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Abstract: Pipe-jacking is a construction method widely used in pipeline constructions. Prediction of
ground deformation induced by pipe-jacking, is important for safety and scheduling purposes.
This paper presents an approach to predict ground deformation during pipe-jacking considering
following factors: (i) bulkhead additive thrust; (ii) friction on jacking machine; (iii) grouting pressure;
and (iv) ground loss. Mindlin’s solution was used to calculate the ground deformation induced
by bulkhead additive thrust and friction on the jacking machine. The shearing disturbance
coefficient was adopted to evaluate the mitigation effect of shearing behavior on ground deformation.
Verruijt’s solution was used to simulate the effect of grouting pressure. Sagaseta’s method was
adopted to consider the ground loss induced by over-excavation. Subsequently, a three-dimensional
analytical solution for ground deformation induced by pipe-jacking was obtained. A case study
based on a pipe-jacking project undertaken in Jiangsu, China was analyzed to validate the
proposed approach. The results indicated that the proposed approach was robust and could be
implemented for future pipe-jacking projects.
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1. Introduction

During this period of rapid urbanization in China, many underground facilities are being constructed,
e.g., underground commercial centers [1–6], metro systems [7–15], pipelines for water supply [16–23],
and communication cables [24–28]. Pipe-jacking, as a trenchless construction technology, has been
widely used in these construction projects [29,30]. With matured operation technology and high
level of automation, pipe-jacking is suitable for application in various geological conditions, such as
silty clay, sandy silt and sandy soil [31–38]. However, the geological characteristics of problematic
materials such as soft clay is complex [39–51]. During tunneling in soft clay conditions, the jacking
process will cause the deformation of surrounding soil, then result in the displacement of nearby
buildings [52,53]. To mitigate the environmental disturbance, the prediction of ground deformation is
important in pipe-jacking construction.

The essential factor of ground deformation is the ground movement induced by pipe-jacking [54].
Many theoretical analyses have been conducted to study the ground movement. Previous research
indicated that ground deformations are influenced by the following factors: (i) ground loss; (ii) pressure
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on excavation face (namely bulkhead additive thrust); (iii) lateral friction on jacking machine;
and (iv) grouting process, etc. [55–57]. Due to similar procedures, researchers often prefer the option
of shield tunneling for the ground deformation induced by pipe-jacking. Sagaseta [58] assumed
that the ground movement is uniform. The consolidation condition of stratum is considered to be
undrained. Subsequently, the ground loss was used to calculate the ground deformation in three
dimensions. Loganathan and Poulos [59] improved Sagaseta’s calculation of ground deformation
by considering the radial ground movement as oval-shaped. To analyze the longitudinal ground
movement, Liao et al. [60] used Mindlin’s solution to calculate ground movement induced by the
bulkhead additive thrust and lateral friction during pipe-jacking. However, the grouting process as
an important process during pipe-jacking has not been studied in the aforementioned methods [61].
Considering the grouting process, the lateral friction between pipe segments and surrounding soils will
be reduced due to the existence of slurry [17]. Furthermore, the grouting pressure will apply additional
stresses on the surrounding soils and result in ground movement [62]. In addition, numerical methods
are widely used to simulate the ground movement [63]. Shimada et al. [64] found that performance of
mud slurry plays an important role in the pushing process and that suitable slurry pressure is proved
to be necessary for the stability of surrounding soils by numerical simulation [65,66].

This paper proposes a new approach to predict ground deformation induced by pipe-jacking
construction. The grouting process is considered to be a new factor for the ground movement
during pipe-jacking. To achieve this goal, Verruijt’s solution will be used to calculate the ground
movement induced by the grouting process. A case study of pipe-jacking construction will be analyzed
to verify the proposed method.

