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Abstract: Air pollutants such as volatile organic compounds (VOCs), nitrogen oxides (NOx), and
sulfur dioxide (SO2), as well as water pollutants (e.g., heavy metals phosphorous, fluoride, boron,
phenolic compounds, and dyes), are harmful to humans and the environment. Effective control and
reduction of their pollution is therefore an important topic for today’s scientists. Fly ash (FA) is a type
of industrial waste that can cause multiple environmental problems if discharged into the air. On the
other hand, because of its high porosity, large specific surface area, and other unique characteristics,
FA can also be used as a low-cost and high efficient adsorbent for treatment of environment pollutants.
This paper reviews the effects of FA on treatment of the air and water pollution, including to the
current status of global FA utilization, physicochemical properties, principle of adsorption, and
the application direction of FA in the future. Since most researchers only studied the adsorption
capacity of pure FA or zeolite (synthesized from FA), the research on the fabrication of nanofiber
membranes using FA is still lacking, especially the adsorption of VOCs from air and heavy metals
from wastewater using FA nanofiber membranes. Therefore, in this paper, we focus on reviewing and
summarizing that FA can be spun into a fiber membrane via electrospinning with the ability to adsorb
VOCs and heavy metals from air and wastewater. Moreover, we also evaluate the future application
value of FA nanofiber membranes in the field of environmental pollution control. Utilization of
nanofiber technology to fabricate multi-functional FA emerging composite materials to mitigate air
and water pollution has great potential in the future, especially the use of pollutant materials to
control other pollutants.
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1. Introduction

Along with unceasing economic development, people’s living standard enhances, and humans
currently live in a time of rapid development, with daily life constantly becoming more high-tech and
intelligent. However, the continuous improvement of human life will inevitably increase the demand
for energy and other substances, and it will cause some environmental pollution problems, such as
air and water pollutants including nitrogen oxides (NOx) [1], volatile organic compounds (VOCs) [2],
sulfur dioxide (SO2) [3], and heavy metal pollution [4]. Fly ash (FA), a type of industrial waste, is
a coal combustion product composed of particulates [5]. With rapid industrial development, large
demand for electricity has led to hundreds of millions of tons of FA (around 80% of which is fly ash)
being discharged every year worldwide. The annual coal consumption of China in 2015 was about
50% of the global coal consumption [6]. Power generation using coal provides energy for daily life
and industry, but it also produces atmospheric and water pollution, which disrupts ecological cycles.
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FA pollutes the atmosphere and threatens human health if it is discharged directly from power plant
chimneys into the atmosphere without treatment [7,8]. This is a significant contributor to recent air
quality and haze problems in China [9,10].

However, with developing science and technology, FA from power plants is changing from
industrial waste into an industrial raw material [11–13]. FA is a large porous structure exhibiting an
irregular shape, with large specific surface areas and high adsorption activities. The characteristics of
FA mainly depend on the type of coal and the combustion conditions [14,15]. Yao et al. pointed out
that the average diameter of FA in the form of fine particles is less than 20 µm, and their bulk density
and specific surface area are in the range of 0.54–0.86 g/cm3 and 300–500 m2/kg, respectively [15].
In addition, FA contains valuable oxide components, such as SiO2, Al2O3, CaO, MgO, Na2O, and TiO2,
and essential elements, including P, K, Mg, Zn, Fe, Mn, and others [5,7]. Therefore, FA has attracted
the attention of many researchers. FA is a pozzolanic mixture formed by high temperature combustion
of pulverized coal. Its chemical composition is similar to clay, with a good lime binding capacity.
Thus, it is primarily used for production of cement [16], clay bricks [17], hollow blocks [18], aerated
concrete [19], and other building materials [20–22]. It can also be used as an agricultural fertilizer and
soil conditioner due to its low bulk density, high water retention capacity, favorable pH, and other
properties [15,23,24]. Ram et al. [25] studied the effects of FA on rice crop production from 1996 to 2000
and found that FA improved texture, fertility, and crop productivity of mine spoil. Figure 1 shows the
various applications of FA in different fields.
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FA can also be used as a low-cost adsorbent because of its excellent specific surface area, porosity,
particle size [26], and other natural characteristics [27]. Bhattacharyya et al. [28] found that FA could
be used as an adsorbent in a cascade with a plasma reactor to NOx emission from biodiesel engines.
Hower et al. [29] showed that FA carbon captures Hg efficiently. Other researchers have found that,
after simple modification, FA is a good adsorbent of SO2 [30] and VOCs [31]. Furthermore, one-step
fabrication of FA into a fibrous membrane by electrospun technology to adsorb VOCs from air has
been successfully reported by our research group [32,33]. On the other hand, FA can also be combined
with TiO2 [34] or AgNO3 [35] to produce a multifunctional fibrous membrane under electrospinning
for purifying water, such as adsorption of heavy metals (Hg and Pb), removal of dyes (methylene
blue), antibacterial activity, carcinogenic arsenic (As) and toxic organic dyes. To sum up, FA can be
fabricated into a variety of composite materials including zeolites and fiber membranes. They have
excellent adsorption capacity in controlling air and water pollutants, such as VOCs, SOx, NOx, heavy
metals and toxic organic dyes. In addition, the perfect combination of nanotechnology and FA can
reduce environmental pollution while producing low-cost and high-performance nanocomposites.



