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Abstract: A method is proposed for the derivation of new classes of staggered compact derivative
and interpolation operators. The algorithm has its roots in an implicit interpolation theory consistent
with compact schemes and reduces to the computation of the required staggered derivatives
and interpolated quantities as a combination of nodal values and collocated compact derivatives.
The new approach is cost-effective, simplifies the imposition of boundary conditions, and has
improved spectral resolution properties, on equal order of accuracy, with respect to classical schemes.
The method is applied to incompressible Navier-Stokes equations through the implementation into
a staggered flow solver with a fractional step procedure, and tested on classical benchmarks.
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1. Introduction

Direct numerical simulation of many complex multi-scale problems, such as turbulence in fluids,
requires the use of adequately refined grids to resolve the structure and the dynamics of the smallest
scales. However, in many situations the limits of available computing power, both in terms of memory
requirements and of integration time, force the choice of the grid to a step size which is at (or even
over) the edge of the acceptable resolution. In these situations the physics is described within a few
computational nodes and the resolution properties of the discretization are a crucial factor. A similar
situation is encountered in Large Eddy Simulation (LES) of turbulence. In this case, the smallest scale
resolved by the discretization is deliberately greater than the smallest physical scales having significant
energy, since the effects of the latter are modelled through the specification of a suitable subgrid model.
In this case, the resolution of the discretization (intended as the number of mesh points required for
a given accuracy at a given wave length) is even more important, since the numerical errors have to be
small as compared to the subgrid energy contribution.

In these and in many other cases, high-order methods are usually recommended, since they
generally provide lower levels of numerical errors for the grids employed. In recent years high order
implicit compact schemes have been extensively used for flow problems, as an alternative to high
order explicit finite-difference schemes and to spectral (or pseudospectral) schemes. After the 1992
seminal paper by S. K. Lele [1], in which a comprehensive and systematic presentation of compact
schemes is reported, they have been extensively used in fluid flow calculations, both in compressible
and incompressible cases. Their success is due to several favourable properties which place them
in between the flexibility typical of explicit finite difference schemes and the resolution properties
of global spectral schemes.

Although the influential paper by Lele is considered as the starting point for the subsequent
huge research activity on compact schemes and on their applications, there is a quite interesting
production on this subject well before the nineties, whose character is, in some sense, in line with the
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approaches taken in this paper. Actually, implicit compact derivatives were already used in numerical
analysis well before the seventies (cfr. for example [2]); however, their main application was limited
to the finite-difference approximation of ordinary differential equations. The fourth-order implicit
Nystrom formula, known as Simpson’s rule, can indeed be viewed as an application of the classical
Padé scheme to a system of first order ordinary differential equations. The first mention in the open
literature of the opportunity of using implicit compact formulee for the numerical approximation
of partial differential equations seems to be due to S. Orzsag and M. Israeli [3], who attribute to
H. O. Kreiss the suggestion. In that paper, they fully recognized the main favorable characteristics
of compact schemes, namely the reduced truncation error (with respect to the analogous explicit
formulee) the reduced width of the stencil, which eases the implementation of boundary conditions,
and the low computational cost. The idea of using implicit formulee for the computation of spatial
derivatives can be possibly traced back to the finite difference formulation of some finite element
methods based on Hermite cubics, which had growing popularity at that time (see the interesting
observation made at p. 59 of ref. [4]).

The authoritative suggestion contained in the review of Orszag and Israeli sparked many studies
on the development and test of compact schemes. Almost simultaneously compact schemes were
applied with success to the wave equation [5], to parabolic equations [6] and to different nonlinear fluid
mechanics problems [7]. In this last paper also the problem of boundary conditions is investigated,
and a series of asymmetric formulz for the boundary is presented. In these early years the focus was not
only on the applications of compact schemes, but also on the development of a theoretical framework
in which new schemes could be derived. In a series of papers, Rubin and co-workers [8-10] firstly
estabilished that many compact schemes can be derived by employing the theory of spline interpolation.
They showed, for example, that the classical Padé fourth-order formula for first derivative can be
obtained by analytically differentiating the cubic spline interpolation, thus recognizing that compact
schemes could be derived through a theory of polynomial interpolation in physical space, which has
to be necessarily implicit. They also obtained formulee for second derivatives and for the case of
nonuniform mesh, and applied their schemes to a variety of fluid flow problems. Ciment et al. [11]
developed the theory of the “Operator Compact Implicit Method”, in which new classes of compact
schemes were derived for parabolic problems by applying the compact technique to the full spatial
convection-diffusion operator. Adam [12], while investigating the problem of boundary condition
closures, proposed also a new method for obtaining a second derivative approximation for interior
points through the so-called “explicit elimination”, in which the second derivative is expressed as
a function of the values and of the computed set of first derivatives, in a way which shares some
similarities with the technique adopted in this paper. Finally, Chang and Shirer [13] introduced
for the first time the formulee for compact interpolation and for compact staggered derivatives
in their applications to geostrophic adjustment problem and to the nonlinear two-dimensional
vortex-advection problem. In the first application, they also compared the various schemes by
computing the discrete dispersion relation of the gravity waves, in an analysis which is practically
equivalent to the Fourier analysis of the modified wavenumber, which is now a standard tool for the
evaluation of the resolution properties of difference schemes.

The polynomial approach for the derivation of compact schemes has been pursued in further
occasions during the past two decades. Chu and Fan [14,15] used the theory of Hermite interpolants,
based on first and second derivative data, to obtain the expressions for their so-called CCD schemes,
in which both first and second derivatives appear as unknowns in the generic scheme. Coppola and
Meola [16] developed a new theory of Local Matched Reconstructions, which generalizes the spline
interpolation theory and is more suited to the systematic generation of all the classical collocated
compact schemes. In that paper the authors employ this theory also to derive new classes of
compact schemes.

In this paper, we present a strategy for the generation of several compact derivatives starting from
the computation of a single set of compact schemes. The idea is motivated by the growing interest in
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the application of compact schemes to Navier-Stokes equations [17-21] and is here applied to a typical
incompressible Navier-Stokes solver with a staggered arrangement of the variables. The convective
term is discretized by using the skew-symmetric form, which is a mandatory choice for energy-stable
simulations in the context of compact-difference schemes. In such a situation, the computation
of convective and diffusive terms in the the momentum equation requires the evaluation of staggered
derivatives and interpolations of velocity components, together with the collocated second derivative.
It will be shown that an efficient and economic way of obtaining all these quantities can be devised,
which is based on the computation of a single set of compact derivatives, i.e., through the solution of
a single tridiagonal system.

The paper is organized as follows. In Section 2 the Hermitian interpolation theory is presented
for fourth-order schemes, and then extended to high-order methods. The characteristics of the novel
schemes are analyzed in Section 3, while in Section 4 the implementation into an incompressible
Navier-Stokes algorithm is discussed. Section 5 presents numerical results. Concluding remarks are
given in Section 6.

2. Problem Formulation and Derivation of New Compact Schemes

In this section, we present the procedure for obtaining the whole set of compact formulze needed
in a typical staggered Navier-Stokes solver, starting from the computation of a single set of collocated
compact derivatives. We will firstly describe how to construct the formulaeby employing the classical
fourth-order Padé scheme as a starting point. The extension to higher-order schemes is straightforward
and will be presented in Section 2.4. Moreover, the procedure will be illustrated with reference to
a uniform mesh; the extension to non-uniform meshes is also in principle straightforward, but will be
not considered here. Hereinafter, when referring to derivatives, we will use the terms collocated and
staggered to denote that the derivatives are computed in the same location, or shifted with respect to
the original data set respectively.