2. Review of Existing Methods

Verruijt [67] has proposed equations for calculating the ground deformation induced by tunneling.
In Verruijt’s solution, the ground was considered as an elastic half-plane with a circular cavity.
Figure 1 shows the illustration of a case with uniform stress applied at the tunnel boundary. σp is the
stress at the interface of the plastic and elastic zones, Rp is the external radius of the plastic zone, and h
is the depth of tunnel center. After dividing the deformation of tunnel boundary into a uniform radial
displacement and a downward displacement, the equations can be deduced by complex variables, as
listed as follows:

uxA = Re
(

1 + µ

E

(
(3− 4υ)φ(Z)− Zφ′(Z)− ψ(Z)

))
(1)

uyA = Im
(

1 + µ

E

(
(3− 4υ)φ(Z)− Zφ′(Z)− ψ(Z)

))
(2)

where Re and Im means taking the real and imaginary parts respectively; uxA is the displacement
of point A at x direction; uyA is the displacement of point A at y direction; u is Poisson’s ratio; E is
Young’s modulus; Z = x + iy; ϕ(Z) and Ψ(Z) are analytic functions, and can be determined from
following equations:

φ(Z) = Md

(
−2i

(
1 + ξ2

)
+ 2i

Z
(
1 + ξ2)+ ih

(
1− ξ2)

Z(1 + ξ2)− ih(1− ξ2)
+ 2iξ2 Z

(
1 + ξ2)− ih

(
1− ξ2)

Z(1 + ξ2) + ih(1− ξ2)

)
(3)

ψ(Z) = Md

(
−3i

(
1 + ξ2)+ 2iξ2 Z(1+ξ2)+ih(1−ξ2)

Z(1+ξ2)−ih(1−ξ2)
+ i
(

Z(1+ξ2)+ih(1−ξ2)
Z(1+ξ2)−ih(1−ξ2)

)2

+2i
Z(1+ξ2)−ih(1−ξ2)
Z(1+ξ2)+ih(1−ξ2)

+ iξ2
(

Z(1+ξ2)−ih(1−ξ2)
Z(1+ξ2)+ih(1−ξ2)

)2
) (4)

Md = −
ξ2σph

(1− ξ2)(1− ξ4)
(5)
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ξ =
h−

√
h2 − R2

p

Rp
(6)
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Figure 1. Illustration of a case with uniform stress applied at tunnel boundary (recreated based on 
Shen et al. [11], Wang et al. [68]). 

For three dimensional elastic scenarios, Mindlin [69] had proposed solutions for deformation in 
a homogenous isotropic solid. Wei [61] used Mindlin’s solution to calculate the ground movement 
induced by the bulkhead additive thrust and the friction between the jacking machine and 
surrounding soils at arbitrary point B(x, y, z). Figure 2 shows the calculation schematic of Mindlin’s 
solution. x is the horizontal distance from the excavation face of the point B along the jacking 
direction, y is the lateral distance from the jacking axis to the point B, z is the depth of the point B, h 
is the depth of jacking machine centerline. 

 
Figure 2. Calculation schematic of Mindlin’s solution. 

The equations for calculating the ground movement due to the bulkhead additive forces are 
listed as follows: 
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Figure 1. Illustration of a case with uniform stress applied at tunnel boundary (recreated based on
Shen et al. [11], Wang et al. [68]).

For three dimensional elastic scenarios, Mindlin [69] had proposed solutions for deformation in
a homogenous isotropic solid. Wei [61] used Mindlin’s solution to calculate the ground movement
induced by the bulkhead additive thrust and the friction between the jacking machine and surrounding
soils at arbitrary point B(x, y, z). Figure 2 shows the calculation schematic of Mindlin’s solution. x is the
horizontal distance from the excavation face of the point B along the jacking direction, y is the lateral
distance from the jacking axis to the point B, z is the depth of the point B, h is the depth of jacking
machine centerline.
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The equations for calculating the ground movement due to the bulkhead additive forces are listed
as follows:

u1 = P
16πG(1−µ)

2π∫
0

R∫
0

[
3−4µ

M1
+ 1

N1
+ x2

M3
1
+ (3−4µ)x2

N3
1

+ 2zc1
N3

1

(
1− 3x2

N2
1

)
+ 4(1−µ)(1−2µ)