Appl. Sci. 2018, 8, 1116 3 of 24

2. Global Overview of Fly Ash

2.1. China

China is a populous country with high electricity consumption per capita. Coal is one of the main
energy sources in China, accounting for 70% of the total energy consumption from 1978 to 2009 [36].
China is the largest coal mining and consuming country in the world, and it has surpassed Japan to
become the world’s largest coal-importing country in 2008 [36]. China consumed more than 3 billion
tons of coals in 2010 [37], and most cities in northern China use coal-fired heating in the winter. Figure 2
shows the coal consumption of China compared with other countries and its relationship with Gross
Domestic Product (GDP). China clearly is dependent on energy from coal. However, burning coal
produces FA in the air that causes environmental problems such as acid rain, fog and haze, and heavy
metal pollution [38–40]. Solving the problem of FA pollutant from burning coal would be a great
contribution to environmental and human health.
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Figure 2. Comparison of coal consumption in China with other important coal consuming countries (a);
and relationship between coal consumption and GDP in China (b) (reproduced with permission from [36],
Elsevier, 2018).

Figure 3 shows the production and utilization rate of FA from 2001 to 2015 and the degree of
utilization of FA in different cities of China in 2010. The annual output of FA is huge in China. At the
end of 2015, about 580 million tons of FA were produced, accounting for about 77% of the global
FA production [41]. FA utilization in China increased after 2004 and reached about 70% in 2015
(Figure 3a), which is closely related to the rapid development of China’s economy and technology.
However, different statistical offices have different estimates of the utilization rate of fly ash in China.
For example, Greenpeace [41] estimated the utilization rate to be only 30%. Regardless of the value,
the utilization rate of FA in China is very high. According to statistics, the global average utilization
rate of FA is about 25% [42]. Other researchers reported that the utilization rate of FA is about 67% [43].
The utilization rate of FA in different cities in China is shown in Figure 3b. The utilization rate of fly
ash in eastern China is clearly higher than in western China, due to the large market for FA in the
east [37]. The specific utilization of FA is shown in Table 1. Although there are many ways to utilize
FA in China, few technologically advanced products use FA. If processes involving FA are not strictly
controlled, they can cause secondary pollution [37].

Table 1. Specific utilization of fly ash in China.

Item Specific Utilization

Building materials Cement, fly ash bricks, fly ash ceramics, fly ash blocks, concrete, mortar
Road construction Embankments, pavement bases and pavement

Backfill
Structure backfill, construction backfill, filling in low-lying areas and
wastelands, filling mines, filling coal mining subsidence areas, building
materials for pits, tidal marshes

Agriculture Soil improvement, fertilizer production, land reclamation
Recycling useful raw materials Hollow microspheres, Al2O3, Fe2O3, SiO2, carbon granules
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2.2. India

With the development of economy and the increase of the population, the energy consumption in
India is also increasing year by year. U.S. Energy Information Administration Department reported that
the energy consumption growth in India will far exceed that of China, the United States, and Russia
until the end of 2035 [44]. In terms of generating capacity, Indian power plants rely mainly on fossil
fuels. In general, 76.4% of the power generation is coal-based power plants, while renewable energy
sources only generate 6.62% [44]. Annual production of FA in India is therefore also increasing rapidly.
Production of FA during 2010 and 2011 increased to about 130 million tons, which was about 85.7% higher
than during 1996 to 1997. The FA utilization rate also increased from 9.63% in 1996 to 1997 to 54.53%
in 2010 to 2011, an increase of 466% over a 15 year period [45]. This shows that people are aware of the
value of FA utilization with technological advances and increased incomes. Figure 4 shows uses of FA in
India: 44.76% for cement, 16.72% for reclamation, 9.1% for mine filling, 6.89% for ash dyke raising, 6.86%
for bricks and tiles, 6.51% for road and embankments, 0.74% for concrete, and 7.38% for other uses [15].
The Ministry of Environment, Forests and Climate Change (MoEFCC) expanded the standard of using
FA to make it more used in agriculture. Moreover, to improve the utilization of FA and reduce the cost,
the Ministry of Railways has also made relevant regulation policies, such as providing FA free of charge to
the surrounding users, and establishing the cement industry near coal power plant [46]. Parab et al. [47]
and other researchers [48–52] found that FA of India can improve soil structure and be used to reclaim
dumps and degraded soils by making soil more fertile and increasing the yield of agricultural products.
Given the advantages of FA and the policies in place in India, it is expected that the utilization rate of FA
in India will continue to increase in the near future.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  4 of 24 

 

  
(a) (b) 

Figure 3. Production and utilization of fly ash from 2001 to 2015  (reproduced with permission from 
[41], Elsevier, 2018) (a); and comprehensive utilization rate of fly ash in Chinese cities in 2010 
(reproduced with permission from [37], Elsevier, 2018) (b). 

