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Featured Application: Although this is a theoretical work, it studies the dispersion characteristics
in metamaterials in depth and discovers many results with potential applications in optical
transmission.

Abstract: This paper compares the dispersion in metamaterials (MMs) and some Thorlabs’
conventional glass, and finds that MMs may exhibit much more substantial dispersion (e.g., three
orders of magnitude larger dispersion). With such large dispersion, a transmission more than
22 km is impossible because of pulse splitting resulting from the third-order dispersion. However,
MMs are artificial materials with their electric and magnetic plasma frequencies tunable depending
upon their structures. We take advantage of such tunability to tailor the dispersive response of
MMs and investigate the dependence of dispersion on the MM structural parameters. We make
dispersion management by (1) searching for the existence of some ‘good’ dispersion points and
numerically demonstrating 90 km long transmission with almost no pulse width expansion and any
impact from a higher order dispersion in the MM we designed; and (2) searching for the possibility
for group-velocity dispersion (GVD) compensation and demonstrating 120 km transmission by
configuring the dispersion-engineered MM.

Keywords: metamaterial; dispersion; nonlinear Schrödinger equation; Gaussian pulse;
dispersion compensation

1. Introduction

Chromatic dispersion is the phenomenon in which the phase velocity of an optical wave depends
on its frequency because of the material and structure’s geometry [1]. Metamaterials (MMs) are
materials engineered to have designed properties beyond those available in nature, with applications in
all aspects of materials science [2,3]. In particular, MMs have shown promise for next generation optical
materials with electromagnetic responses that cannot be obtained from conventional media. MMs are
made from assemblies of multiple elements fashioned from composite materials, such as metals,
plastics, or dielectric media. The materials are usually arranged in repeating patterns, at scales that
are smaller than the wavelengths of the phenomena they influence. The regularly stacked structures
in MMs may entail stronger chromatic dispersion. This paper makes a quantitative comparison
of MMs to some conventional Thorlabs’ glass [4,5], and discloses that MMs may have dispersion
surpassing those of glass by three orders of magnitude. Since dispersion is a serious factor in MMs,
dispersion management is an indispensable element while light propagates in MM waveguides,
in which dispersive effects accumulate to set limits on both the distance and the bit rate of the
data transfer.
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Recent advances in nanofabrication and breakthroughs in the field of MMs [6–12] have opened
up a new range of possibilities for obtaining optical properties on demand in MMs [13]. There is
a research group now demonstrating that the group-velocity dispersion can be compensated by
designing the phase-engineered MM, thus developing a new dispersion compensation technology [14].
The dispersive properties of most MMs are determined by the electric and magnetic plasma frequencies
through the Drude model [15–17]. MMs are artificial materials with their electric and magnetic plasma
frequencies tunable, depending upon their constituents and structures. Reconfigurable MMs provide
flexibility for tuning them and result in tailored dispersive properties for dispersion management
purposes. This paper studies the dependence of dispersion on the electric and magnetic plasma
frequencies, and searches for the possibilities of dispersion management. Two approaches for the
dispersion management are proposed. Demonstrations of a 90 km long transmission, with almost no
pulse width expansion and any impact from a higher order dispersion in the MM we designed, and a
120 km transmission, by configuring the dispersion-engineered MMs, are numerically realized.

2. Theory of Light Pulse Propagations in MMs

Light is a type of electromagnetic wave and its propagation in MMs obeys Maxwell’s equations.
The wave equation for the light pulse propagating in nonlinear dispersive MMs can then be deduced
as follows:

∂2E
∂z2 = µ0ε0

∂2E
∂t2 + µ0

∂2PNL

∂t2 . (1)

It is assumed that E = 1/2A(z, t) exp[i(β0z− ωt)] + c.c and PNL = ε0χ(3)|E(z, t)|2E(z, t) with
χ(3) the third-order electric susceptibility. It is known that the relative dielectric constant εr and relative
permittivity µr in a MM have to be dispersive, otherwise the energy density could be negative [15].
Their frequency dispersion can be described by a lossy Drude model [16–18], as follows:

εr = 1−
ωpe

2

ω(ω + iγe)
µr = 1−

ωpm
2

ω(ω + iγm)
, (2)

where ω is frequency, ωpe and ωpm are the respective electric and magnetic plasma frequencies. γe and
γm are the respective electric and magnetic loss terms, which are very small. The loss appearing in the
imaginary part of the Drude model has much of its effect on the light intensity only. In our model of
dispersion compensation, the reduced intensity because of loss makes the waveform difficult for one
to judge if the dispersion is fully compensated. Thereby, in the following analysis, we ignore loss for
simplification. The negative refraction behavior is restricted within a certain range of frequency values.
We can transform Equation (1) into the frequency space in order to expand εr(ω) and µr(ω) in powers
of ω, thus enabling us to treat the material parameters as a power series, which we can truncate to an
appropriate order.

Taking the inverse Fourier transform, we also ignore the second derivative of z and introduce the
group velocity reference frame T = t− z/Vg ≡ t− β1z. Then, we get the propagation equation for
light pulse in MMs as follows:

∂A
∂z

= − i
2

β2
∂2 A
∂T2 +

1
6

β3
∂3 A
∂T3 −

i
24

β4
∂4 A
∂T4 + iΓ

∣∣∣∣A∣∣∣∣2 A. (3)

The third-order nonlinear self-steepening effect that modulates the front edge and trailing edge of
a Gaussian pulse in Equation (3) has been ignored, since what we study in the paper is the variation of
the pulse shape due to higher order dispersion. However, the self-phase modulation effect remains.
The third-order nonlinear self-phase modulation coefficient Γ and ith order dispersion βi in Equation (3)
can be expressed as follows:

βi =
dik
dωi |ω=ω0 (i = 1, 2, 3 . . . . . .), (4)
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Γ =
ε0µ0χ(3)ω2µr(ω)

2β0
, (5)

with k asthe wave number.
According to the definition of the index of refraction n =

√
εrµr, we can deduce the ith order

dispersion as follows [19]:
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where ω = ω
ωpe

and ωp =
ωpm
ωpe

are the normalized light frequency and plasma frequency.
The third-order nonlinear coefficient can also be simplified as follows:

Γ =
χ(3)ωωpe(1−

ωp
2

ω2 )

2nc
. (10)

3. Dispersion in a Regularly Exampled MM

We plot the refractive index, dispersion coefficients, and third-order nonlinear coefficient in
Figure 1 based on Equations (6) and (7). Although the MM structural parameters ωpe and ωpm can be
tuned, we employ the regularly exampled parameters with third-order electric susceptibility χ(3) as
1.9× 10−9 W−1 [20], ωpe as 1.3673× 1016 Hz [21], and ωp as 0.8 [22].

In Figure 1a, the normalized frequency can be divided into three domains, with 0 < ω < 0.8 as
the negative refractive index domain and ω > 1.0 as the positive refractive index domain, respectively.
The intervening region 0.8 ≤ ω ≤ 1.0 is the so called anomalous absorptive domain in the MM,
in which the electromagnetic wave cannot propagate. It should be mentioned that (1) in Figure 1d
β2 increases from negative to positive in the negative refractive index region, with its zero point at
ωD = 0.706844; (2) in Figure 1e β3 is always greater than zero in both the positive and negative
refractive index regions, and becomes very smooth while it is far away from the anomalous absorptive
domain; (3) in Figure 1f β4 is always positive in the negative refractive index region.

Let’s compare Figure 1 to the traditional media listed in Figure 2. Figure 2a,c, obtained from
Thorlabs website [4,5], show the β2 and β3 of four conventional glass as a function of wavelength.
In order to compare Figure 2a,c with Figure 1d,e, we need to unify the different units of abscissa in
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these figures. We thereby obtain Figure 2b,d by redrawing Figure 2a,c with modified abscissa and
ordinate units. From Figure 2b it can be seen that β2 of these conventional glass are all very small, with
the order of magnitude at only 10−1. However, β2 in Figure 1d is 104 nearby ωD. It can be estimated if
extending the β2 curves in Figure 2b to ωD, following the current trend, the absolute value |β2| should
still be smaller than that in Figure 1d. Thus, we may say that |β2| of the MM, with the regularly used
ωpe and ωpm is much larger than that in the conventional glass. Similarly, from Figure 2d, it can be
seen that β3 of these conventional glass are all very small, with the order of magnitude at only 10−4.
However, β3 in Figure 1e is 100, nearby ωD. It can be estimated that, if extending the β3 curves in
Figure 2d to ωD, following the current trend, the absolute value |β3| should still be smaller than that
in Figure 1e. Therefore, we may say that |β3| of the MM with the regularly used ωpe and ωpm is much
stronger than that in the conventional glass. What is the impact of such high dispersions in the MM?
We find out these effects by studying the light pulse propagation in the MM.