N1+z+c1

(
1− x2

N1(N1+z+c1)

)]
rdrdθ

(7)

v1 =
Px

16πG(1− µ)

2π∫
0

R∫
0

(y + r cos θ)

[
1

M3
1
+

3− 4µ

N3
1
− 6zc1

N5
1
− 4(1− µ)(1− 2µ)

N1(N1 + z + c1)
2

]
rdrdθ (8)

w1 =
Px

16πG(1− µ)

2π∫
0

R∫
0

[
z− c1

M3
1

+
(3− 4µ)(z− c1)

N3
1

− 6zc1(z + c1)

N5
1

+
4(1− µ)(1− 2µ)

N1(N1 + z + c1)

]
rdrdθ (9)

where, u1 is the movement of point B in x axis direction; v1 is the movement of point B in y axis direction;
w1 is the movement of point B in z axis direction; P is the bulkhead additive thrust; G is the shear
modulus of soil; µ is Poisson’s ratio. M1 and N1 can be expressed as:

M1 =

√
x2 + (y + R cos θ)2 + (z− c1)

2 (10)

N1 =

√
x2 + (y + R cos θ)2 + (z + c1)

2 (11)

c1 = h− r sin θ (12)

The equations for ground movement induced by the friction between the jacking machine and
surrounding soils are listed as follows:

u2 = f R
16πG(1−µ)

2π∫
0

L∫
0

[
3−4µ

M2
+ 1

N2
+ (x+l)2

M3
2

+ (3−4µ)(x+l)2

N3
2

+ 2zc2
N3

2
.(

1− 3(x+l)2

N2
2

)
+ 4(1−µ)(1−2µ)

N2+z+c2

(
1− (x+l)2

N2(N2+z+c2)

)]
dldθ

(13)

v2 = f R
16πG(1−µ)

2π∫
0

L∫
0
(x + l)(y + R cos θ)

[
1

M3
2
+ 3−4µ

N3
2
− 6zc2

N5
2
− 4(1−µ)(1−2µ)

N2(N2+z+c2)
2

]
dldθ (14)

w2 = f R
16πG(1−µ)

2π∫
0

L∫
0
(x + l)

[
z−c2
M3

2
+ (3−4µ)(z−c2)

N3
2

− 6zc2(z+c2)

N5
2

+ 4(1−µ)(1−2µ)
N2(N2+z+c2)

]
dldθ (15)

where, u2 (v2, w2) is the ground movement along the x (y, z) axis caused by friction on the
jacking machine. f is the average friction between the jacking machine and surrounding soils. M2 and
N2 can be expressed as:

M2 =

√
(x + l)2 + (y + R cos θ)2 + (z− c2)

2 (16)

N2 =

√
(x + l)2 + (y + R cos θ)2 + (z + c2)

2 (17)

c2 = h− R sin θ (18)

where, L is the length of the jacking machine, R is the external radius of the jacking machine.
The aforementioned solutions were used to calculate ground movements due to the bulkhead

additive thrust and the frictions between the jacking machine and surrounding soils. Wei [61] has also
proposed solutions for the evaluation of the friction between jacking segments and surrounding soils.
However, because of the lubrication effect induced by the grouting process, the friction between jacking
segments and surrounding soils is very small. On the other hand, Kasper and Meschke [65] reported
that the grouting process will apply additional pressure on surrounding soils, which may cause ground



Appl. Sci. 2018, 8, 1051 5 of 18

movement and finally affect the ground deformation. Therefore, a new method is required to improve
the prediction of ground deformation induced by pipe-jacking construction.

