwhile, the length (L), the diameter (D), the aspect ratio
(AR), and the volume fraction (VF) of steel fibers, the water to binder ratio (W/B) and the compressive
strength (PCS) of UHPFRC without fibers are investigated as inputs, and the compressive strength (CS)
of UHPFRC is as output. The parameters of the ANN models for predicting the flexural strength and
the compressive strength of UHPFRC are shown in Table 4 and the structures of models are shown in
Figure 2.

Table 4. Parameters used in the ANN models.

Parameters Flexural Strength Model Compressive Strength Model
Number of input layer nodes 5 6
Number of hidden layers 1 1
Number of hidden layer nodes 15 20
Number of output layer nodes 1 1
Momentum factor 0.8 0.6
Learning rate 0.3 0.3
Target error 0.00001 0.00001

Learning cycle 10,000 10,000
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(b)
D
_L_—pq
cs AR FS
—
VF
PFS
Input Hidden layer Output Input Hidden layer Output
layer with 20 neurons layer layer with 15 neurons layer

Figure 2. Structure of ANN models, (a) Compressive strength ANN model, (b) Flexural strength
ANN model; W/B (water to binder ratio); PCS (compressive strength of UHPFRC without fibers);
VF (volume fractions); AR (aspect ratio); PFS (flexural strength of UHPFRC without fibers); CS
(compressive strength of UHPFRC); FS (flexural strength of UHPFRC). In (a), the compressive strength
ANN model developed in this study has three layers with six neurons in input layer, twenty neurons
in hidden layer and one neural in output layer; in (b), the compressive strength ANN model that was
developed in this study has three layers with five neurons in input layer, fifteen neurons in hidden
layer, and one neural in output layer. In these two figures, w;; is the weight between the iy, neuron in
the input layer and the jy, neuron in the hidden layer, wj; is the weight between the iy, neuron in the
hidden layer and the jg, neuron in the output layer, and b; is the bias of the jy, layer in the output layer.

3.3. Processing Data

The collected data applied to develop the ANN models should be normalized within the specific
limits to eliminate the non-singular data, improve the precision of results, accelerate the convergence
speed, and reduce the calculation time. The majority of normalization expressions are linear or
logarithmic functions [43]. In this paper, a sample function, as expressed in Equation (10), was adopted
to normalize the data.

Xi,norm =01+0.8x (Xi - Xmin)/(Xmax - Xmin) (10)

where X; ,;5p is normalized data and Xmax and Xy are the maximum and minimum value of data,
respectively. An inverse normalized process is applied to the output layer to get the test data.

4. Results and Discussion

4.1. Results Assessment Criteria

A successfully trained ANN model should give an accurate output prediction, not only for input
data used in the training process, but also for new testing data unfamiliar to the model within the range
of the training database. In this study, six indicators were applied in order to evaluate the performance
of the compressive strength ANN model and five indicators for the flexural strength ANN model,
respectively. These three indicators are root mean square error (RMS), absolute fraction of variance
(R?), and integral absolute error (IAE), which are calculated by Equations (11)—(13), respectively [38,45].
Theoretically, When the RMS and the IAE tend to zero and the R? tends to one, the proposed models
predict the experimental data accurately.

n

RMS = |+ Y (e — ox)? (11)
=
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L=

RZ=1- [ (ti — oi)z/i 021 (12)
i i=1

n

n
TAE = () (o = t)")"/?) /(Y ox) x 100% (13)
k=1 k=1
where 7 is the total number of data; fy is the target value of j;;, data; o is the output value of jy, data;
and, 0 is the average value of output value.

4.2. Results Evaluation

4.2.1. Predicting Model for Compressive Strength

The compressive strength ANN model developed in this study was adopted to evaluating the
effects of steel fibers on the compressive strength of UHPFRC. Comparisons between the predicted
and the experimental values for the training and testing data of the compressive strength ANN model
were shown in Figure 3. It was evident that the predicted values from the training and testing data,
as calculated by the ANN model, were closed to the target values. This phenomenon demonstrated
that the ANN model could successfully learn the nonlinear relationship between the input and output
variables. Therefore, the ANN model possessed potential in estimating the effects of steel fibers on the
compressive strength of UHPFRC.