Figure 1. Variations of refractive index, third-order nonlinear coefficient, first-, second-, third-,
and forth-order dispersion on ω. Insets are the magnification nearby ω = 0.7. (a) Refractive index versus
ω; (b) third-order nonlinear coefficient versus ω; (c) first-order dispersion versus ω; (d) second-order
dispersion versus ω; (e) third-order dispersion versus ω; and (f) forth-order dispersion versus ω.

Figure 2. (a,c) Second- and third-order dispersions in several conventional glass verse wavelength;
(b,d) redrawing (a,c) to the normalized frequency.
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4. Light Pulse Propagation in the MM

The split-step Fourier method that has been used extensively to solve the pulse-propagation
problem in nonlinear dispersive media is a kind of effective beam propagation methods (BPM) [19].
We employ the split-step Fourier method to simulate the propagation of the light pulse in the MM.
The incident pulse is the Gaussian pulse with T0, the half pulse width at the 1/e of the optical peak
intensity. The full width at the half maximum (FWHM) is taken to be TFWHM = 5ps in the simulation,
which is equivalent to a bit rate of 200 Gbps. The second- and third-order dispersion length are LD
and L′D, respectively. The discussion of propagation issues requires the MM with a relatively long
length. Although currently there is limitation in making long length MMs, we believe that in the near
future, the technology will have breakthroughs in long length MM manufacture.

4.1. Impact of β2 and β3

4.1.1. Impact of β2 at ωD

The zero dispersion frequency ωD = 0.706844 (with β2 = 0) in Figure 1d means the Gaussian
pulse can propagate in the MM forever with no pulse spreading due to β2. This is a specific
phenomenon in the MM and seems an ideal circumstance. From Figure 1e, there is β3 = 2.0698 ps3/km
at ωD. This β3 is large so that the corresponding dispersion length is only L′D = 60.39 km. To have
a fair idea of when and how β3 takes effect, we simulate the propagation of the Gaussian pulse in
Figure 3.

Figure 3. Pulse waveforms at different distances when β2 = 0.

It is shown in Figure 3 that Gaussian pulse keeps its original waveform unchanged at z < 21 km.
However, at around z = 22 km, the pulse starts forming a splitting peak under the influence of β3.
Although the pulse splitting just starts around z = 22 km, it develops quickly and has become obvious,
while the pulse just transmits one more kilometer. This illustrates that β3 starts to take its effect at
a much earlier distance than L′D = 60.39 km, and when a pulse transmits 60.39 km, the impact of
β3 should be very serious, so that the original pulse waveform may be completely ruined. We have
pointed out in the former section that β3 in the MM is four orders of magnitude stronger than that
in ordinary glass. It is such a super larger third-order dispersion that pulse splitting starts at a short
distance. Thus, although an ideal circumstance of β2 = 0 predicts an infinite transmission, the strong
β3 limits the practical transmission to a very short distance. Therefore, we need to alter our perspective
by seeking an occurrence with the compensated β2 and very small β3. In the following two sections,
we first discuss the situation nearby the zero-dispersion frequency ωD.
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4.1.2. Impact of β2 and β3 when ω < ωD

When ω < ωD in Figure 1d, there is β2 < 0. Two sets of data are listed in Table 1 with different
|β2| but little varied β3. In addition, β3 is chosen to be close to the data discussed in Section 4.1.1.
Thus, L′D is closed to that in the last section. Figure 4 shows the waveform plot corresponding to the
two cases in Table 1. Similarly, the pulse starts to split around z = 22 km, although L′D exceeds 60 km.

Table 1. Two sets of dispersion data for ω < ωD.