3. Methodology

3.1. Assumptions

As the excavation process is complex, the superposition method with multiple factors is widely
used for the calculation of ground deformation [61,70]. In this study, ground movements caused
by bulkhead additive thrust, friction on jacking machine, grouting pressure, and ground loss were
calculated separately and subsequently combined. To simplify the theoretical analysis, the following
assumptions will be used: (1) the object is a three-dimensional homogenous isotropic elasticity with the
jacking machine and segments; (2) the ground movement is caused by the construction of pipe-jacking
rather than by change in the volume of the soil; (3) the ground loss is uniform along the tunnel axis and
the profile is considered to be oval-shaped; (4) the grouting pressure is uniform along radial direction
and tunnel axis; (5) the effect of grouting on ground loss was ignored. Based on these assumptions,
Figure 3 shows the schematic of pipe-jacking and the mechanical condition of surrounding soils. Rs is
the external radius of segment.
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3.2. Influence Factors

3.2.1. Bulkhead Additive Thrust and Friction on Jacking Machine

In front of the jacking machine, the condition of the surrounding soils can be further divided into
the shearing region and the compression region, as shown in Figure 4. Equations (7)–(9) based on
Mindlin’s solution only considered the normal compression induced by the bulkhead additive thrust.
The shearing behavior of soils at the boundary between region i and region iii has not been considered.
During the compression of soil in front of the jacking machine, the shearing behavior will apply a
friction force against the bulkhead additive thrust, then mitigate the ground movement. The same
phenomenon also exists between the jacking machine and surrounding soils. The surrounding soils
will reach the failure criterion becoming soft under the shearing effect. The smaller friction coefficient
of the softened surrounding soils will decrease the ground movement induced by the friction force.
The modified ground movement caused by the bulkhead additive thrust and friction on jacking
machine can be expressed as:

u1
′ = αpu1 (19)

u2
′ = α f u2 (20)
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where, αp is the shearing disturbance coefficient caused by bulkhead additive thrust, and αf is the
shearing disturbance coefficient caused by friction, which are supposed to have a relationship with the
cohesion of the construction soil layer and the bulkhead additive thrust or the friction between jacking
machine and surrounding soils. The empirical equations for these two coefficients can be expressed as:

αp =
c
P

(21)

α f =
c
f

(22)

where, c is the cohesion of the construction soil layer.
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2 1T
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Z iM
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α
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22 2
2
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3 1T

Z t Z t Z t
Z iM

Z t Z t Z t

α α
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 − + +
= − + + + + 

+ − −  
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3.2.2. Grouting Pressure

The ground movement caused by grouting pressure will be firstly calculated in the sectional
direction then overlaid along the penetrating direction. In the sectional direction, the ground movement
induced by grouting pressure is assumed to be a cavity expansion process in an elastic half-plane.
Verruijt [66] has given equations for calculating the deformation with uniform stress applied at
the cavity boundary. The solution uses the complex variables to calculate the ground movement.
The displacement of a picked point should satisfy the following equation:

E
1 + µ

(v− iw) =
3− µ

1 + µ
ϕ(Z)− Zϕ′(Z)− ψ(Z) = S(y, z) (23)

Then Verruijt solution can be expressed as:

ϕ(Z) = iMT

[
−2
(

1 + α2
)
+

2(Z− t)
Z + t

+
2α2(Z + t)

Z− t

]
(24)

ψ(Z) = iMT

[
−3
(

1 + α2
)
+

2α2(Z− t)
Z + t

+
2(Z + t)

Z− t
+

α2(Z + t)2

(Z− t)2

]
(25)

α =
h−

√
h2 − Rs2

Rs
(26)

t = −ih
1− α2

1 + α2 (27)

MT = − α2Th
(1− α2)(1− α4)

(28)
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where, T is the grouting pressure, which can be calculated by:

T =
nT0d2

4(R2 − Rs2)
(29)

where, n is the proportion of grouting volume and gap volume, T0 is the grouting pressure of
jetting machine, and d is the diameter of grouting pipeline. This equation determines the proportion of
these two pressures by the sectional area. The permeation of slurry during the grouting process is also
considered by the proportion of grouting volume and gap volume.