2.2. India 

With the development of economy and the increase of the population, the energy consumption 
in India is also increasing year by year. U.S. Energy Information Administration Department reported 
that the energy consumption growth in India will far exceed that of China, the United States, and 
Russia until the end of 2035 [44]. In terms of generating capacity, Indian power plants rely mainly on 
fossil fuels. In general, 76.4% of the power generation is coal-based power plants, while renewable 
energy sources only generate 6.62% [44]. Annual production of FA in India is therefore also increasing 
rapidly. Production of FA during 2010 and 2011 increased to about 130 million tons, which was about 
85.7% higher than during 1996 to 1997. The FA utilization rate also increased from 9.63% in 1996 to 
1997 to 54.53% in 2010 to 2011, an increase of 466% over a 15 year period [45]. This shows that people 
are aware of the value of FA utilization with technological advances and increased incomes. Figure 4 
shows uses of FA in India: 44.76% for cement, 16.72% for reclamation, 9.1% for mine filling, 6.89% for 
ash dyke raising, 6.86% for bricks and tiles, 6.51% for road and embankments, 0.74% for concrete, and 
7.38% for other uses [15]. The Ministry of Environment, Forests and Climate Change (MoEFCC) 
expanded the standard of using FA to make it more used in agriculture. Moreover, to improve the 
utilization of FA and reduce the cost, the Ministry of Railways has also made relevant regulation 
policies, such as providing FA free of charge to the surrounding users, and establishing the cement 
industry near coal power plant [46]. Parab et al. [47] and other researchers [48–52] found that FA of 
India can improve soil structure and be used to reclaim dumps and degraded soils by making soil 
more fertile and increasing the yield of agricultural products. Given the advantages of FA and the 
policies in place in India, it is expected that the utilization rate of FA in India will continue to increase 
in the near future. 

 
Figure 4. Utilization of fly ash in India (reproduced with permission from [15], Elsevier, 2018).  Figure 4. Utilization of fly ash in India (reproduced with permission from [15], Elsevier, 2018).



Appl. Sci. 2018, 8, 1116 5 of 24

2.3. USA

The United States has multiple energy sources and high energy efficiency due to their advanced
technology and equipment. Americans use many types of energy, including petroleum, natural gas,
coal, renewable energy, and nuclear electric power. The energy consumption of the United States in
2016 is displayed in Figure 5a. Coal consumption accounted for only 15% of total United States primary
energy consumption. Natural gas and renewable energy accounted for 39% of total energy. Although
renewable energy only accounted for 10%, it includes many sources such as biomass waste, biofuel, and
hydroelectric. It can be inferred that the United States has a strong sense of environmental protection,
which makes it particularly favor use of clean energy based on advanced technology. Because of these
factors, coal-fired power generation in the United States is not substantial. The energy consumption
for power stations in 2013 is shown in Figure 5b. It can be clearly seen that the United States relies
mainly on natural gas to generate electricity, which accounts for about 50.8% of energy production.
Coal accounts for only 21.9% of all power generation. The growth rate of coal consumption in the
United States from 2010 to 2017 is almost zero, as shown in Figure 6. Basu et al. [24] presented that
utilization of FA in the United States is as high as 65%, including many fields, such as mine fill, cement,
wallboard, snow and ice control, agriculture, cosmetics, bowling balls and carpeting. In 2006, the use
of FA in cement kilns was about four times more than that in 2001, about 4 million tons. In addition,
housing projects and rising demand in the ready-mixed concrete market are expected to be major
drivers for future FA utilization in the United States [53].
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2.4. Other Countries

Other countries produce a small amount of FA from coal-fired power. For example, Germany
produces 40 million tons per year, the UK produces 15 million tons, and Australia produces 10 million
tons. The annual production of FA has not reached 10 million tons per year in Canada, France,
Denmark, Italy, or the Netherlands. These countries produce very little FA every year compared to
China and India, but their FA utilization is high. The average utilization rate of Germany, the UK,
Australia, Canada, and France is 76%. The average of Denmark, Italy, and the Netherlands is up to
100%. FA is used in the same ways in these countries as in China, India, and USA [24,47,54].

3. Physical and Chemical Properties of Fly Ash

The physical and chemical properties of FA play an important role in its study, including
its morphology, its chemical properties and its mineralogical properties. FA properties may vary
depending on combustion conditions and collector setup. The average size of FA fine particles is less
than 20 microns, with a bulk density of 0.54–0.86 g/cm3, a surface area of 300–500 m2/kg, and a pH
value of 1.2–12.5, with most ashes tending toward alkalinity [55]. FA can be classified into three main
groups: acidic ash (pH ~4.5), mildly alkaline ash (pH 8–9), and strongly alkaline ash (pH 11–13) [15,56].

3.1. Morphological Characteristics

Figures 7 and 8 show scanning electron microscopy (SEM) images of FA. Figure 7a,b shows
the morphological characteristics of non-carbonated FA, including different sized spherical particles,
cenospheres, and plerospheres. Most of the small particles are well-rounded and solid spheres. Some
large particles are vesicular cenospheres due to the presence of gas bubbles or vapor [57]. Figure 7c,d
shows morphologies after FA carbonization, which has the “cubic-like” structures of calcite (Figure 7c)
and “needle-like” structures of aragonite (Figure 7d). In addition, FA particles are reported to be
globular and irregular with high porosity [58], glassy cenospheres [59,60], spherical-shaped and
flake-like particles [61,62], spherical particles of varying sizes and particles of unburned coal [59,63,64],
and predominantly spherical in shape and consisting of solid spheres, cenospheres, irregular-shaped
debris and porous unburnt carbon [15]. In Figure 8, the FA particles are mainly spherical, consisting
of solid spheres, cenospheres, irregular fragments and porous unburned carbon. The morphological
characteristics of FA depend on particle size, but cenospheres are an exception. FA precipitators are
sized 20–53 µm and 75–106 µm, while cenospheres are 20–45 µm and 106–150 µm [59]. FA particles
smaller than 20 µm consist of mostly smooth spherical particles, while many irregularly shaped grains
are between 75 and 106 µm, and fewer irregularly shaped vesicular grains are more than 150 µm [65].
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3.2. Chemical and Mineralogical Composition