Let us assume that the dependent variable f (x) is discretized on an uniform mesh x; = jh with
j=0...Nandh = L/N. For interior points, the classical fourth-order Padé scheme reads:

1
St 2+ = 0, g

with truncation error —(1/180)k*f". This equation is a typical choice for high-order compact
approximations of the first derivative on a collocated mesh. The set of nodal derivatives is obtained
by solving a tridiagonal linear system, for which standard highly-efficient methods are available.
The computational cost associated to this scheme, for a system of N equations, can be roughly estimated
to be 10N floating point operations. This value is obtained by summing the cost of the computation
of the right-hand side (2N) to that of a standard Thomas solver for the tridiagonal system (8N, [22]).
Being a central method, the Padé scheme is free of numerical dissipation when employed in linear
problems with periodic boundary conditions. In the non-periodic case it requires the specification
of one non-symmetric scheme for each boundary node, in the case in which the dependent variable
naturally falls on the boundary. In a typical staggered Navier-Stokes solver, however, this scheme
cannot be used, since the quantities known at nodes x; have to be either interpolated or differentiated
at the staggered locations x;,1/ = (x; + x;;1)/2. For this problem, the analogous staggered fourth
order compact scheme is given by:

fin—fi
24f; 12+ 12f]+1/2 + 24f]+3/z p ©)

with truncation error —(17/5760)h* f". Please note that in Equations (1) and (2), as well as in all the
other classical compact formulee considered in the following, the convention that the left-hand side
coefficients sum to one is assumed. This convention is alternative to the common choice for which the
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coefficient of the central term ( fj’ or f]-’ 1/2) equals to one; it has been adopted with the aim of obtaining
a fair comparison of the truncation errors among the various compact and explicit formulze considered
in this work. Equation (2) is again a centred non-dissipative scheme. Again, one non-symmetric
scheme is required for each boundary node when the dependent variable falls on the boundary.
The computational cost associated to this scheme can be again estimated to be 10N operations.

In what follows, each scheme will be referred to by a short acronym of the form 71 L1 L,-Dny, where
n1 is an integer equal to the formal order of accuracy of the scheme, L; is either C or S for collocated
and staggered schemes respectively, L, is E, C, or H for explicit, compact, and proposed Hermitian
schemes, and 1, is the order of derivation of the left-hand side of the scheme (0 for interpolation
schemes). For instance, Equations (1) and (2) are referred to by the acronyms 4CC-D1 and 4SC-D1
respectively. Moreover, it will be useful to refer to a graphical representation of the various numerical
schemes that will be introduced; each variable appearing in the finite-difference formula is depicted
with a different symbol, depending on its order of derivation, and in a different position with respect
to the stencil, depending on its role in the scheme. The explicit data f; are depicted as small circles,
while first and successive derivatives are denoted by a corresponding number of inclined dashes.
If a variable is a known quantity in the formula, its position in the graphical representation falls within
the lower part, below the horizontal line representing the mesh. If it is an unknown, it is positioned
above the mesh, in the upper part of the sketch.

In Figure 1, some examples are reported for different classical schemes, both explicit and compact.
The weights appearing in the numerical formula can be also reported in the sketch as associated to
each variable. When such weights are omitted, it is assumed that the drawing represents the (unique)
maximum-order scheme attainable on that stencil. Figure la represents the classical second-order
explicit scheme for the second derivative, while Figure 1b depicts the staggered explicit fourth-order
scheme (4SE-D1) given by:

, o _9fin—fi 1fine—fia
fimnp=g "8 ©)

Also, Equation (1) is represented in Figure 1c, Equation (2) in Figure 1d.

7

() (d)

Figure 1. Graphical representation of explicit and compact schemes. (a) Classical second order explicit
formula for second derivative. (b) Staggered explicit scheme of Equation (3). (c) Padé fourth order
scheme, Equation (1). (d) Fourth order staggered compact derivative, Equation (2).

The procedure proposed in this paper is based on the observation that the Padé scheme here
considered, Equation (1), can be obtained (as virtually all compact schemes) by evaluating the analytical
derivative at the node x; of a local polynomial reconstruction P; for the unknown function f, as it is done
for explicit finite difference formulee. In the case of compact schemes, the implicit character of
the relation between the set of grid nodes derivatives and the nodal values f;, suggests that local
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polynomial representations of the unknown function f relative to adjacent nodes have to be linked
by implicit relations. This representation is in general not unique. It is well known, for instance,
that in the particular case of the Padé scheme, the classical third-degree cubic spline gives a consistent
interpolation, in the sense that its analytical first derivative at node x; returns Equation (1) [10]. In what
follows, we will consider a different set of local interpolations which is consistent with the compact
scheme in Equation (1). This set is given by the class of polynomials P;, of degree four, determined by
imposing the explicit conditions

Pi(xy)=fi k=j—-1,j,j+1, @)

together with the implicit conditions

P]{(xj+1) = j,+1(xj+1)/ ®)
Pi(xj_1) = P{_1(xj-1). (6)

It is easy to verify that the derivative at node x; of the local polynomial expansion P;, which can

be assumed to be defined on the interval {xj,l, x]'+1:| , furnishes again Equation (1). This approach was
exploited in [16] in order to give an alternative derivation of many of the classical compact formulee.
New interpolation procedures were also investigated in that paper, based on the enforcement of more
general implicit conditions. The theory developed therein generalizes the classical spline interpolation,
and led to new classes of compact-type schemes.

In this paper, we adopt a slightly different standpoint, in which the implicit polynomial approach
is not employed as a tool to justify the derivation of Equation (1), or of similar collocated formulee.
Here, the set of local polynomial approximations P; consistent with Equation (1) is used as the basis
for the calculation of all the compact approximations needed in a staggered Navier-Stokes algorithm,
which is typically constituted by staggered interpolations and first derivatives, and by collocated
second derivatives.

The polynomials P; determined by the conditions of Equations (4)—-(6) can be conveniently
obtained by performing an Hermitian interpolation of the grid values f; and of the derivatives
f]-’ , once these last ones have been obtained by solving the tridiagonal system associated to Equation (1).
Of course, this last procedure is equivalent to the one outlined above, in which the explicit and implicit

conditions in Equations (4)—(6) for the whole set of local polynomials (P]-> are enforced. Please

note that in the present procedure we assume that the values f; are assigned, while the compact
scheme in Equation (1) is used to get a larger number of information, which is then exploited to
feed the higher-degree Hermitian interpolation. The computation of the polynomial functions P;

would allow one to have a complete local approximation of the function f in the interval {x]-_l, x]-+1} .
Any information on the interpolated values, or on first or higher-order derivatives, at any point near
x; can be obtained analytically by evaluating P; or its derivatives at the selected point. The evaluation
of P; and of its first derivative at staggered points and the evaluation of P](’ at grid points, leads to
new compact-type formulae, which can be obtained explicitly, once the single compact scheme in
Equation (1) has been computed.

2.1. Schemes for Staggered First Derivative

The numerical formulee for the first derivatives f]’ 1,2, at staggered grid points x;,1 />, based
on the Hermite polynomial Pj, can be directly evaluated as a linear combination of nodal values fi
and nodal first derivatives f; for k = j —1,j,j 4 1. Since the six values fi-1,fj, fi+1 and f].’A, f].’ , ].’ 1s
are related by Equation (1), only five of them can be chosen independently for the construction of the
the fourth-degree polynomial P;. Although any choice of five data among them is equivalent, for what
concerns the evaluation of first derivative at the staggered point x; 1/, the selection of the values



Appl. Sci. 2018, 8, 1066 6 of 24

fj,l, fj, fjH and f].’ , f]’ 41 is particularly convenient, since for this set of data the coefficient of the value
fj—1 results to be zero. This is a consequence of the symmetry of the problem: the first derivative
at xj,1/o of the third-degree polynomial fitting the data f}, f;11 and f]-’ , f]-’ 1 is coincident with the
derivative at the same point of the whole family of fourth-degree polynomials fitting the same data.
This is similar to what happens for a linear interpolation between two points x; and x; 1, which shares
the same first derivative at x; 1/, with the whole family of parabolas that fit the same data.

For uniform meshes, the formula to compute the staggered first derivative based on collocated
data and first derivatives (4SH-D1, H standing for Hermitian) assumes the simple form:

fin—fi it fin
fi12=3 o 1 ?)

The combination of Equations (1) and (7) gives a fourth-order scheme for the staggered first
derivative at interior points with global truncation error —(13/5760)h*f". The standard reference
for comparison for this scheme is the staggered fourth order Padé scheme of Equation (2), which has
a comparable truncation error, while the explicit scheme of Equation (3) has truncation error
(9/1920)k* V. For non-periodic boundary conditions, Equation (1) has to be replaced by suitable
non-symmetric compact formulee at the boundary nodes, while Equation (7) remains unaltered near
boundaries. The computational cost of Equation (7) can be estimated to be 5N. The graphical sketch of
the proposed scheme, which is built upon the successive application of Equations (1) and (7), is given
in Figure 2a.