ω β2
(
ps2/km

)
β3
(
ps3/km

)
LD(km) L′D(km)

0.70680 −1.2589 2.0676 19.86 60.46
0.70675 −2.6715 2.0675 9.36 60.53

In comparison to Figure 4a,b, we can see that for the second case in Table 1, where |β2| is relatively
larger, the secondary peak generated from the pulse splitting is a little far from the main peak and its
peak intensity is relatively smaller. Thus, it may say that, to some extent, a larger |β2| can inhibit the
influence of pulse splitting. In addition, Figure 4 also show that the secondary peak appears at the
front edge of the pulse if β2 < 0. We also noted that the pulse splitting in Figure 4b is not so serious as
that in Figure 3, although β3 is similar. Again, this is due to the inhabitation of β2 to the pulse splitting.

Figure 4. The pulse waveform comparison at different propagation distances. (a) The first case in
Table 1; and (b) the second case in Table 1.

4.1.3. Impact of β2 and β3 when ω > ωD

When ω > ωD in Figure 1d, there is β2 > 0. Two sets of data are listed in Table 2, with different
β2 but little varied β3. Similarly, β3 is chosen to be close to the data discussed in Section 4.1.1. Figure 5
shows the waveform plot corresponding to Table 2. Similarly, the pulse starts to split around z = 22 km,
although L′D exceeds 60 km. The major difference between Tables 1 and 2 is the sign of β2, but β2

always causes pulse broadening, no matter its sign. So, Figure 5 is similar to Figure 4. The difference
is that the secondary peak appears at the rear edge of the pulse if β2 > 0. It also illustrates that,
to some extent, a larger |β2| can inhibit the influence of the pulse splitting. We also noted that the pulse
splitting in Figure 5d is not as serious as that in Figure 3, in spite of a higher β3 here. Again, this is due
to the inhabitation of β2.

Table 2. Two sets of dispersion data for ω > ωD.

ω β2
(
ps2/km

)
fi3
(
ps3/km

)
LD(km) L′D(km)

0.70690 1.5715 2.0726 15.91 60.31
0.70695 2.9894 2.0752 8.36 60.24
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Figure 5. The pulse waveform comparison at different propagation distances. (a) The first case in
Table 2; and (b) the second case in Table 2.

4.2. Impact of β2, β3, and β4

In conventional media, the influence of β4 can be ignored as it is so small. Section 3 shows that
β4 in the MM may be larger than that in the ordinary materials, however, it is just in 10−3 order of
magnitude around ωD, three orders of magnitude smaller than β3 (Figure 1f). What is its impact?

There are two groups of data in Table 3, in which |β2|, β3, and β4 are not much different, except
for the different sign for β2. In Figure 6, the red line represents the portion of the pulse waveform
only under the impact of β2 and β3, while the blue one represents the similar waveform under
the simultaneous impact of β2, β3, and β4. It is shown from a comparison to the details after the
magnification of the red and blue lines at z = 21 km that for β2 < 0 in Figure 6a, the blue line is lower
than the red line, representing a somewhat inhibition of β2 to the pulse broadening, while for β2 > 0
in Figure 6b, it is opposite, representing a little aggravation of β2 to the pulse broadening. We also find
that β4 has no effect on the position of pulse splitting.

Table 3. Two sets of dispersion data including β4.

ω β2
(
ps2/km

)
β3
(
ps3/km

)
β4
(
ps4/km

)
LD(km) L′D(km)

0.706587 −7.2648 2.0569 0.0037 3.44 60.77
0.70710 7.2532 2.0828 0.0037 3.45 60.02

Figure 6. Magnification of the partial propagation waveform at FWHM for z = 21 km. (a) The first
case in Table 3; and (b) the second case in Table 3.

5. Dispersion Management in MMs

5.1. Design of the Optimal Dispersion

From the above analyses, it is realized that the second- and third-order dispersions are all serious
for that particular MM, which is often exampled in the literature with ωpe = 1.3673× 1016Hz and
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ωp = 0.8 [21,22]. This makes the propagation with z > 22 km impossible. However, MMs are such
extraordinary materials that derive their properties not only from the properties of the base materials,
but from their newly artificially designed structures. Their precise shape, geometry, size, orientation,
and arrangement give them their smart properties capable of manipulating electromagnetic waves to
achieve benefits that go beyond what is possible with conventional materials. Therefore, we expand
on our views to other MMs with different ωpe and ωpm (i.e., ωp), and take insight into the dependence
of dispersion to the structural parameters ωpe and ωpm. To obtain small second- and third-order
dispersions for a reasonably long transmission, we present here the design of an MM by using the
nano-inclusions model [23], made of properly arranged collections of plasmonic metallic nano-rings.