(@) 250.00 8]_',xpcrl.mrllla1 @ (bc)w 250.007 < Experimental
. Predicted 00 ?0 E O Predicted
E 200.00- N $ g? g | % O. gﬂ 200.00-
=
= B 8L 9 gw ° 81"00 ¢ g
= a &Q} ? s
g 150,00 e 58 8 (',8 %@ : 150.00
@ @l
il N@ggiﬁgg 4
o] B6 48 7] Vo B8P TH :
E 100.00 PR3 8 & E" 100.00-
L ) S
50.007 : : H : ; ; 50.00-
00 2500 S0.00 7500 100.00 125.00 T T T T T
Samples .00 10.00 20.00 30.00 40.00

Samples

Figure 3. Comparison of predicted values from compressive strength ANN model with experimental
results: (a) Training data, (b) Testing data. The figures show that the comparison between the target
values and predicted values of testing and training data from experiments and compressive strength
ANN model, the horizontal axis denotes number of training or testing data, and the vertical axis denotes
the compressive strength. It was obvious that the predicted values accord with the target values.

The input layer weights (ILW), input layer bias (ILB), hidden layer weights (HLW), and hidden
layer bias (HLB) of the compressive strength ANN model are given by Equations (14)—(17), respectively.
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1.5393 —-0.2127 —-0.0696 —1.4878 0.2019  0.9149
0.4685 0.8877 —0.0434 12903 —-1.2371 1.0505
0.9528 —0.4423 0.3086 1.0429 0.6903 —1.7290
1.0738  0.4441 —-1.5045 0.4403  0.5282 —1.1052
—03691 05837 07369 —1.7350 1.1595  0.0825
—0.8850 —1.3132 1.1989 1.2757 —0.6270 —1.0193
0.5121 0.5669 1.4762 1.6028 —0.0071 —0.7542
—1.1525 —-0.3260 —-0.5873 1.3268 —1.2193 —0.4579
0.1460 —0.7018 —0.5530 —0.1367 —0.1684 —2.0212
LW — 0.5865 —0.3549 0.1205  2.1009 09361 —0.8912 (14)
0.8419 —-1.6760 0.4490 03753 —1.4686 1.2215
1.0630 —-1.0899 —-0.5704 -1.4019 11772  0.5639
1.3647 —0.8022 —-0.9620 —0.6018 —0.8654 0.0328
08870 —0.7126 1.1355 —0.8674 1.3638  0.9118
03813 —0.7026 —1.6491 —2.4456 —0.4511 —0.7444
0.3807 —1.1086 —1.0983 1.5312  0.5930  0.8901
0.7989 0.5241 —1.0421 —-0.9141 0.8343 1.2352
—25278 —0.8382 —0.7985 0.4525 —0.3999 0.4810
—1.6123 02212 07569 —0.5385 —0.1606 —1.2508
2.6458 14649 08273  0.0796 —0.1915 —-0.5157

[ —2.2307
—2.1048
—1.7769
—2.1635
—1.0505
0.6502
—1.0184
0.6618
—0.3364
—0.7205

ILB = 0.7212 (15)

0.1701

0.5343

0.7477

0.4370

0.6864

1.7985

—1.9737

—1.7898

2.0694

—0.6653 —0.8688 —0.6540 1.3721 —1.3609

HLW — —1.2337 —-1.1160 01162 —0.5726 0.0664 ... (16)
—0.7506 —0.3342 04221 —-0.2911 -1.5284 ...
0.6934 05566 —1.0555 0.5285 —0.8820

HLB = [—0.6960] (17)

The performance indicators of the compressive strength ANN model for training and testing data,
including RMS, R2, and IAE, were listed in Table 5. In Table 5, the indicators show that the proposed
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model produced good results. Thus, the ANN model studied in this paper had high-precision and it
was suitable for predicting the compressive strength of UHPFRC.

Table 5. The indicators of training and testing of Compressive strength ANN model.