The chemical and mineralogical composition of FA plays an important role in the analysis of
the application and disposal of FA, including its use as a cement replacement material. The chemical
composition of FA can be determined by X-ray fluorescence (XRF) and spectrometry techniques.
Researchers [66–70] have reported that FA is composed of SiO2, Al2O3, Fe2O3, CaO, MgO, Na2O, K2O,
TiO2, P2O5, and small amounts of MnO, BaO, and SO3. The detailed chemical composition of fly ash
is given in Table 2. The chemical composition of FA may differ based on geographical origin and
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combustion conditions. Some heavy metals are also found in FA, such as Fe, Ca, Zn, Cd, Co, Ni, Cu,
Pb and Mn [71], as shown in Table 3. FA can also be divided into high calcium ash (≥10% CaO) and
low calcium ash (<10% CaO), according to the content of CaO. High calcium ash can remove acidic
gases and fix hazardous heavy metals, such as Cd and Cu. CaO is present in FA as free lime and
embedded in glassy spheres. Usually, the CaO content increases with decreasing particle size [57].
Loss on ignition (LOI) has long served as a standard method to measure unburned carbon in FA [72,73].
All types of FA have a certain LOI value indicating their unburnt carbon content (Table 2). Unburnt
carbon in FA powder has properties similar to activated carbon, such as good adsorption capacity.

Table 2. Primary chemical compositions for fly ash produced from different coal types (adapted with
permission from [5], Elsevier, 2017).

Component (wt.%) Bituminous Sub-Bituminous Lignite

SiO2 20–60 40–60 15–45
Al2O3 5–35 20–30 10–25
Fe2O3 10–40 4–10 4–15
CaO 1–12 5–30 15–40
MgO 0–5 1–6 3–10
SO3 0–4 0–2 0–10

Na2O 0–4 0–2 0–6
K2O 0–3 0–4 0–4
LOI a 0–15 0–3 0–5

a LOI, Loss on ignition.

Table 3. The concentration of heavy metals in Yenikoy Toxicity Characteristic Leaching Procedure
(TCLP) leachates (adapted with permission from [71], Elsevier, 2018).

Heavy Metals Unit Fly ash 1 Fly ash 2 Fly ash 3 Fly ash 4 Fly ash 5 Fly ash 6 Fly ash 7

Fe mg/kg 4.2 3.2 4 2.8 4 4.6 3.4
Ca mg/kg 67,040 55,360 58,400 48,320 78,720 85,120 74,880
Zn mg/kg 2 1.6 1.8 1.6 2 2 2
Cd mg/kg 2.8 2.2 2.4 2 2.8 2.8 3
Co mg/kg 3.2 2.8 2.2 2 2 2.6 2.4
Ni mg/kg 4 3.6 4.8 4 3.4 3.4 5.6
Cu mg/kg 2.8 2.6 2.6 2.6 3.2 3.2 3.4
Pb mg/kg 11 10 11 10.4 14.2 15 14.4
Mn mg/kg 1.8 1.6 1.6 1.4 1.6 1.6 1.8

Fly ash 1: >212 µm; Fly ash 2: 150–212 µm; Fly ash 3: 106–150 µm; Fly ash 4: 75–106 µm; Fly ash 5: 53–75 µm; Fly
ash 6: 38–53 µm; Fly ash 7: <38 µm.

Some minerals in FA can be measured by X-ray diffraction (XRD) spectroscopy techniques.
Nyambura et al. [57] analyzed the XRD spectra of non-carbonated and carbonated FA, as shown in
Figure 9. Minerals in non-carbonated FA were found to mainly consist of amorphous, CaO, hematite,
mullite, and quartz (see Figure 9a). The minerals in carbonated FA are mainly composed of amorphous
CaCO3, magnetite, mullite, plagioclase, quartz, bassanite, and anhydrite (see Figure 9a). The major
crystalline phases are mullite and quartz for most ash [74–77]. The CaO in non-carbonated FA is
converted into calcite (main component: CaCO3) when it is carbonized. These results have been
described in SEM spectrum analysis, and the “cubic-like” structures in Figure 7c are calcites [57].
Many other researchers have also confirmed these results [78]. Among the many oxides in FA, recovery
of alumina has attracted interest in recent decades. Therefore, as science and technology progresses,
the recovery and utilization of industrial waste to benefit humans and the environment will help
reduce environmental impacts.
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calcite; A, anhydrite; P, plagioclase; B, bassanite; Mt, magnetite; L, lime; and H, hematite (reproduced
with permission from [57], Elsevier, 2018).