In our design, the nano-rings are made of a typical metal like aluminum, with its electrical
plasma frequency described by ωpe =

√
Nq2

e /(mε0), where N is the density of electrons, qe is
the electron charge, m is the electron mass, and ε0 is the dielectric permittivity in a vacuum [24].
For aluminum, the number of electrons per cubic meter can be N = 1.806× 1029m−3 [16], then, there
is ωpe = 2.396× 1016Hz. When such aluminum nano-rings are embedded in a host medium, they may
provide metamaterials with negative effective permeability at optical frequencies. According to the
nano-inclusions model by the authors of [23], we calculated the effective permeability for the periodic
arrangement of the aluminum nano-rings. The resonant magnetic dipole collective response of the
effective permeability is presented in Figure 7, with R = 40 nm, a = 16 nm, N = 6, and Nd = (108 nm)−3.
Following [25,26], the damping frequency and high frequency dielectric constant of aluminum have
been assumed to follow the Drude model with ωτ = 194 THz and ε∞ = 1.65ε0. The background
material in this design is εb = 1.2ε0. With the effective magnetic permeability, the magnetic plasma
frequency ωpm can be obtained following the Drude model.

Figure 7. Effective relative magnetic permeability for bulk medium with the geometry of nano-rings.

Using Equation (6), we also obtained a group of 3D plots in Figure 8 for 0.1 ≤ ω ≤ 0.9 and
0.1 ≤ ωp ≤ 2, with the fixed ωpe = 2.396× 1016Hz. According to the definition, the range of ωp here,
gives out the range of ωpm. We search in Figure 8 for all of the values of ωpm gained from our above
design to check up their dispersion parameters, and hope to find the potential figures with lower
dispersions. We pick out all points with approximately zero β2 and very low β3. Forty eight points with
the second-order dispersion length LD > 525 km and the third-order dispersion length L′D ≈ 290 km
are found (see Appendix A). Among them, the best three points with the longest L′D and an extremely
low second-order dispersion are listed in Table 4. Figure 9 is an example of 90 km of a repeaterless
transmission for the second group of data in Table 4. Within this distance, there is almost no expansion
due to group-velocity dispersion (GVD) and any impact from third-order dispersion whose impact
emerges while z ≥ 90 km. Although we point out that the MM with ωpe = 1.3673× 1016 Hz and
ωp = 0.8 [21,22] exhibits serious dispersion, it is delightful to see the MM we designed is not incurable
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in dispersion and can be employed for long distance transmission in the future, when long-length
MMs are ready.

Table 4. Examples for the lowest second- and third-order dispersions with ωpe = 2.396× 1016Hz.

ω ωp ωpm× 1016(Hz) β2
(
ps2/km

)
β3
(
ps3/km

)
β4
(
ps4/km

)
LD(km) L′D(km)

0.8794313 1.277639 3.061222 0.002528 0.431002 0.0003325 9889.982 290.0218
0.8794314 1.277637 3.0612173 0.000674 0.431001 0.0003325 37111.35 290.0227
0.8794315 1.277635 3.0612125 −0.00118 0.430999 0.0003325 21177.19 290.0237

Figure 8. Dependence of refractive index, third-order nonlinear coefficient, first-, second-, third-,
and forth-order dispersion on ω and ωp, with ωpe = 2.396× 1016Hz.

Figure 9. (a) Gaussian pulse’s 90 km propagation; (b) top view of (a).

5.2. Dispersion Management

Dispersion compensation is for the circumstance in which β2 and β3 can both be compensated or
β2 is compensated, but β3 is very small. According to the dispersion compensation theory, to reach the
compensation for both β2 and β3, there should be the following [19]:

β21L1 + β22L2 = 0 β31L1 + β32L2 = 0 (11)
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where L = L1 + L2 is dispersion period, β2j and β3j (j = 1, 2) are second- and third-order dispersion for
the MM with length Lj.