A quick inspection of Equations (1) and (7) reveals that both express essentially the same relation
between the five values in the sets (]‘le,fJ{, ]{Jrl,]‘j,l,jfjﬂ) and (f]’, ]-’+1/2,f]{+1,fj,fj+1) respectively,
the only difference being the spacing (h in the former, /2 in the latter). Nonetheless, the two schemes
differ in the crucial choice of known and unknown terms in the aforementioned sets, thus the two
corresponding equations are presented separately ([19], cf. Equations (20) and (21)). We take the
opportunity to stress that any finite difference formula can be obtained by requesting that a linear
combination of the desired nodal values—of derivatives of various orders—be proportional to O(h?),
being p the minimum order of accuracy of the scheme. This approach is the most general and easily
allows the computation of the coefficients used in several class of unconventional schemes [14,15,23].

[ ——

Figure 2. Graphical representation of new schemes. (a) Staggered fourth order Hermitian derivative
scheme (Equation (7)). (b) Staggered fourth order interpolation scheme (Equation (9)). (c) Collocated
fourth order second derivative scheme (Equation (11)).

2.2. Schemes for Interpolation

The interpolation scheme can be obtained with a procedure similar to that described for staggered
first derivative. The evaluation of the local Hermitian polynomial P; at node x; 1/, gives a consistent
approximation of the function value, which is based on a fourth-degree polynomial. However, in this
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case the procedure produces a non-symmetric formula, which causes the interpolation scheme to
be dissipative. To avoid this circumstance, one can derive a symmetric scheme either by taking the
arithmetic mean of the two interpolation formule given by the polinomials P; and Pj 1 at node x;,1/2,
or by evaluating the interpolation P; based on the reduced set of values f}, f;.1, f].’ , f].’ 41+ The two
approaches give respectively the schemes 6SH-D0 and 4SH-DO0 (DO stands for interpolation):

fj+1/2:1178(fj,1 +f]~+2)+%(ﬁ+ﬁ+1)+z£(ﬂf_ﬂ!+l), ®

frern = (fitfm) + o (F—f). ©

with global truncation errors (1/1024)h°fV! and (1/384)h*f!V, when Equation (1) is used for first
derivatives at the right hand side of Equations (8) and (9). In the case of interpolation, the third-degree
polynomial based on the data f]-, f]-+1, f]-’ , f].’ " furnishes a fourth-order approximation of the function
f at any point interior to the interval {xj,l,xjﬂ}. This suggests that Equation (9), which gives
a fourth-order formula for f; 1,5, is to be preferred to Equation (8) for consistency to other fourth-order
approximations, and will be the baseline choice in the following. Equation (9) has a computational
cost of 5N operations and its graphical representation is given in Figure 2b. The reference comparison
formula is the classical fourth-order compact interpolation scheme, 45C-D0,

1 3 1 fi+ i1
gfi-at pfin + gl =" (10)

which has truncation error (1/128)h*fIV.

2.3. Schemes for Second Derivative

The evaluation of the second derivative of P] at node X; leads to the 4CH-D2 scheme:

f{/ — ij_l — 2f] +fj+1 _ ]{+1 _fj/_l
J h? 2n

(11)

which was already derived by Adam [12]. The combination of Equations (1) and (11) is again a centred
fourth-order formula with truncation error (1/360)h*f"!. The graphical sketch of the proposed
scheme, which is built upon the successive application of Equations (1) and (11), is given in Figure 2c.
The computation of the explicit scheme in Equation (11) requires 7N operations. The reference
fourth-order scheme for collocated second derivative, 4CC-D2 is:

1, 5 1, _ f]’_1—2fj'|'fj+1
oliit i Tpfimn= 2 , (12)

with truncation error (1/270)h* V1.

2.4. Higher-Order Schemes

Higher-order schemes can be obtained in a similar way as has been done for the fourth-order case
by considering higher-degree polynomial interpolations. The starting set of data has to be larger and,
in order to save accuracy, derivatives employed in the Hermite interpolation have to be calculated
with higher precision. By limiting ourselves to tridiagonal systems, sixth- and eighth-order basic set of
derivatives can be computed through the schemes 6CC-D1 and 8CC-D1 (extensions of the classical
Padé scheme, 4CC-D1),
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Ufimi—fi1 1 firo—fi2

ff 1t ff + f1+1 5 2n 15 an (13)
25 firi—firr 4 fira—fi2 1 fixa—fi-3
14ff 1t f] * 14f1+1 28 2k T3 m 140 6k (14)

with truncation errors (1/2100)h° fVI! and (1/17,640)h8 f1X respectively.

The numerical scheme for the staggered first derivatives f]-’ 1/, can be evaluated as a linear
combination of nodal first derivatives f] for k = j, j + 1 and of nodal values fi withk =j—1,...j+2,
in the case of the sixth-order scheme 6SH-D1, and with k = j —2,...j + 3 in the case of the eighth-order
scheme 8SH-D1. For a uniform mesh these formulee read

99 fix1—fj f] 1 firz—fi1 L

fJWZ 64 h e a3 32 (ff +fi+1)’ (15)
25 fi+1— fj 25 fir2 — fi—1 1 fita—fj—2 75

fiv12 = 6 K 1024 3n 1024 5k 256 (f +f1+1) (16)

The combination of Equations (13) and (15) gives a sixth-order scheme for the staggered first
derivative at interior points, while the combination of Equations (14) and (16) gives an eighth-order
scheme. The references for comparison are the classical sixth- and eighth- order staggered compact
schemes, 65C-D1 and 8SC-D1:

63 fix1 = fj | 17 fix2 — fi

soff /2% 80f1+1/2 * 80ff+3/2 80 80 3n ' 17)
25 29 25 2675 firi—fi 925 fir2— fi1 6l fits — fi—2
168ff*1/2 + 84ff+1/2 + 168ff+3/2 =132 h 2688 3h 8064  5h (18)

The same approach can be used to determine new schemes for interpolants and second derivatives,
which are based on collocated schemes for first derivatives. Specifically, the sixth-order scheme for
Hermitian interpolation, 65H-DO0, has been already presented in Equation (8) whereas the eighth-order
one, 8SH-DO, is given by the following formula,

125fis1+fi | 25 firatfior 1 fisstfi2 75k

ff+1/2:128 2 1024 2 1024 2 T 512 (fJ“ ff)' (19)

Equations (8) and (19) can be combined with Equations (13) and (14), thus producing a sixth- and
a eighth-order scheme for the interpolant at interior points. The corresponding classic schemes for
compact interpolation are 6SC-D0 and 8SC-D0,

3 10 15fin+fi 1 firztfi

T T A T B TR B 20)
5 14 5 175 fintfi 35 fir2t fia 1 firs+fi2
sl gl tylion = gy Y 2 T 2 @Y

Similarly, sixth- and eighth-order schemes 6CH-D2 and 8CH-D2 can be obtained by combining
the Hermitian formulee

_20fim =2+ fi 1fia =2t fia 4fa i

i
fj 9 h? 9 4h? 3 2h ! (22)
o a2t fin =2t fie 1 fis=2itfis Sha Sl oy
] 16 h? 5 4h2 80 h2 2 2h !

with Equations (13) and (14), respectively. The references for comparison are the following classic
formulee (6CC-D2 and 8CC-D2),
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2 1., 2,4 _4f]'+1_2f]'—'_f]'*1 1fis2 —2fi+ fia

USRS /A R h2 5 4h? ’ @)
9 38 ., 9 _§f]‘+172f]'+f]’*1 if]“rzizf]‘Jrff*Z_ 23 fi+3 —2fi+fi-s

56/-1 " 5601 T 56l T 3 h2 140 412 1120 9n2 - @

In Figure 3, the graphical representation of the new schemes of Equation (15),
Equations (8) and (22) are reported.

(@) (b) (c)

Figure 3. Graphical representation of new schemes. (a) Staggered sixth order Hermitian derivative
scheme (Equation (15)). (b) Staggered sixth order interpolation scheme (Equation (8)). (c) Collocated
sixth order second derivative scheme (Equation (22)).

3. Analysis of Novel Schemes

3.1. Structure of the Schemes

The structure of the novel global schemes can be more conveniently illustrated by resorting to
matrix notation. With reference to the staggered derivative in the fourth-order case, the compact
scheme (1), together with appropriate boundary conditions, can be expressed as:

Af = Bf, (26)

where A and B have tridiagonal structure at interior points. The formula for the staggered derivative
based on Hermitian interpolation, Equation (7), can be expressed as:

fo = Hf + Kf/, (27)

where £ is the set of staggered derivatives, and the matrices H and K have two non-zero diagonals in
the fourth-order case, and are typically rectangular for non-periodic problems. The global scheme is
then formally expressed by

! = (H + KA’lB) f. (28)

Similar formulee can be written for the cases of interpolation and collocated second derivative
and for higher-order schemes.