Indicators Training Testing
RMS 0.0876 0.0980
R? 0.9923 0.9901
IAE 0.0005 0.0019

4.2.2. Prediction Model for Flexural Strength

The flexural strength the ANN model that was developed in this study was adopted to predict

the flexural strength of UHPFRC. Comparisons between the predicted and experimental values for
the training and testing data of the ANN model were shown in Figure 4. It was evident that the
predicted values from the training and the testing data, as calculated by the ANN model, were closely
to the target values. This phenomenon demonstrated that the ANN model could successfully learn the
nonlinear relationship between the input and output variables. Therefore, the ANN model possessed
potential to estimate the effects of steel fibers on the flexural strength of UHPFRC.

(@)

Flexural Strength /MPa

$0.00- (b)
[o] Expe_riemntal O Experimental
{ Predicted = 60.00- & Predicted
60.00 E
=
B 40.00
40.00 g
1
=]
W
=
£ 20001
20.00
=
D
=
=2
.00 00+
T T T T T T T T T T T
.00 20.00 40.00 60.00 80.00  100.00 .00 5.00 10.00 15.00 20.00
Samples Samples

Figure 4. Comparison of predicted values from flexural strength ANN model with experimental results:
(a) Training data, (b) Testing data. The figures showed that the comparison between the target values
and predicted values of testing and training data from experiments and flexural strength ANN model,
the horizontal axis denotes number of training or testing data and the vertical axis denotes the flexural
strength. It was obvious that the predicted values accord with the target values.

The input layer weights (ILW), input layer bias (ILB), hidden layer weights (HLW), and hidden

layer bias (HLB) of the flexural strength ANN model are given by Equations (18)-(21), respectively.
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[ —1.6618 —0.1478 —0.2359 0.3162 1.6211
—-09701 0.8838 —0.8155 —1.0247 0.8334
2.0128 —1.2745 —-0.6188 —0.7977 —0.5454
1.5968  0.7523 —0.0592 0.0347 —1.6347
0.1462 —1.3740 1.5325 —0.5921 —2.0480
—1.7972 0.6656  0.6023 1.6868 —0.6638
—0.3699 —0.5348 0.3489 —1.7462 —0.1823
ILW = | —1.0360 —1.0720 —-1.1409 —-1.4832 —0.7843 (18)
0.5253  0.6616 27165 —1.4818 0.0997
1.5109 19836  0.8304 —1.1222 0.6302
17022  —2.0969 —-1.8292 —-1.1385 —0.8313
—1.2578 09580 03124 —0.0636 —1.2783
0.8136  0.4598 —0.4208 2.2028 —1.5568
19101 —-0.0758 0.5641 —0.3651 —2.0535
14933 04085 —0.9748 —0.5404 —1.6774

2.4280
2.6112
1.2367

—1.0888

—0.6916
0.6397
0.4543

ILB= | 0.3855 (19)
0.5287
0.1019

—0.7088

—0.2661
1.0694
1.7951
3.4860

0.0607 0.0399 —1.1485 —-0.4111 —0.6869
HLW = | —0.2635 0.6018 —0.1671 0.4443 —15675 ... (20)
—0.8053 0.5883 —0.4601 0.1114 —1.3230

HLB = [0.0342)] (1)

The performance indicators of the flexural strength ANN model for training and testing data,
including RMS, R2, and IAE, were listed in Table 6. In Table 6, the indicators show that the proposed
model produced good results. Thus, the flexural strength of the ANN model studied in this paper
had high-precision and was suitable for evaluating the effects of steel fibers on the flexural strength
of UHPFRC.

Table 6. The indicators of Training and Testing of Flexural strength ANN model.