Figure 8d shows that β2 can be positive and negative, so there is a possibility to reach β2

compensation. However, in Figure 8e, β3 is always positive, meaning that we cannot find a negative
valued β3 to reach its compensation. Luckily, for the same normalized frequencies we found two sets
of data in Table 5 with an opposite notation and very closed absolute values of β2 for compensation.
Additionally, both sets of data all have very low β3, resulting in L′D as long as 380 km. That is to say,
while the broadening due to the GVD is compensated, the effect due to the third-order dispersion has
not yet emerged. Thus, we propose a configuration with metamaterials MM1 and MM2, cross-linked
periodically with their length L1 = L2 = 20 km. The simulation results for the propagation of the
Gaussian pulse in the composite metamaterial MM1 and MM2 is demonstrated in Figure 10.

Table 5. Two sets of data for β2 compensation with ωpe = 3.3673× 1016Hz.

Metamaterial ω ωp β2
(
ps2/km

)
β3
(
ps3/km

)
LD(km) L′D(km)

MM1 0.88 0.941095 1.184911 0.330214 21.10 378.56
MM2 0.88 0.941240 −1.183498 0.327182 21.12 382.03

Figure 10. (a) Gaussian pulse’s 120 km propagation in MM1 and MM2; (b) waveforms of the Gaussian
pulse; (c) top view of (a).

Figure 10 shows that when the pulse transmits in MM1, its width spreads with the increase of
the propagation distance, and the pulse intensity lowers because of the pulse broadening. At the
propagation distance L1 = 20 km, the pulse intensity reduces 20%. At this time, if we let the pulse
enter into MM2 and it continually transmits inside MM2, the reduced intensity starts to be recovered
and the broadened width gradually shrinks. At Z = L1 + L2 = 20 + 20 = 40 km, the intensity and
the width have both been recovered to be equivalent to their initial values. The situation afterwards
repeats the first MM1 and MM2 period, until it transmits Z = 120 km. While the pulse transmits one
MM1 and MM2 period, the impact of β3 remains uncompensated and accumulates with the increment
of the transmission distance. The simulation shows that while the propagation distance approaches
140 km, the pulse splitting due to β3 starts to emerge. Therefore, the MM1 and MM2 cross-linked
structure allows a 120 km repeaterless transmission.

6. Conclusions

The paper studies the dispersion in MMs and finds that the GVD and higher order dispersion
in MMs may often be much more serious than that in conventional glass. Since obtaining optical
properties on demand by reconfiguring the MM constitutes and structure has not been unreachable,
we may be able to design MMs and obtain the dispersive properties at extensive electric and magnetic
plasma frequency ranges with desire. Thus, we investigate the relationship of dispersion with
the MM structural parameters ωpe and ωpm, propose two approaches with the optimal dispersion
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through the MM design and the composite metamaterial MM1 and MM2 for dispersion management,
and demonstrate 90 km and 120 km long distance successful transmission, respectively.
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Appendix A

Table A1. All points in Figure 7 with LD ≥ 525.93 km and L′ ≈ 290 km.

ω ωp ωpm× 1016(Hz) β2
(
ps2/km

)
β3
(
ps3/km

)
β4
(
ps4/km

)
LD(km) L′D(km)

0.8794293 1.277678 3.061317 0.039611 0.431031 0.0003325 631.1424 290.0022
0.8794294 1.277676 3.0613123 0.037757 0.43103 0.0003325 662.1362 290.0032
0.8794295 1.277674 3.0613075 0.035902 0.431028 0.0003325 696.3313 290.0042
0.8794296 1.277672 3.0613028 0.034048 0.431027 0.0003325 734.2507 290.0051
0.8794297 1.27767 3.061298 0.032194 0.431025 0.0003325 776.5378 290.0061
0.8794298 1.277668 3.0612933 0.03034 0.431024 0.0003325 823.9935 290.0071
0.8794299 1.277666 3.0612885 0.028486 0.431023 0.0003325 877.6269 290.0081
0.87943 1.277664 3.0612838 0.026632 0.431021 0.0003325 938.7285 290.009