4. Application of Fly Ash for Treatment of Pollutants

4.1. Removing Air Pollutants

As a cheap adsorbent, FA can effectively reduce environmental pollution through simple
processing due to its high porosity, high surface area, appropriate pore size, high porosity, and
other characteristics (e.g., unburned carbon remaining in the fly ash particles and CaO percentage) [79].
Higher surface area and carbon content having high micropore volume results in a higher adsorption
capacity and larger breakthrough time. In addition, the adsorption effect is not only related to the
physicochemical properties of the adsorbent itself but also to the physicochemical properties of the
adsorbate, such as pore structure, surface functional groups [80]. The air pollutants that can be
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adsorbed by FA include volatile organic compounds (VOCs), nitrogen oxides (NOx) and sulfur dioxide
(SO2).

4.1.1. Removal of Volatile Organic Compounds

Volatile organic compounds (VOCs) are one of air pollutants mainly produced by fossil fuel
combustion [81,82], painting [83], refining [84], building [85], and other industries [86,87]. In recent
decades, rapid development of industry has led to a dramatic increase in anthropogenic VOCs. There
are more than 300 chemical structures of VOCs, which can be classified as alkanes, aromatics, esters,
and aldehydes, among others [88,89]. Many VOCs are harmful to humans in even small amounts,
such as benzenes and formaldehyde, which are suspected carcinogens [90]. Xylene and aliphatic
hydrocarbons are mainly produced by the paint industry and are harmful to the environment and
humans [91,92]. In sunlight, photochemical reactions of VOCs and NOx will generate ozone, peroxide,
nitro-aldehydes, and other photochemical smog compounds that cause secondary pollution and affect
people’s eyes and respiratory systems, endangering human health [93–96]. Table 4 shows some VOCs
harmful to human health [97]. Thus, the reduction and control of VOCs from air are important research
topics for air purification.

Table 4. Sources and health effects of major volatile organic compounds (adapted with permission
from [97], Elsevier, 2018).

Volatile Organic
Compounds

Dangerous
Concentration Unit Sources Health Effects

Benzene 500 ppm
Petroleum products;
Incomplete combustion of
liquid fuels; Adhesives;
Lacquers

Carcinogen;
Damage the ozone layer;
Produce photochemical
smog & pose mutagenic
hazards

Toluene 500 ppm
Ethylbenzene 800 ppm

Carbon tetrachloride 200 ppm
Chemical extractants;
Paints; Adhesives;
Polymer syntheses;
Water purification systems

Strong bioaccumulation
potential; Acute toxicity;
Destruction of the ozone;
Cause greenhouse gas effects

Chlorobenzene 1000 ppm
1,1,2-Trichloroethane 100 ppm

1,1,2,2-Tetrachloroethane 100 ppm
Trichloroethylene 1000 ppm

Tetrachloroethylene 150 ppm

Acetone 2500 ppm
Varnishes; Window cleaners;
Paint thinners; Adhesives

Irritation of eyes, nose, &
throat; Central nervous system
depression;
Headache and nauseaEthyl butyl ketone 1000 ppm

Formaldehyde 20 ppm

Decorative & construction;
Materials; Cosmetics &
plastic adhesives; Fabrics
& bio-waste decomposition;
Biomass burning; Degradation
of VOCs in
multiple steps oxidations

Irritation of the throat, eyes,
& skin; Nasal tumors;
Predecessor of ozone

Acetaldehyde 2000 ppm

Methanol 6000 ppm Antiseptics; Preservative;
Cosmetics & personal care
products

Throat irritation & shortness of
breath;
Eye irritation; Central
nervous system depression

Ethyl alcohol 3300 ppm
Isopropyl alcohol 2000 ppm

Seo et al. [98] evaluated adsorption capacity of seven building materials (activated carbon,
gypsum board mixed with a given quantity of activated carbon, board made out of activated
carbon, humidity-controlling porous ceramic material, humidity-controlling silicate calcium, ceramic
tile and ordinary gypsum board) for adsorption of four kinds of VOCs in a small test chamber.
They showed that activated carbon has the highest VOCs adsorption capacity compared with other
building materials. Chmielewski et al. [99] studied the reduction of VOCs from coal combustion
using electron beam treatment and found that the concentration of polycyclic aromatic hydrocarbons
(VOCs) was greatly reduced from 40% to 98%. Other researchers have also found that other materials
effectively reduce VOCs, including cashew nut shell liquid [100,101], sol-gel [102], CuO-CeO2 mixed
oxides [103], Mn-Cu mixed oxide [104], manganese oxides [105], and other metal oxide catalysts and
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noble metals [106,107]. Among them, activated carbon is one of the most common adsorbents because
of its low-cost, high availability, excellent specific surface area, pore size, porosity, chemical functional
group, and other properties [108–110]. Nevertheless, activated carbon adsorption of macromolecules
and hydrophilic VOCs is not good because it has a multi-microporous structure and is a nonpolar
adsorbent [97]. On the other hand, activated carbon fibers adsorb VOCs better than activated carbon
because of their short and straight thin-fiber shaped micropores that increase intraparticle adsorption
kinetics compared to activated carbon [111,112]. In addition, activated carbon fibers also play an
important role during adsorption or desorption, have large adsorption capacity and have high mass
transfer rates [113,114].