Indicators Training Testing
RMS 0.1492 0.0376
R? 0.9777 0.9986

IAE 0.0011 0.0004
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4.3. Comparison with Other Models

4.3.1. Compressive Strength Models

To study the reliability of the proposed model, the results from the compressive strength ANN
model were compared with the values that were calculated by existing models presented in the
literature [34-36]. There are rarely models for predicting the compressive strength of UHPFRC,
thus, the models predicting the compressive strength of steel fiber reinforced concrete (SFRC) are
summarized in Table 7. In these models, the Nataraja model is utilized to predict the compressive
strength (30-50 MPa) of SFRC, the VF ranges from 0.5 to 1.0% and the AR are 55 and 82; the Ezeldin
model is applied to predict the compressive strength (35-85 MPa) of SFRC, the VF ranges from
30 kg/m?3 to 60 kg/m> and the AR are 60, 75, and 100; Yuchen Qu model is applied to predict the
compressive strength (30-50 MPa) of SFRC, the VF ranges from 0 to 3.4%, and the AR are from 50 to 100.

Table 7. Analytical models for predicting the compressive strength of steel fiber reinforced

concrete (SFRC).
Analytical Model Compressive Strength
Nataraja [34] fef = fe +2.1604(RIy)
Ezeldin [35] fef=fet 3.51(RIy)
Yuchen Qu [36] fef = fe +235(RIy)

Where f ¢ and f, are the compressive strength of SFRC and plain concrete, respectively; Rl
and RI, are the reinforcing indexes of steel fibers weight fraction and steel fibers volume fraction,
respectively, Rl is around 3.25 times of RI;, R, = w X l 3 /d Wy is the weight fraction of steel
fibers, I f is the length of steel fibers, and the d ¥ is the diameter of steel fibers.

The analytical models that are described above were applied to calculate the compressive strength
of UHPFRC based on the collected data. Table 8 illustrates the mean value, standard deviation (SD),
and IAE of fyredicted/ fexp erimental fOr the analytical models of previous studies and the compressive
strength ANN model of this study. In Table 9, the mean values for the analytical models were less than
one, ranging from 0.8830 to 0.9454, and the SD and the IAE were within the ranges of 0.1191-0.1268
and 1.03-1.34%, respectively. The mean values from the ANN model in this study were closely to
one, and the SD and the IAE were quite low. Figure 5 indicates that the predicted values obtained
from the analytical models of previous studies might underestimate the experimental results with
high variation. The ranges of predicted results relative to experimental results that were obtained from
the Nataraja model, Ezeldin model, and Yuchen Qu model are —45-15%, —40-30%, and —50-10%,
respectively. Whereas, the range of predicted results relative to experimental results obtained from
ANN model is —15-15%. In the comparison with the analytical models for predicting the compressive
strength of UHPFRC, the ANN model that was proposed in this study could predict the behaviors of
UHPERC very well. Thus, the predictions of the compressive strength ANN model are considerably
accuracy and stability for evaluating the effects of steel fibers on the compressive strength of UHPFRC.

Table 8. The Mean value, standard deviation (SD), and integral absolute error (IAE) of ANN model
and analytical models.

Models Mean SD IAE
ANN model 1.0050 0.0896 0.70%
Nataraja model 0.9152 0.1191 1.13%
Ezeldin model 0.9454 0.1216 1.03%

Yuchen Qu model 0.8830 0.1268 1.34%
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Table 9. Analytical models for predicting the Flexural strength of SFRC.

Analytical Model Flexural Strength
JGJ/T 221 [31] frr=fr(1+1.25V¢l/dy)
Swamy [32] fff = 0‘97ff(1 — Vf) + 3.41Vflf/df
Won-Kya Chai [33] frr=fr+0.103Vyl¢/dg
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Figure 5. Comparison between predicted values and experimental values from three analytical
models (proposed by Nataraja, Ezeldin, and Yuchen Qu) in previous studies and the ANN model
studied in this paper. The 45 degree diagonal line (red line) denotes the predicted values equal to the
experimental values and the black lines denote that the maximum ranges between predicted results
and experimental results.

4.3.2. Flexural Strength Models

To study the reliability of the proposed model, the results from the flexural strength ANN
model were compared with the values that were calculated by existing models presented in the
literature [31-33]. There are rarely models for predicting the flexural strength of UHPFRC, thus, the
models predicting the flexural strength of steel fiber reinforced concrete (SFRC) are summarized in
Table 9.