In the particular case in which the problem is discretized on a uniform mesh with periodic
boundary conditions, all the matrices in Equation (28) are square and circulant, and, as such,
they commute. In light of this, the multiplication of Equation (28) by A to the left yields

Afy = (AH + KB) f. (29)

where the matrix AH 4 KB has four non-zero diagonals in the fourth-order case. This analysis
indicates that for periodic problems the scheme for the staggered derivative given by the application
of Equations (1) and (7) is equivalent to the fourth-order staggered compact scheme:
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Sfin=fy , =t (30)

1 2 1
6/t 3t gl =g 3

A similar analysis shows that in the case of interpolation the application of Equations (1) and (9)
is equivalent to the scheme:

1 2 1 23 1
8]‘];1/2 + §fj+1/2 + 6fj+3/2 T (f] + fj+1> + 15 (fpl +fj+2) , (31)
while the application of Equations (1) and (11) is equivalent to the scheme:

1y 24 1, _2fia=2fi+fin 1fia—2fi+fiw
A I I 2

All these schemes are members of the fourth-order families of formulee for staggered first
derivatives and interpolations and for collocated second derivatives. Each scheme is a suboptimal
element of this family, since its coefficients are not optimized with the aim of obtaining the maximum
order attainable by the family. In this sense, the procedure developed in this paper can be seen, in the
periodic case, as a prefactorization, by means of which particular suboptimal schemes can be selected.

It is worth noting that this equivalence is valid only in the periodic case. In non-periodic
applications, the classical formulee require individual closures near boundaries, while the proposed
method needs only single closure schemes for the collocated first derivative, while the Hermitian
formulee based on values and first derivatives, Equations (7), (9) and (11) for the fourth-order case,
remain unaltered. In this last case the new method produces completely new schemes, whose quality
will be discussed in Section 5.

3.2. Resolution Properties

The resolution properties of the proposed schemes in the periodic case can be studied,
as usual, by considering the scaled modified wavenumber w'(w) associated to the numerical
derivative. By assuming periodic boundary conditions, the dependent function f on the mesh can
be Fourier-decomposed into its harmonic components f exp(iwx) where i = /—1, w = 27kh/L
and the wavenumber k assumes the integer values between —N/2 and N/2. The application of
a finite-difference approximation of the first derivative to the generic Fourier component gives
a coefficient iw’ f in place of the exact derivative coefficient iwf, where w' is real for central schemes.
The discrepancy between w’ and w can be considered as a measure of the error in the numerical
derivative. In the same way, the application of a second numerical derivative produces coefficients
—w" f which can be compared to exact second derivative coefficients —w? f, while the application
of an interpolation scheme to a single Fourier mode of frequency w introduces a transfer function T'(w).

In Figure 4a the scaled modified wavenumber of the proposed schemes for first derivative is
compared to the ones relative to classical staggered fourth- and sixth-order tridiagonal compact
schemes and to the collocated fourth-order Padé scheme. The modified wavenumber of the explicit
fourth-order scheme given by Equation (3) is also shown for comparison. The legend for the curve
labels is reported in Table 1. Figure 4a shows that, as compared to classical staggered compact schemes,
obtained by maximizing the order of accuracy at fixed stencil, the proposed schemes have improved
resolution properties, since the modified wavenumber plots stay close to the exact differentiation curve
for a wider range of wavenumbers.
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Figure 4. Modified wavenumbers/transfer functions relative to several compact and Hermitian
schemes, for interpolation, first derivative, and second derivative formulee. Refer to Table 1 for schemes
legend. Solid and dashed lines are relative to novel and classical schemes respectively.

A more quantitative comparison is provided in Table 2 for first derivative schemes, where the
classical resolving efficiency e is reported for different values of the error tolerance e. The efficiency
of the scheme is calculated as the shortest normalized wavenumber satisfying the relation

w —w
w

€. (33)

A further indication of the performances of the scheme is represented by the integral resolving
efficiency e;, here defined as

n k
eI:/O )w'—w‘ dw, (34)

that is often used with k = 2 [24,25]. From Table 2 the good performances of the proposed schemes,
in comparison with their classical counterparts, is confirmed. The performances of the new schemes
are always superior to that of classical staggered schemes when they are measured with the integral
resolving efficiency, while are comparable when measured by considering the shortest wavenumber
satisfying Equation (33). Similar results, not shown here, were found for interpolation and second
derivation formulee as well.
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The modified wavenumber of interpolation and second derivative schemes is presented in
Figure 4b,c respectively. Again, the proposed schemes are compared to classical fourth- and sixth-
order compact schemes and to fourth-order explicit schemes. The good performances with respect to
classical compact schemes of the same order of accuracy is confirmed also in these cases.

Table 1. Legends corresponding to Figure 4, with letters a—e referring to classical schemes (dashed
lines in Figure 4), whereas f-g to novel schemes (solid lines in the same figure). On the side of each
label representing a scheme, the corresponding equation is referenced.

Curve Label Figure 4a Figure 4b Figure 4c

4CE-D1 4SE-DO 4CE-D2
4CC-D1 (1) 4CC-D2 (12)
4SC-D1(2)  4SC-DO (10)

6SC-D1(17) 6SC-DO0 (20) 5CC-D2 (24)
8SC-D1(18) 8SC-DO (21) 7CC-D2 (25)
4SH-D1(7) 4SH-DO(9)  4CH-D2 (11)
6SH-D1 (15) 6SH-DO(8)  6CH-D2 (22)
8SH-D1 (16) 8SH-DO (19) 8CH-D2 (23)

5 - |0 AN T

Table 2. Resolving efficiency e and integral resolving efficiency e; for selected classical and new first
derivation schemes.

e—Equation (33) e;—Equation (34)

Scheme

e=01 &£=001 £=0001 k=1 k=2
4CE-D1 0.444 0.240 0.133 0.540 0.135
4CC-D1 (Equation (1)) 0.594 0.355 0.205 0.668 0.402
45C-D1 (Equation (2)) 0.782 0.432 0.243 0.915 0.965
65C-D1 (Equation (17)) 0.902 0.612 0.421 0.954 0.986
8SC-D1 (Equation (18)) 0.950 0.702 0.530 0.969 0.993
4SH-D1 (Equations (1) and (7)) 1.000 0.468 0.260 0.977 0.998
6SH-D1 (Equations (13) and (15))  1.000 0.601 0.405 0.981 0.998
8SH-D1 (Equations (14) and (16))  1.000 0.678 0.499 0.985 0.999

3.3. Evaluation of the Computational Effort

The computational cost involved in the classical fourth-order compact schemes,
Equations (2), (10) and (12) can be estimated by counting the floating point operations needed
for the evaluation of each formula on a mesh of N points. By assuming that both multiplications and
sums have the same weight, Equations (2) and (10) require 10N operations (2N for the evaluation of the
right-hand side and 8N for a standard tridiagonal solver), while Equation (12) requires 14N operations.
In a procedure in which all the three formulee are needed, as for the case of an incompressible staggered
Navier-Stokes solver, the total cost of the fourth-order set of discretizations can be estimated to be 34N.
If one employs the set of compact approximations given by Equations (7), (9) and (11), together with
the evaluation of the standard fourth-order Padé scheme Equation (1), the total cost can be estimated
to be 27N operations, 10N belonging to the standard Padé scheme Equation (1), 5N for each of the
formulee Equations (7) and (9) and 7N for Equation (11). The operation-count saving is even more
pronounced if one compares the proposed technique with standard formulee, Equations (30)-(32),
or with optimized sixth-order schemes. In both of these last cases the computational effort required for
the computation of staggered first derivatives and interpolations and of collocated second derivatives
can be estimated to be 42N operations, 13N belonging to the schemes Equations (30) and (31) and 16N
belonging to Equation (32).