Along the penetrating direction, the Boussinesq solution is used to overlay the ground movement
in the sectional direction. Figure 5 shows overlaying coefficients in the sectional direction (m) and
penetrating direction (n). Then the ground movement caused by grouting pressure can be expressed as:

u3 =
1 + µ

E
|S(y, z)| × (1− µ) exp

[
−0.5(x + L)2

]
(30)

v3 =
1 + µ

E
Re[S(y, z)]×

{
1− 1

1 + exp[−(x + L)]

}
(31)

w3 =
1 + µ

E
Im[S(y, z)]×

{
1− 1

1 + exp[−(x + L)]

}
(32)

where, u3 (v3, w3) is the ground movement along the x (y, z) axis caused by grouting pressure.
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3.2.3. Ground Loss

Sagaseta [58] presented an analytical solution for calculating the ground surface movement in the
isotropic homogeneous and incompressible ground condition. The equations are as follows:

us = −
V
2π

1

(x2 + y2 + h2)
1/2 (33)

vs = −
V
2π

y
y2 + h2

[
1− x

(x2 + y2 + h2)
1/2

]
(34)

ws =
V
2π

h
y2 + h2

[
1− x

(x2 + y2 + h2)
1/2

]
(35)
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where, us (vs, ws) is the ground movement along x (y, z) axis in Sagaseta solution, V is the ground loss
per unit length (m3/m).

Sagaseta’s solution can be used as the vertical displacement, whereas the lateral and longitudinal
deformations of the inner soil are not satisfied with the measured ones. Finding that the ground loss
due to lining deflection and lining gap are not uniform, Loganathan and Poulos [59] proposed the
gap should be oval shaped and gave the equation for calculating the equivalent ground loss, which is
shown as follows:

V′ = V × exp

[
− 1.38y2

(h + R)2 −
0.69z2

h2

]
(36)

V = πR2η (37)

where, η is the empirical coefficient, which has the relationship with the pipe-jacking face and the
geotechnical conditions, for instance η is 0.5~2.5% for silty soil layers.

Thus, considering the oval shaped ground movement and the Poisson’s ratio for different soils,
we modified Sagaseta’s solution and have proposed the following equations:

u4 = −2(1− µ)V′

π

1√
x2 + y2 + h2

(38)

v4 = −2(1− µ)V′

π

y
y2 + h2

(
1− x√

x2 + y2 + h2

)
(39)

w4 =
2(1− µ)V′

π

h
y2 + h2

(
1− x√

x2 + y2 + h2

)
(40)

where, u4 (v4, w4) is the ground movement along the x (y, z) axis caused by ground loss.

3.3. Results of Total Ground Deformation

The ground deformation induced by the aforementioned factors is a three-dimensional issue.
By ignoring the interaction among these four factors, the overall ground movement can be determined
by overlaying four parts of ground movements induced by each factor:

u = u1
′ + u2

′ + u3 + u4 (41)

v = v1 + v2 + v3 + v4 (42)

w = w1 + w2 + w3 + w4 (43)

Although the analytical process and the equations are complex, the specific calculation can be
conducted by MATLAB with a high efficiency.

4. Application to Case Study

4.1. Project Description

To validate the proposed approach, a field pipe-jacking project of water-conveying tunnels was
introduced. Figure 6 depicts the location of pipe-jacking construction site. The field site is located at
the junction of Huangxiang River and Guan River, in the northern Jiangsu province. Four jacking
pipes cross through 450 m under Guan River. The interval between the two adjacent jacking pipes
was about 9 m. The diameter of the jacking machine is 4200 mm, while the external diameter of the
pipe segment is 4160 mm. The synchronous grouting with pressure ranging from 0.10 to 0.15 MPa is
conducted to fill the gap and reduce the friction between pipe segments and surrounding soils.
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The ground consisted of various soil layers, including backfill, clay, stiff clay, silty clay, cemented
silty sand, and silty sand. Figure 7 shows the distribution of soil layers. The average depth of the
pipe-jacking is about 18.9 m below the ground surface. The jacking region is mainly in silty clay,
cemented silty sand, and silty sand. These layers contain irregular cementitious sand particles,
which may cause the blocking in slurry pipelines and difficulties in excavation process. Figure 8 shows
the soil profile and the soil properties in the construction site. The natural water content of these
soils in the pipe-jacking zone ranges from 25% to 28% and the compression index varies between 0.04
and 0.16.