0.8794301 1.277662 3.061279 0.024778 0.43102 0.0003325 1008.975 290.01
0.8794302 1.27766 3.0612743 0.022923 0.431018 0.0003325 1090.585 290.011
0.8794303 1.277658 3.0612695 0.021069 0.431017 0.0003325 1186.558 290.012
0.8794304 1.277656 3.0612648 0.019215 0.431015 0.0003325 1301.054 290.013
0.8794305 1.277654 3.06126 0.017361 0.431014 0.0003325 1440.005 290.0139
0.8794306 1.277652 3.0612553 0.015507 0.431012 0.0003325 1612.186 290.0149
0.8794307 1.27765 3.0612505 0.013653 0.431011 0.0003325 1831.133 290.0159
0.8794308 1.277648 3.0612458 0.011799 0.431009 0.0003325 2118.896 290.0169
0.8794309 1.277647 3.061241 0.009944 0.431008 0.0003325 2513.967 290.0178
0.879431 1.277645 3.0612363 0.00809 0.431007 0.0003325 3090.125 290.0188
0.8794311 1.277643 3.0612315 0.006236 0.431005 0.0003325 4008.897 290.0198
0.8794312 1.277641 3.0612268 0.004382 0.431004 0.0003325 5705.195 290.0208
0.8794313 1.277639 3.061222 0.002528 0.431002 0.0003325 9889.982 290.0218
0.8794314 1.277637 3.0612173 0.000674 0.431001 0.0003325 37111.35 290.0227
0.8794315 1.277635 3.0612125 −0.00118 0.430999 0.0003325 21177.19 290.0237
0.8794316 1.277633 3.0612078 −0.00303 0.430998 0.0003325 8238.099 290.0247
0.8794317 1.277631 3.061203 −0.00489 0.430996 0.0003325 5113.68 290.0257
0.8794318 1.277629 3.0611983 −0.00674 0.430995 0.0003325 3707.54 290.0267
0.8794319 1.277627 3.0611935 −0.0086 0.430993 0.0003325 2907.928 290.0276
0.879432 1.277625 3.0611888 −0.01045 0.430992 0.0003325 2392.034 290.0286
0.8794321 1.277623 3.061184 −0.01231 0.430991 0.0003325 2031.607 290.0296
0.8794322 1.277621 3.0611793 −0.01416 0.430989 0.0003325 1765.573 290.0306
0.8794323 1.277619 3.0611745 −0.01601 0.430988 0.0003325 1561.145 290.0315
0.8794324 1.277617 3.0611698 −0.01787 0.430986 0.0003325 1399.144 290.0325
0.8794325 1.277615 3.061165 −0.01972 0.4309847 0.0003325 1267.604 290.0335
0.8794326 1.277613 3.0611603 −0.02158 0.4309832 0.0003325 1158.672 290.0345
0.8794327 1.277611 3.0611555 −0.02343 0.4309818 0.0003325 1066.98 290.0355
0.8794328 1.277609 3.0611508 −0.02528 0.4309803 0.0003325 988.7366 290.0364
0.8794329 1.277607 3.061146 −0.02714 0.4309789 0.0003325 921.1843 290.0374
0.879433 1.277605 3.0611413 −0.02899 0.4309774 0.0003325 862.2722 290.0384
0.8794331 1.277603 3.0611366 −0.03085 0.430976 0.0003325 810.4422 290.0394
0.8794332 1.277601 3.0611318 −0.0327 0.4309745 0.0003325 764.4898 290.0403
0.8794333 1.277599 3.0611271 −0.03456 0.4309731 0.0003325 723.4688 290.0413
0.8794334 1.277597 3.0611223 −0.03641 0.4309716 0.0003325 686.6258 290.0423
0.8794335 1.277595 3.0611176 −0.03826 0.4309702 0.0003325 653.3534 290.0433
0.8794336 1.277593 3.0611128 −0.04012 0.4309687 0.0003325 623.1566 290.0443
0.8794337 1.277591 3.0611081 −0.04197 0.4309673 0.0003325 595.6277 290.0452
0.8794338 1.277589 3.0611033 −0.04383 0.4309658 0.0003325 570.4281 290.0462
0.8794339 1.277587 3.0610986 −0.04568 0.4309643 0.0003325 547.2743 290.0472
0.879434 1.277585 3.0610938 −0.04754 0.4309629 0.0003324 525.9267 290.0482
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