Appl. Sci. 2018, 8, 1066 13 of 24

4. Application to Incompressible Navier-Stokes Equations

The motion of an incompressible fluid is governed by the Navier-Stokes equations,

aui . ‘aui apP 1 azui .

g = u]a—xj TXl + Rfeiax]ax] + u;, (35)
M 36
aix]' — Yy ( )

where P is the pressure, Re is the Reynolds number, u; are the nondimensional cartesian components
of the velocity field, and 1; the components of any given velocity source/sink field. Discretization
of Equations (35) and (36) follows here a standard semi-discrete approach [26-28], in which the
momentum equation is discretized in space and then advanced in time without taking the pressure term
into account; subsequently, a Poisson equation is solved for the pressure; finally the divergence-free
velocity at the following time level is obtained by correcting with the gradient of pressure.

In Equation (35) the nonlinear convective term is expressed in the so-called advective form.
By employing the continuity Equation (36), it can be equivalently expressed in divergence form
(i-e., as the divergence of the dyadic tensor u;u;), or in skew-symmetric form, in which the arithmetic
mean of divergence and advective forms is considered. This distinction has little importance on the
continuous level, once all the analytical manipulations of standard calculus are assumed to be valid.
However, the direct discretization of each form behave usually differently, since the standard rules
of calculus (even the simplest ones, as the product rule) are in general not guaranteed to be valid for
discrete operators.

The choice of the form in which the convective term is discretized is usually dictated by the
behaviour of the discrete set of equations with respect to induced balance equations. The preservation
of some global quadratic invariants, such as, for instance, kinetic energy integrated over the
whole domain (in the inviscid limit and for periodic or homogeneous flux boundary conditions),
is an important target for stable and reliable simulations at high Reynolds numbers [29]. Different
strategies have been developed in order to fulfill this requirement, some of which are briefly recalled
in the following section. A more in-depth discussion on this and related topics can be found in [30].

4.1. Spatial Discretization

Equations (35) and (36) are firstly discretized on a cartesian spatial mesh, which will be here
assumed to be uniform. As it is very common in the numerical discretization of incompressible
Navier-Stokes equations, the variables are arranged on a staggered layout, in which velocity
components are located on the normal faces of the cells and pressure nodes are positioned at the
centers (Figure 5). The staggered arrangement of the variables has been often preferred to the simpler
collocated or regular arrangements for incompressible flows, because it provides a more robust link
between the discrete variables and avoids the odd-even decoupling of the pressure (also known
as pressure checker-boarding problem) [26]. Moreover, it is well known that discrete operators
based on explicit and symmetric central differences can easily provide primary (i.e., on mass and
momentum) and secondary (e.g., on global kinetic energy) conservation on staggered grids [29]. This is
an important topic, since a spatial discretization which is able to enforce conservation of global kinetic
energy on a discrete level usually permits to avoid the onset of nonlinear instabilities arising from the
accumulation of aliasing errors associated to the discrete evaluation of nonlinear terms [31,32]. The well
known second order Harlow-Welch discretization procedure is the simplest example of staggered
discretization globally conserving kinetic energy. Moreover, it directly discretizes the divergence form of
the convective term, which has several advantages, in terms of local primary conservation properties
and reduced computational cost.

The Harlow-Welch procedure has been extended also to higher order central explicit schemes,
both on uniform and variable meshes [29,33]. When dealing with implicit (central) compact schemes,
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however, it is not clear if the discretization of the nonlinear convective term in Equation (35) can be
performed directly on the divergence form and still retaining the global conservation of kinetic energy
at the discrete level. In this case, the employment of the so-called skew-symmetric splitting is mandatory,
as in the case of regular layouts, since it automatically guarantees conservation of global kinetic energy
on a semi-discrete level [29]. Recently, other approaches have been proposed, in which the beneficial
properties of the skew-symmetric splitting are obtained by properly alternating the more economic
divergence and advective forms inside the stages of a multistage time integration procedure [34-36].
In this paper, we will not consider these more sophisticated techniques, and will instead rely on the
classical skew-symmetric form for the convective term.

One-dimensional derivatives of zeroth, first, and second order are used to discretize spatial
operators involved in the computation of the non-linear convective as well as linear viscous terms
in Equation (35). While the latter does not require any special attention, the former does, due to its
non linearity. On a discrete level, the skew-symmetric form leads a discretization of the i-component
of the convective term in momentum equation Equation (35) of the form (cfr. Equations (87) and (89)

of Morinishi et al. [29]):
Sk i)y T oy,
1<(’ )y g Ol ) (37)

. ] .
2 5x] (Sx]

where 6/ (ij is the finite difference derivative in direction Xj and overbars denote finite difference
iterpolations. In our case both differentiations and interpolations are performed by compact formulze.

» O > O » O > O > O >
o] o] o] o] o]
. cell faces
o] o] o] o] o] 4 U
A v
4 o P
> O > O > O > O > O >
o] o] o] o] o]

Figure 5. Fully staggered layout of variables.

Hence, on a fully staggered arrangement of variables, the two addends in (37) are calculated by
the following combination of interpolations and differentiantions:

a. Divergence form

1 components i and g of velocity are iterpolated in the direction j and i respectively;
2 the product is performed;
3 thestaggered derivative of the product in direction j is computed.

b. Advective form

1 components i and j are stagger-differentiated and iterpolated in the directions j and

i respectively;
2 the product is performed;
3 the product is interpolated along direction j.

As regards both point 1 and 2 it is clear that “pure” products are performed at cell centers, whereas
mixed products at cell corners (cell edges in 3D). The same holds for the advective form. From Figure 5
one sees that this procedure approximates the convective term on the locations of the variables u;.
Please note that the interpolated quantities used to compute the divergence form (step 1) can be reused
in the computation of the advective form (step 2).

The divergence and gradient operators required in the pressure correction process (cf. Section 4.2)
are built based on one-dimensional derivatives as well. Please note that for consistency, the Laplacian
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operator comes as a consequence of the discrete product V2 = V-V. The main and essential
difference with respect to the choice made for the convective and viscous terms is that in this paper
the one-dimensional derivatives are explicit, instead of compact, with the same order of accuracy.
The reason is that compact schemes would have led to a full matrix discretizing the Laplacian operator,
which would have been impractical [37]. Please note that this approach, despite the stencil of explicit
schemes being wider, only requires one non-symmetric boundary scheme (in the case of 4th order of
accuracy) for the application of both divergence and gradient operators.

4.2. Time Integration

Time advancement is accomplished through an explicit Runge-Kutta method. Althoug after
spatial discretization the Navier-Stokes equations reduce to a system of ordinary Differential Algebraic
Equations, the introduction of a projection operator for the velocity field onto the divergence free
subspace, formally conducts to a system of Ordinary Differential Equations, to which standard time
integrators can be applied. In this context, the projection step has to be executed at each stage of the
RK, [38]. By employing a standard notation, the time integration procedure with reference to a generic
s-stage explicit Runge-Kutta method can be expressed as:

uf ="+ AT ;R (w))
AtV-Vp; = V-u! i=1,2,...,s (38)
u; = u; — AtVp;,

ut =u"+ Aty bR (w;)

AtV-Vp'tl = V.u? (39)
u'tl = u* — AtVp'tl,

where u and p are the vectors containing the discretized velocity and pressure fields on the
three-dimensional grid, R(u) is the right hand side of momentum equation, without the pressure
term, once discretized in space and V is the discrete nabla operator, assuming the meaning of discrete
divergence or gradient operator, depending on the context. This classical approach of projecting
each intermediate field in the context of an explicit RK method (cf. Equation (38)) is quite costly
with respect to multisteps methods, since each projection requires the solution of an elliptic equation.
More convenient strategies which make use of an extrapolation of the pseudo-pressure and perform
only the final projection (39) are possible [39,40].

5. Results

In the following sections, two simulations, aimed at evaluating different performances of the new
schemes, are presented. The first test case is an analytical solution of the Navier-Stokes equations,
targeted at assessing the theoretically predicted order of accuracy of the proposed method on
a Navier-Stokes solver. The second one is a double-mixing layer flow, which, although spatially
periodic, presents creation of smaller scales from a smooth initial condition, and is hence targeted at
evaluating the resolving capabilities of the method.