Similar to adsorption on activated carbon fibers, FA can be used to fabricate a functional
adsorption fibrous membrane through simple electrospinning [32]. Electrospinning is an efficient
method for fabricating fibers from nanometer to micrometer, with advantages of high efficiency, low
cost, and easy operation [115]. Figure 10 shows a schematic of an electrospun fibrous membrane and
a VOCs adsorption experiment. The spinnable functional material (e.g., fly ash) and polymer (e.g.,
polyacrylonitrile (PAN), polyurethane (PU), and Polylactic acid (PLA)) are mixed with the chemical
solvent (e.g., N,N dimethylformamide (DMF) and methyl ethyl ketone (MEK)) at a certain ratio, then
as-prepared spinning solution is further processed using magnetic stirring and ultrasonication to
obtain a homogenous spinning solution, and finally the composite membrane is collected on the
roller under the action of the electrostatic field. The size and arrangement of electrospun fibers are
affected by viscosity, conductivity and feed rate of spinning solution, distance between nozzle and
collector, supply voltage, etc. [88,116]. Kim et al. [33] successfully synthesized polyurethane fibers
containing different amounts of FA and analyzed their adsorption of chloroform, benzene, toluene,
xylene, and styrene (Figure 11). They found that polyurethane fibers containing 30 wt % FA had
the smallest fiber diameter and the maximum specific surface area, it results in the highest VOCs
adsorption capacity compared to other fibrous membranes. Furthermore, the adsorption of VOCs by
fibrous membranes was in the following order: styrene > xylene > toluene > benzene > chloroform.
This is because adsorption of VOCs not only depends on the surface area and fiber diameter, but also
on other characteristics, including molecular polarity, molecular structure, molecular weight, pore size,
porosity, chemical functional groups electronic and steric effects, π-complexes, adsorption kinetics,
ionization potential, dipole moment, boiling point, temperature and humidity [97,117,118]. In general,
lower ionization potential aromatic compounds are easier to be absorbed by FA fibrous membranes
due to their instability [32]. The adsorbent with high C/O ratio has the high adsorption capacity
for adsorption of nonpolar VOCs [119]. Use of FA fibrous membrane to adsorb VOCs from air is an
innovative research, which provides a new idea for using FA fibrous membrane to filter air pollutants.
As an emerging material, FA fibrous membrane can be modified into a variety of air filters with great
development potential in the field of environmental pollution management [32,33].
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4.1.2. Removal of Nitrogen Oxides

A small amount of NOx can be adsorbed by FA because of the unburned carbon in FA and the
physical characteristics of FA such as high porosity and specific surface area [120]. In fact, this carbon
is a precursor to activated carbon, but it has gone through devolatilization during combustion in
the furnace of a power station [121]. Therefore, the internal carbon can be activated by some simple
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modifications to the FA to increase its adsorption capacity. The general method used is steam activation
and physical separation, but, because the ash content of carbon-enriched FA is too high, using chemical
demineralization to activate carbon is the best method [122]. Rubio et al. [122] studied adsorption of
NOx by unburnt carbon from FA and found that the conversion curves of NO on different FA samples
reached steady state after 10 h. In addition, the enriched-carbon FA showed high NO abatement
capacity due to increased carbon content, surface area, and porosity. Izquierdo et al. [30] synthesized
Cu and Fe exchange type Y zeolites from FA for removal of NOx from flue gas. Rubel et al. [123] also
reported that carbon-rich products from combustion ash could decrease NOx emissions and Hg due to
ion-pair interactions between NO+ and O2

− at the surface of carbon, with subsequent condensation of
NO2 in micropores. In addition, the pore size on the surface of the adsorbent can be changed after
adsorption of a certain amount of Hg, producing the optimum pore size (micropores, <2 nm) for
adsorbed NOx [124]. Rubel et al. [123] also showed that the surface area of adsorbents increased due
to adsorption of NOx, as shown in Figure 12. From the above literature, it can be concluded that
unburned carbon concentration in FA plays a decisive role for reducing NOx from air, and the high
surface area of FA will further improve the NOx adsorption capacity. In addition, the unburned carbon
remaining in the FA particles contribute the main surface area to FA, and the carbon can be activated
to further improve the adsorption performance of the FA [5].
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4.1.3. Removal of Sulfur Dioxide

Coal power generation plays an important role in electricity generation worldwide, accounting
for about 41% of the world’s power generation in 2006. In some countries, this percentage is even
higher, such as Poland (92%), China (79%), and India (69%) [125,126]. The large amount of coal used
causes an increase in SO2 and a small amount of SO3, which pollute the air. SO2 is the main chemical
responsible for formation of acid rain [127–129]. In addition, SO2 and SO3 are harmful gases that
contribute to formation of submicron acid particles that can penetrate human lungs and be absorbed
into the bloodstream [130]. Many researchers have reported that blending FA with Ca(OH)2 or CaO
can produce an adsorbent via a hydration process with a better SO2 reduction than that of hydrated
lime [131–133]. Lee et al. [134] found similar results, as shown in Figure 13. An adsorbent composed
of a mixture of FA/CaO/CaSO4 was successfully synthesized with a higher SO2 adsorption capacity
than that of pure FA, CaSO4, and CaO, due to its larger specific surface area (64.5 m2/g). In addition,
no adsorbents exhibited significant desulfurization activity. SEM images of adsorbent before and after
SO2 adsorption are shown in Figure 14. The high density of pore structures on the surface of the
adsorbent before adsorbing SO2 can be clearly seen. However, the pores disappear after adsorption of
SO2, due to SO2 being converted into sulfate salts (CaSO4) and covering the surface of the adsorbent.
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From the above results, it can be concluded that the ability of FA to capture SO2 is mainly related to its
surface area, pore structures and calcium ion content. Specific surface area is increased after the FA is
hydrated, leading to more calcium ions that can react with SO2 to produce CaSO4 [135,136].Appl. Sci. 2018, 8, x FOR PEER REVIEW  14 of 24 
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Figure 14. Comparison of SEM images before (a) and after (b) SO2 adsorption (adapted with permission
from [134], Elsevier, 2018).