During the pipe-jacking process, layered settlement gauges were employed to observe the ground
deformation. Figure 9 illustrates the plane view of layered settlement gauges. The distance between
two adjacent layered settlements is 4.5 m. The distance between the gauges and the south jacking shaft
is 60 m. Figure 9 also depicts the sectional view of layered settlement gauges. The vertical depth of the
gauge is 12.5 m under the ground. Three layered settlement gauges combine into a monitoring group.
As Line 1 and Line 3 are constructed prior to Line 2 and Line 4, ground settlements caused by Line 2
and Line 4 have been disturbed by those caused by Line 1 and Line 3. Therefore, only two monitoring
groups were employed to record the ground settlement of Line 1 and Line 3. The recording period
starts at the initial penetration of pipe-jacking, ending when the jacking machine is 30 m away from
the monitoring point.
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4.2. Validation 

During the construction of Line 1 and Line 3, parameters for the calculation of ground movement 
have been listed in Table 1. The in situ soil stress in the tunnel face is about 0.4 MPa. The pressure in 
Table 1 is significant for the stability of the tunnel face. Based on the monitored ground settlements 
in different depths, the vertical strain can be determined. The average strain level is about 0.1~0.2%, 
which confirms to the small strain condition. Then, G is defined as the weighted average value of 
small strain stiffness. Compared to similar case studies, the adopted value is reasonable [72,73]. Based 
on these parameters, the ground deformation can be calculated by the proposed method. The ground 
settlement is the result of ground deformation at the ground surface. As the ground movements in x 
axis direction and y direction are difficult to be monitored in the underground condition, the ground 
settlements at different depth are used to validate the effectiveness of the proposed method. The 
Attewell method [74] can compute the settlement along the tunnel path by using the cumulative 
curve on the results determined by the Peck method. The equation can be expressed as: 
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have been listed in Table 1. The in situ soil stress in the tunnel face is about 0.4 MPa. The pressure in 
Table 1 is significant for the stability of the tunnel face. Based on the monitored ground settlements 
in different depths, the vertical strain can be determined. The average strain level is about 0.1~0.2%, 
which confirms to the small strain condition. Then, G is defined as the weighted average value of 
small strain stiffness. Compared to similar case studies, the adopted value is reasonable [72,73]. Based 
on these parameters, the ground deformation can be calculated by the proposed method. The ground 
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4.2. Validation

During the construction of Line 1 and Line 3, parameters for the calculation of ground movement
have been listed in Table 1. The in situ soil stress in the tunnel face is about 0.4 MPa. The pressure in
Table 1 is significant for the stability of the tunnel face. Based on the monitored ground settlements
in different depths, the vertical strain can be determined. The average strain level is about 0.1~0.2%,
which confirms to the small strain condition. Then, G is defined as the weighted average value of small
strain stiffness. Compared to similar case studies, the adopted value is reasonable [72,73]. Based on
these parameters, the ground deformation can be calculated by the proposed method. The ground
settlement is the result of ground deformation at the ground surface. As the ground movements
in x axis direction and y direction are difficult to be monitored in the underground condition,
the ground settlements at different depth are used to validate the effectiveness of the proposed method.
The Attewell method [74] can compute the settlement along the tunnel path by using the cumulative
curve on the results determined by the Peck method. The equation can be expressed as:

S(y) =
V√
2πi

[
Φ
(

y− yi
i

)
−Φ

(y− y f

i

)]
(44)

where, i is the coefficient of width of ground settlement groove, Φ is the integration of Gaussian
distribution, yi is the distance of pipe-jacking, yf is the distance from tunnel face to the original point.
Wei et al.’s method [61] are used to compare the prediction effectiveness. Peck’s method that is usually
used in shield tunneling, only considered the effect of ground loss on the ground settlement. Wei et al.’s
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method is a general empirical model based on Peck, Sagaseta, Loganathan and Poulos’s researches.
However, the effect of grouting pressure is ignored in Wei et al.’s method.