5.1. Burggraf Flow

The aim of the present section is to reliably assess the formal accuracy of the novel compact
method through the simulation of analytically solved benchmarks, whose exact solution allows the
rigorous computation of the error. Among the scarse class of such flows, the Burggraf flow, a special
case of the more general family of lid driven cavity flows, is used in the non-periodic case [41]. Indeed,
it is also known as modified or analytical lid driven cavity [42].
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The simulation is performed in a square domain 2 = {0 < x1,x, < 1} whose lid x; = 1 is
provided with a distribution of tangential velocity uy(x,1) = f(x1) = 16x3(x; — 1)%; furthermore,
the vertical component of the momentum equation is forced by the source term

2

iy = — % [245g+2g//h// +g4h} — 64 [gZ (hh/// _ h/h//) _ hh/(g/g/// _gHZ) , (40)

where the two functions g and / have the following expressions

s =[x, o) =803 1), @)

The exact solution, which is independent of Re, has the following components,

u§(x1,x2) = +8¢'H, (42)
u§*(x1,x2) = —8¢"h. (43)

The simulation is performed at Re = 100 in a computational domain of N x N grid cells for several
resolutions, namely N = 16,32, 64,128, and the stationary state is reached by means of the classic 4th
order Runge-Kutta, starting from the initial condition of fluid at rest. The spatial discretization is
achieved by means of the fourt-order Hermitian method to compute interpolants and first and second
derivatives of velocity based on the velocity components (steps al and b1, and computation of the
viscous term), and by employing classical fourth order compact schemes to compute interpolants and
derivatives of velocity products (steps a3 and b3). It is worth mentioning that the novel Hermitian
approach can be used, in principle, also for steps a3 and b3; this choice, however, would be less
efficient, since it would require another application of the classic collocated scheme on the products
of velocity to feed the Hermitian formulze.

The error of the computed flowfield u with respect to the exact solution u*, evaluated on the grid,
is measured as the infinite norm||u — u®||,, listed in Table 3, and depicted in Figure 6. The contour
plots of horizontal and vertical velocity, as well as of the streamfunction are reported in Figure 7.
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Figure 6. Error on 17 and u, as function of the number of meshpoints per direction. The values are
reported in Table 3 and are relative to the Burggraf flow testcase.
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O

(a) Horizontal velocity component.  (b) Vertical velocity component. (c) Stream function.

Figure 7. Contour plots of horizontal and vertical velocity component as well as stream function for
the Burggraf flow testcase.

The theoretical orders of accuracy are generally well reproduced, in some cases showing weak
supraconvergence, a behaviour that has been already observed in literature [43].

Table 3. Grid refinement study for Burggraf flow for u; and u;. The values are depicted in Figure 6.

uy uz
N Error Order Error Order

16 4167 x 1074 — 4.683 x 1074 —

32 1812x1075 4523 2730 x107° 4.100
64 6333x1077 4.838 1.066 x 10°®  4.677
128 2564 x 1078 4.626 3.752 x 1078  4.829

5.2. Periodic Double Mixing Layer

The second test is a double inviscid mixing layer in a biperiodic domain. This test is challenging
for numerical schemes as it presents steep gradients and formation of smaller scales.

The domain is a square region of size 27t x 27t with periodic boundary conditions. The mesh has
802 cells along each direction, and simulations are time-advanced by means of Runge-Kutta methods.

The Hermitian schemes developed in the paper are tested and compared with classical methods.
The code used for this test is based on a standard pseudo-spectral algorithm, and the finite-difference
schemes are emulated by means of modified wavenumbers, including shift operators and interpolation
transfer functions to cope with the staggered grid. This method is highly efficient for periodic flows
and allows great flexibility in comparing several spatial schemes as it only requires plugging the
modified wavenumber expression of the derivative and interpolation operators (refer to Appendix A
for modified wavenumbers of Hermitian schemes).

The initial flowfield is given by

tanh <1/—7f/2) . y<nm

)
U= (44)
tanh (37‘[/?—3/) , y >,
v = esin(x). (45)

The perturbation on the v-velocity is used to promote the roll-up of the shear layer; as in [35],
€ = 0.05 is used. A single instability mode is activated by choosing é = 77/15.
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Results are shown in Figure 8 in terms of iso-contours of vorticity at ¢t = 8, at well-defined shear
layer roll-up. In all cases, the skew-symmetric formulation of the convective term and a RK4 scheme
for time-advancement are employed, except otherwise indicated. Variables are always arranged
on a staggered grid layout. The reference result here is represented by the energy-conserving
spectrally-accurate computation. The lower-order explicit schemes provide smeared shear layers
and remarkably noisy fields, especially in proximity of the center of the mixing layer, where high
gradients are being generated. Although the flowfield improves with the canonical staggered compact
method, the novel Hermitian scheme provides the smoothest results, thanks to a favorable combination
of high spectral accuracy and discrete energy conservation.

Further insights can be gained by examining the time evolution of kinetic energy, which is
shown in Figure 9. Since the case is inviscid, kinetic energy should be ideally preserved in time and
stay equal to the initial value. Clearly, any scheme in divergence form does not preserve energy,
except the second-order Harlow-Welch method (see left figure). The energy-violating schemes show
large oscillations, which could eventually lead to a blow up. On the other hand, all the methods using
the skew-symmetric form of convection preserve kinetic energy spatially, and the residual diffusive
error is due to the temporal scheme (see right figure, where only methods employing skew-symmetric
form are reported). At first, it is interesting to observe that schemes of increasing spatial accuracy are
associated to an increasingly more dissipative temporal error. This is due to the fact that smaller scales
are being better represented, therefore increasing the enstrophy of the flow (not shown here) and in
turn leading to an enhancement in numerical diffusion by the time-advancement scheme. Indeed,
the novel Hermitian method performs in between the spectral and the canonical compact staggered
schemes. The kinetic energy error can be significantly reduced by coupling the Hermitian scheme with
a pseudo-symplectic Runge-Kutta method [44], for instance the 3p6q scheme (third-order accuracte on
solution and sixth-order accurate on energy conservation), which requires only one additional stage
with respect to the RK4. The resulting velocity field is as accurate as the one provided by the RK4 and
contains negligible kinetic energy dissipation.

(b) 2th ord. explicit (c) 4th ord. explicit
3, . =.°d S T :x T =

= =Y

Figure 8. Cont.
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(d) Harlow-Welch

'S, c)

(e) 4th ord. stag. comp. (div.) (f) 4th ord. stag. comp.

(g) 4th ord. Herm. (div.) (h) 4th ord. Herm.
X\ S \\N X

Figure 8. Iso-contours of vorticity for levels —6, —4,...,+6 at time t = 8 for several schemes and
formulations. In all cases, the skew-symmetric form of the convective term is employed and the
classical RK4 scheme is used for time integration, unless otherwise specified. The first row shows
results for explicit schemes of increasing accuracy on a collocated layout; the second row refers to

classical compact schemes on a staggered layout; the third row to the novel Hermitian schemes on
a staggered layout.
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Figure 9. Time evolution of kinetic energy for all the methods presented in Figure 8, which also serves
as a reference for the labels.

6. Conclusions

In the context of finite difference approximation of Navier-Stokes equations, staggered grid
arrangements are usually employed, because they possess several favourable properties due to a more
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robust coupling between the discrete sets of variables. Moreover, when dealing with high Reynolds
number flows, or in any case in which one is forced to a step size that is at the edge of (or even over)
the acceptable resolution, high order and in particular compact schemes are possibly preferred for
their improved resolving capabilities. Finally, in these circumstances the discrete approximation of the
nonlinear convective term has to be performed by resorting to the so-called skew-symmetric form,
in which two different expressions of the convective term are calculated and then averaged. This choice
is practically unavoidable if one wants to prevent the nonlinear instability due to the accumulation of
aliasing errors.

These considerations show that staggered Navier-Stokes solvers based on compact schemes have
several issues. They must compute different interpolations and staggered first derivatives of the
velocity field, as well as collocated second derivatives for the approximation of the viscous term.
The number of derivatives and interpolations required for each computational node is increased with
respect to standard formulations, and each of these approximations needs different closure schemes
near the boundaries.

In this paper, a novel procedure to efficiently deal with these difficulties is presented. In this
method, a whole set of different compact derivatives and interpolations is computed by explicit
formulee resting on a single preliminarly computed compact approximation. Although a complete
optimization of the application of the general theory to an incompressible Navier-Stokes solver has
not been attempted, it has been shown that the procedure is cost effective and that conducts to novel
compact schemes with interesting resolution properties. Moreover, it simplifies the treatment of
boundary conditions, since only one boundary closure is required for the whole set of approximations.