4.2. Removing Water Pollutants

4.2.1. Removal of Heavy Metals

Industrial development is likely to cause water pollution, especially heavy metal pollution,
because of its inherent toxicity, large sources, persistence, non-degradability, and other factors and
can cause serious harm to humans, animals, plants, and the environment [137,138]. Some of the
common sources of anthropogenic heavy metals are displayed in Table 5. The treatment of waste water
containing heavy metal can be divided into three categories: physical methods, chemical methods, and
biological methods [5,139]. Physical methods include adsorption (activated carbon, carbon nanotubes,
kaolinite and montmorillonite, FA, and other low-cost adsorbents), membrane filtration (ultrafiltration,
reverse osmosis, nanofiltration, and electrodialysis), coagulation and flocculation, flotation, and other
methods [5,140]. Chemical methods include chemical precipitation (hydroxide precipitation, sulfide
precipitation, chelating precipitation, and chemical precipitation combined with other methods),
ion-exchange, electrochemical treatment technologies, and others [5,139]. Biological methods include
bio-adsorbents and use of microorganism, as well as others [141,142]. Among them, ion-exchange,
adsorption and membrane filtration are the most commonly used method, and use of modified FA is
an economical and efficient method for treatment of heavy metal wastewater because FA is derived
from industrial waste.
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Table 5. Primary sources of common heavy metals and their effects on human organs (reproduced
with permission from [143], Elsevier, 2017).

Metal Target Organs Primary Sources Clinical Effects

As Pulmonary nervous
system, skin

Industrial dusts,
medicinal uses of
polluted water

Perforation of nasal
septum, respiratory
cancer, peripheral
neuropathy:
dermatomes, skin cancer

Cd Renal, skeletal,
pulmonary

Industrial dust and
fumes and polluted
water and food

Proteinuria, glucosuria,
osteomalacia,
aminoaciduria,
emphysema

Cr Pulmonary Industrial dust and
fumes and polluted food

Ulcer, perforation of
nasal septum, respiratory
cancer

Mn Nervous system Industrial dust and
fumes

Central and peripheral
neuropathies

Pb
Nervous system,
hematopoietic system,
renal

Industrial dust and
fumes and polluted food

Encephalopathy,
peripheral neuropathy,
central nervous
disorders, anemia

Ni Pulmonary, skin Industrial dust, aerosols Cancer, dramatis

Sn Nervous system,
pulmonary

Medicinal uses,
industrial dusts

Central nervous system
disorders, visual defects
and EEG changes,
pneumoconiosis

Hg Nervous system, renal
Industrial dust and
fumes and polluted
water and food

Proteinuria

FA can be used directly or indirectly (synthesized as zeolites) to adsorb heavy metal from polluted
water [144–146]. It is a potential adsorbent that can remove Cu, Pb, Zn, Mn, Cd, Cr, and Ni from
wastewater [147,148]. On the other hand, the pH of the aqueous solution directly affects adsorption
of metal ions due to changes in surface charge of the adsorbent and the degree of ionization [26,144].
FA has a high adsorption capacity for Cu2+ and Zn2+ ions at pH 8. In addition, using FA to adsorb
Cu2+ and Zn2+ ions was faster than that of natural zeolite and peanut husk [149]. The SEM images of
the FA before and after the adsorption of heavy metals are shown in Figure 15. As shown in Figure 15b,
the porosity between the FA particles is significantly reduced. This could be attributed to that the
surface of FA is covered by complexes formed by heavy metal ions [26]. Moreover, FA has a stronger
adsorption capacity for Pb2+ and Cd2+ than other heavy metal ions. Adsorption of Pb2+ and Cd2+

can be attributed to chemical sorption or chemisorption involving valence forces through sharing or
exchange of electrons between the sorbent and sorbate, because their adsorption kinetics followed
second-order reaction kinetics [26,150]. With the development of nanotechnology, FA can be fabricated
into a functional fibrous membrane with a high capacity for adsorbing heavy metals [34]. FA particles
can be perfectly combined with polyurethane fibers via electrospinning, and the FA fibrous membrane
has higher adsorption capacity and faster adsorption rate for adsorption of Pb than that of Hg. This is
attributed to the affinity of formation of PbOH+ being higher than to HgOH+ [34]. The results are
encouraging for the removal of heavy metals using FA fibrous membrane from industrial wastewater.
FA fibrous membrane can be used as a variety of filters with low-cost and high performance. These are
a great help to improve the utilization of FA and reduce the pressure of environmental pollution.
The mechanism of modified FA for treatment of heavy metal wastewater can be summarized as
follows: most FA is alkaline with a high adsorption capacity and high surface area, and negative charge
accumulates at the FA surface in alkaline solutions. FA can be expected to remove some metal ions
from wastewater by electrostatic interactions or precipitation–adsorption. The ion exchange capacity,
high surface area, and unique pore characteristics of modified FA play an important role for treatment
of heavy metal wastewater [15,139].
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4.2.2. Removal of Other Organic/Inorganic Components