Where ffr and fr are the flexural strength of steel fiber reinforced concrete and plain concrete,
respectively; Vf is the volume fraction of steel fibers, [ f is the length of steel fibers, and the d f is the
diameter of steel fibers.

The analytical models that are described above were applied to calculate the flexural strength
of UHPFRC based on the collected data. Table 10 illustrates the mean value, standard deviation
(SD), and IAE of fpregicted/ fexp erimentar for the analytical models of previous studies and the flexural
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strength ANN model of this study. In Table 10, the mean values for the analytical models ranged from
0.8429 to 1.1458, and the SD and the IAE were within the ranges of 0.2055-0.4431 and 3.03—4.04%,
respectively. The mean values from the ANN model in this study were fairly close to one, and the SD
and the IAE were quite low. Figure 6 indicates that the predicted values that were obtained from the
analytical models of previous studies might underestimate the experimental results with high variation.
The ranges of predicted results relative to experimental results obtained from JGJ /T 221 model, Swamy
model, and Won-Kya Chai model are —35-180%, —50-30%, and —35-150%, respectively. Whereas,
the range of predicted results relative to experimental results obtained from ANN model is —15-15%.
In the comparison with the analytical models of flexural strength for UHPFRC, the ANN model that
was proposed in this study could predict the flexural behavior of UHPFRC very well. Thus, the
predictions of the flexural strength ANN model are considerably accuracy and stability for evaluating
the effects of steel fibers on the flexural strength of UHPFRC.

Table 10. The Mean value, SD, and IAE of ANN model and analytical models.

Models Mean SD IAE
ANN model 0.9915 0.1509 1.50%
JGJ/T 221 model 1.2807 0.4431 4.04%
Swamy model 0.8429 0.2055 3.03%
Won-Kya Chai model 1.1458 0.3547 3.30%
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Figure 6. Comparison between predicted values and experimental values from three analytical
models (proposed by JGJ/T 221, Swamy, Won-Kya Chai) in previous studies and the ANN model
studied in this paper. The 45 degree diagonal line (red line) denotes the predicted values equal to the
experimental values and the black lines denote that the maximum ranges between predicted results
and experimental results.
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5. Conclusions

In this paper, the ANN method was applied to evaluate the compressive strength and the flexural
strength of UHPFRC. Two reliable database, consisting of 166 compressive strength data sets and
102 flexural strength data sets from previous literature, were established, of which, 133 and 80 samples
were randomly chosen for training and the remainder for testing to establish the compressive strength
ANN model and flexural strength ANN model, respectively. The conclusions were as follows:

(1) The compressive strength ANN model was trained by using the LM algorithm, with twenty
neurons in hidden layers, revealing great prediction performance. The predicted values
were fairly close to the experimental results for both the training and testing data sets in the
proposed model.

(2) The flexural strength ANN model was trained by using the LM algorithm, with twenty neurons
in hidden layers, revealing great prediction performance. The predicted values were fairly close
to the experimental results for both the training and testing data sets in the proposed model.

(3) The results that were obtained from the compressive strength ANN model were compared with
three analytical models proposed in other studies. The comparison indicated that the analytical
models proposed by others may underestimate the compressive strength by approximately 10%
on average, whereas the predicted values from the ANN model in this study agree with the
experimental values.

(4) The results obtained from the flexural strength ANN model were compared with three analytical
models that were proposed in other studies. The comparison indicated that the analytical models
proposed by others may varied from 0.8429 to 1.1458 on average values, whereas the predicted
values from the ANN model in this study agree with the experimental values.

(5) The ANN models that were proposed in this study have high applicability and reliability with
respect to evaluating the effects of steel fibers on the compressive strength and the flexural
strength of UHPFRC.

6. Research Limitations

In this paper, the authors only focus on the effects of some properties of steel fibers on the
compressive strength and the flexural strength of UHPFRC, but these properties of steel fibers have not
been analyzed separately. Besides, other properties of steel fibers, such as fiber brand, fiber strength,
fiber shapes, and so on, are not considered in this paper. This subject will be further studied.
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