It is interesting to stress that although this paper has focused on the staggered discretization
of incompressible flows, the proposed new method can be in principle equally applied to compressible
flows. Numerical discretization of compressible flows has been usually carried out by considering
regular or collocated arrangements of the variables. Staggered layouts have been considered as
unnecessary, because of the absence of spurious modes for the pressure and in light of an increased
programming difficulty. However, recently staggered discretizations have been proposed also for
compressible flows, with the aim of alleviating the inherent instability of the simulations at high
Reynolds numbers [17,45]. In such situations compact schemes and skew-symmetric form of nonlinear
convective terms are adopted, and the method here presented applies with slight modifications also to
these situations.

As a final comment, it is worth noting that, besides the application here proposed to staggered
Navier-Stokes solvers, the theory developed is believed to have a remarkable interest by itself.
It estabilishes that sets of compact approximations can be obtained by explicit evaluations based
on the computation of a single compact scheme. By resorting to a theory of implicit interpolation,
it reveals that a single set of compact derivatives can be associated to a wider family of schemes,
whose computation can be efficiently done by explicit formulee. In some sense, the procedure illustrated
can be seen as a prefactorization of a whole family of schemes involving a single basic implict formula
and different explicit evaluations.
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Appendix A. Modified Wavenumber

The first derivative compact schemes from Lele [1] have the following formula:

BfLytaf i+ fl4afly+Bfly = afi+12—hfi—1 +bfi+24_hfi—2 Jrsz'+36—hfi—3‘ (A1)
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(a) Stencil of Equation (A1). (b) Stencil of Equation (A2).
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Figure A1. Schematic representetion of the stencil corresponding to the two approaches.

From the Fourier analysis the modified wavenumber corresponding to Equation (A1) is found
to be
asin(w) + % sin(2w) + § sin(3w)
14 2« cos(w) + 28 cos(2w)

wy, (w) =

First derivative Hermitian schemes allow the computation of the derivative at staggered points,
given the values of the function and the values of its derivative at the meshpoints. They have the
following general formula

oI h i ey St g a2

f1+1/2

which can be rewritten in symmetric form with the substitution i — i — 3,

o Jivie —ficae | fivss2e = fimzza | fivss2 = fios)o
fi ==, R —T T

+Bfi st afi 1t afin+Bfiian (A3)

+

The wavenumber corresponding to Equation (A3) is easily found to be

fw) = sin (C) 4 Lsin (39) 4 Csin (Y Sw |y
wH(w)—h51n(2)+2h51n<2)+3hsm(2)+ Zacos<2>+2ﬁcos(2)]w, (A4)

where the derivatives at the RHS are supposed to be known exactly. Here we suppose, on the contrary,

that only the values of the function (i.e., the values f;) are assigned and that the compact scheme in
Equation (A1) is used to get a larger number of informations which are then used to feed the Hermitian
interpolation subtending Equation (A2). In this case, the wavenumber multiplying the square brackets
in Equation (A4) is wy , the modified wavenumber pertaining the scheme used to obtain the values f;.

wh(w) = %sin (?) + %sm (3w> + 371 sin (5w> + |2 cos (ZZU) + 2B cos (5,;))] wp  (A5)
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Similarly, interpolation Hermitian schemes allow the computation of the interpolant at staggered
points, given the values of the function and the values of its derivative at the meshpoints, through the
following formula

1+ f . + fi_ . + fi f/ 7f{ / +f-/_
fi+1/2=ﬂfl+12 fl+bfl+22f’ L +cfl+32f’ 2 th i g 1+23h i1 (A6)

which can be again rewritten in symmetric form with the substitution i ~— i — 1,

fi = afi+1/2 + fi_1/2 n bfi+3/2 + fi_3/2 n Cfi+5/2 + fi_5,2
L —

2 2 2 +

—a i/+l/2 7fi/71/2 . ﬁfi/JrS/Z 7fi/73/2 (A7)
h 3h '

The transfer function corresponding to Equation (A7) is easily found to be

o (® 30 50 o [0 (2 5 B an (3] w
TH(w)—acos(2>+bcos<2)+Ccos<2)+2 hsm(2>—|—3hsm(2>]w, (A8)

where the derivatives at the RHS are supposed to be known exactly.

If we suppose, as in the previous case, that the compact scheme in Equation (A1) is used to
get a larger number of informations to feed the Hermitian interpolation subtending Equation (A6),
the wavenumber multiplying the square brackets in Equation (A8) is w] , the modified wavenumber
pertaining the scheme used to obtain the values f/.

Ty(w) = acos (Z) + bcos (?) + ccos (?) -2 [Zc sin (320) + %sin (3230)] wp,  (A9)

Finally, for the second derivative we have:

fin=2fitfin  fia—=2fitfio  fis—2fitfis
fl'/, —a 1 hzl 1 + b 1 4h; 1 _"_ c 1 9h12 1 +
! / / !
i1 —fia Sl —fio
sl g pr2 22 (AL0)
Iy b 2c o ﬁ . /
wip(w) = 2a(1—cos(w)) + 5(1 —cos(2w)) + 6(1 —cos(3w)) + 7 sin(w) + o sin(2w) | wy, (Al1)
References

1. Lele, S.K. Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 1992, 103, 16-42.
[CrossRef]

2. Collatz, L. The Numerical Treatment of Differential Equations; Springer: New York, NY, USA, 1966; p. 87538.

3. Orszag, S.A,; Israeli, M. Numerical simulation of viscous incompressible flows. Annu. Rev. Fluid Mech. 1974,
6,281-318. [CrossRef]

4. Strang, G.; Fix, G.J. An Analysis of the Finite Element Method; Prentice-Hall: Englewood Cliffs, NJ, USA, 1973.

5. Ciment, M.; Leventhal, S.H. Higher order compact implicit schemes for the wave equation. Math. Comput.
1975, 29, 985-994. [CrossRef]

6. Adam, Y. A hermitian finite difference method for the solution of parabolic equations. Comput. Math. Appl.
1975, 1, 393-406. [CrossRef]

7. Hirsh, R.S. Higher order accurate difference solutions of fluid mechanics problems by a compact differencing
technique. J. Comput. Phys. 1975, 19, 90-109. [CrossRef]


http://dx.doi.org/10.1016/0021-9991(92)90324-R
http://dx.doi.org/10.1146/annurev.fl.06.010174.001433
http://dx.doi.org/10.1090/S0025-5718-1975-0416049-2
http://dx.doi.org/10.1016/0898-1221(75)90041-3
http://dx.doi.org/10.1016/0021-9991(75)90118-7

Appl. Sci. 2018, 8, 1066 23 of 24

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.
25.
26.
27.
28.

29.

30.

31.

32.

33.

34.

Rubin, S.G.; Graves, R.A. Viscous flow solutions with a cubic spline approximation. Comput. Fluids 1975,
3, 1-36. [CrossRef]

Rubin, S.; Khosla, P. Higher-order numerical solutions using cubic splines. AIAA J. 1976, 14, 851-858.
[CrossRef]

Rubin, S.; Khosla, P. Polynomial interpolation methods for viscous flow calculations. J. Comput. Phys. 1977,
24,217-244. [CrossRef]

Ciment, M.; Leventhal, S.H.; Weinberg, B.C. The operator compact implicit method for parabolic equations.
J. Comput. Phys. 1978, 28, 135-166. [CrossRef]

Adam, Y. Highly accurate compact implicit methods and boundary conditions. . Comput. Phys. 1977,
24, 10-22. [CrossRef]

Chang, H.R.; Shirer, H.N. Compact spatial differencing techniques in numerical modeling. Mon. Weather Rev.
1985, 113, 409-423. [CrossRef]

Chu, P.C; Fan, C. A three-point combined compact difference scheme. J. Comput. Phys. 1998, 140, 370-399.
[CrossRef]

Chu, P.C,; Fan, C. A three-point sixth-order nonuniform combined compact difference scheme. . Comput. Phys.
1999, 148, 663-674. [CrossRef]

Coppola, G.; Meola, C. Generalization of the spline interpolation based on the principle of the compact
schemes. J. Sci. Comput. 2002, 17, 695-706. [CrossRef]

Boersma, B.J. A staggered compact finite difference formulation for the compressible Navier-Stokes equations.
J. Comput. Phys. 2005, 208, 675-690. [CrossRef]

Laizet, S.; Lamballais, E. High-order compact schemes for incompressible flows: A simple and efficient
method with quasi-spectral accuracy. J. Comput. Phys. 2009, 228, 5989-6015. [CrossRef]

Knikker, R. Study of a staggered fourth-order compact scheme for unsteady incompressible viscous flows.
Int. |. Numer. Methods Fluids 2009, 59, 1063-1092. [CrossRef]

Kampanis, N.A.; Ekaterinaris, ].A. A staggered grid, high-order accurate method for the incompressible
Navier-Stokes equations. J. Comput. Phys. 2006, 215, 589-613. [CrossRef]

Tyliszczak, A. A high-order compact difference algorithm for half-staggered grids for laminar and turbulent
incompressible flows. J. Comput. Phys. 2014, 276, 438-467. [CrossRef]

Quarteroni, A.; Sacco, R.; Saleri, F. Numerical Mathematics; Springer: Berlin, Germany, 2007.