On the other hand, FA not only has the capacity to adsorb heavy metals from wastewater,
but also has the ability to adsorb other organic/inorganic pollutants from wastewater, including to
phosphorous, fluoride, boron, phenolic compounds, pesticides, dyes, etc. [5,151]. Phosphorus is an
indispensable element in living organisms. Phosphorus is required for the metabolism of organisms.
Therefore, when the phosphorus chemical industry discharges phosphorus compounds into rivers,
it will lead to the “eutrophication” of water, which will lead to the rapid growth of algae and other
plants, and absorb a large amount of free oxygen in the water, posing a great threat to the ecological
environment. Many researchers [152,153] have studied the use of FA to remove phosphorus from
wastewater. Kandel et al. reported that mixture of sand with 5% of FA by weight can effectively reduce
phosphorus concentration in water [151]. They showed that the FA has a good effect of adsorb or
precipitate phosphate because of the FA contains a certain amount of calcium contents. The removal
efficiency of phosphate is affected by pH conditions and calcium content in FA. In general, alkaline
conditions for high-calcium FA, neutral pH levels for medium-calcium FA have a high ability to remove
phosphate, and the low-calcium FA immobilized little phosphate at all pH values [154]. In addition,
the iron contained in FA can also react with phosphate to cause phosphate to be precipitated. Using FA
to remove phosphorus from wastewater is primarily due to the precipitation of phosphate with Ca2+

ions in solution, and the weak physical interactions between the surface of FA and the phosphate [155].
Xu et al. [156] found that a magnesia-loaded fly ash cenospheres (MLC) is an efficient adsorbent for
adsorption of fluoride. The influence of temperature, initial fluoride concentration, pH of the solution,
contact time, coexisting ions, and fly ash dosage on fluoride removal was respectively investigated.
They indicated that when the pH of the solution is 3, MLC has the maximum adsorption of fluorine,
which is mainly due to highly protonated MLC surface and the gradual increase in the attractive
forces between the positively charged surface and the negatively charged fluoride ions. Polat et al. [70]
investigated the removal of boron from seawater and desalinated seawater on FA. They carried out
several series of column and batch experiments and determined that there is a significant reduction of
boron concentration in seawater after interaction with FA. Under suitable conditions (e.g., pH = 9, L/S
= l/10, reaction time > 6 h), more than 95% of boron was removed by FA. Phenolic compounds are
one of the major pollutants in polluted water. Phenol will volatilize into the atmosphere or infiltrate
underground, polluting the atmosphere, groundwater and crops when untreated phenolic wastewater
is used to irrigate crops. Phenol, cresol and other volatile phenols have attracted wide attention. FA as
a waste material can be used as adsorbents for the removal of phenolic compounds. Ahmaruzzaman
et al. [157] and Kao et al. [158] reported that the high adsorption capacity of FA was related to its
high-surface-area, pore volume, porosity and higher unburned carbon content. Moreover, phenols
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have a strong hydroxyl functional group which interacts with the adsorbent surfaces, resulting in
vertical alignment of the molecule on the surface. Therefore, phenol can be more adsorbed by FA
because of the interaction between adsorbed molecules. Other researchers [159,160] have demonstrated
that FA also has the ability to remove pesticides, various dyes and pigments from wastewater. FA is
low cost and more effective for adsorption of multiple harmful substances to be used widely in
wastewater treatment.

5. Conclusions

Fly ash (FA) can be used as the base material of some adsorbents to treat air and water pollution
due to its high porosity, high surface area, appropriate pore size, CaO percentage and surface
functional groups. It can be fabricated into a variety of composite materials including zeolites and
fiber membranes. They have excellent adsorption capacity in controlling air and water pollutants,
such as VOCs, SOx, NOx, heavy metals and toxic organic dyes. In this paper, the mechanism of FA
for adsorption of air pollutants and water pollutants has been studied, in addition to a comparison of
FA production of different countries, as well as the physical and chemical properties of FA. Detailed
results are as follows:

1. Fly ash can be used in building materials, building works, roads construction, agriculture, and
other fields.

2. To improve the adsorption capacity and efficiency of fly ash on environmental pollutants and
make full use of fly ash, new technologies for the efficient utilization of fly ash should be
developed, such as nanofiber technology.

3. Fly ash can be converted to inexpensive and high performance adsorbents by simple modifications
due to its unique porous properties. For example, is can be made into various kinds of zeolites.

4. Modified fly ash can adsorb VOCs, NOx and SO2 emissions in the air and can also remove
some heavy metals and other organic/inorganic pollutants (e.g., phosphorous, fluoride, boron,
phenolic compounds, pesticides and dyes) from wastewater, due to its high porosity, high surface
area, appropriate pore size, high porosity, alkalinity, negative charge, unburned carbon remaining
in the fly ash particles and other unique characteristics.

5. In addition, the adsorption effect is not only related to the physicochemical properties of the
adsorbent itself but also to the physicochemical properties of the adsorbate, e.g., polar/non-polar,
and functional groups.

6. Pristine fly ash is a powder, which limits its scope of use. Using nanotechnology, it can be
synthesized into low-cost, multi-functional and multi-purpose porous hybrid composites for
adsorption of air pollutants and water pollutants. Fly ash porous hybrid composites as an
emerging material, which has great potential in the future.
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