Liu, X.; Zhang, S.; Zhang, H.; Shu, C.W. A new class of central compact schemes with spectral-like resolution
I: Linear schemes. J. Comput. Phys. 2013, 248, 235-256. [CrossRef]

Kim, J.W,; Lee, D.J. Optimized compact finite difference schemes with maximum resolution. AIAA J. 1996,
34, 887-893. [CrossRef]

Tam, C.K.; Webb, ].C. Dispersion-relation-preserving finite difference schemes for computational acoustics.
J. Comput. Phys. 1993, 107, 262-281. [CrossRef]

Ferziger, ] H.; Peric, M. Computational Methods for Fluid Dynamics; Springer: Berlin, Germany, 2012.

Perot, ].B. An analysis of the fractional step method. |. Comput. Phys. 1993, 108, 51-58. [CrossRef]

Perot, ].B. Comments on the fractional step method. J. Comput. Phys. 1995, 121, 190-191. [CrossRef]
Morinishi, Y.; Lund, T.S.; Vasilyev, O.V.; Moin, P. Fully conservative higher order finite difference schemes
for incompressible flow. . Comput. Phys. 1998, 143, 90-124. [CrossRef]

Coppola, G.; Capuano, F; de Luca, L. Energy preserving discretizations of the Navier-Stokes equations.
Classical and modern approaches. In Proceedings of the 23rd Conference of the Italian Association
of Theoretical and Applied Mechanics (AIMETA 2017), Salerno, Italy, 4-7 September 2017; Volume 5,
pp. 2284-2310.

Phillips, N.A. An example of nonlinear computational instability. In The Atmosphere and the Sea in Motion;
Rockefeller Institute, Oxford University Press: Oxford, UK, 1959; pp. 501-504.

Arakawa, A. Computational design for long-term numerical integration of the equations of fluid motion:
Two-dimensional incompressible flow. Part I. J. Comput. Phys. 1966, 1, 119-143. [CrossRef]

Verstappen, R.W.C.P.,; Veldman, A .E.P. Symmetry—preserving discretization of turbulent flow. J. Comput. Phys.
2003, 187, 343-368. [CrossRef]

Capuano, F,; Coppola, G.; de Luca, L. An efficient time advancing strategy for energy-preserving simulations.
J. Comput. Phys. 2015, 295, 209-229. [CrossRef]


http://dx.doi.org/10.1016/0045-7930(75)90006-7
http://dx.doi.org/10.2514/3.61427
http://dx.doi.org/10.1016/0021-9991(77)90036-5
http://dx.doi.org/10.1016/0021-9991(78)90031-1
http://dx.doi.org/10.1016/0021-9991(77)90106-1
http://dx.doi.org/10.1175/1520-0493(1985)113<0409:CSDTIN>2.0.CO;2
http://dx.doi.org/10.1006/jcph.1998.5899
http://dx.doi.org/10.1006/jcph.1998.6141
http://dx.doi.org/10.1023/A:1015143218582
http://dx.doi.org/10.1016/j.jcp.2005.03.004
http://dx.doi.org/10.1016/j.jcp.2009.05.010
http://dx.doi.org/10.1002/fld.1854
http://dx.doi.org/10.1016/j.jcp.2005.11.014
http://dx.doi.org/10.1016/j.jcp.2014.07.043
http://dx.doi.org/10.1016/j.jcp.2013.04.014
http://dx.doi.org/10.2514/3.13164
http://dx.doi.org/10.1006/jcph.1993.1142
http://dx.doi.org/10.1006/jcph.1993.1162
http://dx.doi.org/10.1006/jcph.1995.1189
http://dx.doi.org/10.1006/jcph.1998.5962
http://dx.doi.org/10.1016/0021-9991(66)90015-5
http://dx.doi.org/10.1016/S0021-9991(03)00126-8
http://dx.doi.org/10.1016/j.jcp.2015.03.070

Appl. Sci. 2018, 8, 1066 24 of 24

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Capuano, E; Coppola, G.; Balarac, G.; de Luca, L. Energy preserving turbulent simulations at a reduced
computational cost. J. Comput. Phys. 2015, 298, 480-494. [CrossRef]

Capuano, F; Coppola, G.; de Luca, L. Low-Cost Energy-Preserving RK Schemes for Turbulent Simulations;
Peinke, J., Kampers, G., Oberlack, M., Wactawczyk, M., Talamelli, A., Eds.; Progress in Turbulence VI.
Springer Proceedings in Physics; Springer: Cham, Switzerland, 2016; Volume 165, pp. 65-68.

Simens, M.P,; Jiménez, J.; Hoyas, S.; Mizuno, Y. A high-resolution code for turbulent boundary layers.
J. Comput. Phys. 2009, 228, 4218-4231. [CrossRef]

Sanderse, B. Energy-conserving Runge-Kutta methods for the incompressible Navier—Stokes equations.
J. Comput. Phys. 2013, 233, 100-131. [CrossRef]

Le, H.; Moin, P. An improvement of fractional step methods for the incompressible Navier-Stokes equations.
J. Comput. Phys. 1991, 92, 369-379. [CrossRef]

Capuano, F; Coppola, G.; Chiatto, M.; de Luca, L. Approximate projection method for the incompressible
Navier—Stokes equations. AIAA J. 2016, 54, 2179-2182. [CrossRef]

Laizet, S.; Li, N. Incompact3d: A powerful tool to tackle turbulence problems with up to O (105)
computational cores. Int. |. Numer. Methods Fluids 2011, 67, 1735-1757. [CrossRef]

Pereira, J.; Kobayashi, M.; Pereira, J. A fourth-order-accurate finite volume compact method for the
incompressible Navier—-Stokes solutions. |. Comput. Phys. 2001, 167, 217-243. [CrossRef]

Lacor, C.; Smirnov, S.; Baelmans, M. A finite volume formulation of compact central schemes on arbitrary
structured grids. J. Comput. Phys. 2004, 198, 535-566. [CrossRef]

Capuano, F,; Coppola, G.; Radndez, L.; de Luca, L. Explicit Runge-Kutta schemes for incompressible flow
with improved energy-conservation properties. J. Comput. Phys. 2017, 328, 86-94. [CrossRef]

Nagarajan, S.; Lele, S.K.; Ferziger, ].H. A robust high-order compact method for large eddy simulation.
J. Comput. Phys. 2003, 191, 392-419. [CrossRef]

® (© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1016/j.jcp.2015.06.011
http://dx.doi.org/10.1016/j.jcp.2009.02.031
http://dx.doi.org/10.1016/j.jcp.2012.07.039
http://dx.doi.org/10.1016/0021-9991(91)90215-7
http://dx.doi.org/10.2514/1.J054569
http://dx.doi.org/10.1002/fld.2480
http://dx.doi.org/10.1006/jcph.2000.6673
http://dx.doi.org/10.1016/j.jcp.2004.01.025
http://dx.doi.org/10.1016/j.jcp.2016.10.040
http://dx.doi.org/10.1016/S0021-9991(03)00322-X
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem Formulation and Derivation of New Compact Schemes
	Schemes for Staggered First Derivative
	Schemes for Interpolation
	Schemes for Second Derivative
	Higher-Order Schemes

	Analysis of Novel Schemes
	Structure of the Schemes
	Resolution Properties
	Evaluation of the Computational Effort

	Application to Incompressible Navier-Stokes Equations
	Spatial Discretization
	Time Integration

	Results
	Burggraf Flow
	Periodic Double Mixing Layer

	Conclusions
	Modified Wavenumber
	References