Table 1. Construction parameters for Line 1 and Line 3.

P (MPa) f (MPa) T (MPa) η (%) µ G (MPa) h (m) L (m) R (m) Rs (m)

0.30 0.24 0.08 2 0.31 2.4 18.9 5 2.1 2.08

Figure 10 shows the ground settlements of the monitoring points right above Line 1 and Line 3.
Generally, the proposed method has a good consistency with the field results, as compared to the field
data and the other two methods. In theoretical calculations, the jacking process will cause an upheaval
of the ground surface before the jacking machine arrives at the monitoring point. However, the field
data indicated that the upheaval is small in Line 1. For Line 3, the ground surface indicated evidence
of settlement. The reason for this is that before the arrival of the jacking machine, the permeation
of underground water had caused consolidation behavior. When the jacking machine arrives at the
monitoring point, both the calculated results and field observations shows a sharp decrease in ground
settlement. The final settlement calculated by the proposed method is the smallest among the calculated
results as only the proposed method considers the effect of grouting process. The slurry grouting
can apply pressure on the interface, expanding surrounding soils, then mitigating ground settlement.
The difference between calculated settlements and field data may attribute to the mutual disturbance
during the construction of Line 1 and Line 3.
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Figure 11 shows the proportions of the single factors as bulkhead thrust force, friction, grouting 
pressure and ground loss on the overall ground settlement. The main ground settlement is caused by 
the ground loss. The slurry grouting mitigates the ground settlement effectively after the jacking 
machine passing through the monitoring point. The ground movements induced by the bulkhead 
additive thrust and the friction on jacking machine were much smaller than that of ground loss. 
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Figure 11 shows the proportions of the single factors as bulkhead thrust force, friction, grouting
pressure and ground loss on the overall ground settlement. The main ground settlement is caused
by the ground loss. The slurry grouting mitigates the ground settlement effectively after the jacking
machine passing through the monitoring point. The ground movements induced by the bulkhead
additive thrust and the friction on jacking machine were much smaller than that of ground loss.
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Figure 13 shows the ground surface settlements adjacent to Line 1 and Line 3. The predicted 
results are closer to the results from the two middle monitoring points. The field data indicate that 
the ground settlements between the pipe-jacking (S3 and S4) is larger than those at the outer sides. 
As the middle region is disturbed by the construction of Line 1 and Line 3, the settlement 
phenomenon can be explained by the superposition theory. The method in this study is proposed 
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before the jacking machine arriving at the monitoring points. After the arrival of the jacking machine, 

Figure 11. Proportions of influence factors on overall ground settlement.

Figure 12 shows the settlements at the depth of 7.4 m above Line 1 and Line 3. The
proposed method matches better to the settlement above Line 1. The field data show that the
underground movement is more irregular than the ground surface settlement. It indicates that
the disturbance caused by pipe-jacking is more obvious in the underground region. The influence
of the grouting pressure on ground movement will reduce with increasing distances. The predicted
results show a good consistency to the monitored results after the jacking machine crossed through the
monitoring point. Considering the grouting pressure in the proposed method leads to an improvement
in prediction effectiveness, as compared to the other two methods.
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Figure 13 shows the ground surface settlements adjacent to Line 1 and Line 3. The predicted
results are closer to the results from the two middle monitoring points. The field data indicate that the
ground settlements between the pipe-jacking (S3 and S4) is larger than those at the outer sides. As the
middle region is disturbed by the construction of Line 1 and Line 3, the settlement phenomenon can
be explained by the superposition theory. The method in this study is proposed based on the single
line of pipe-jacking and has not considered the settlements caused by adjacent construction. Moreover,
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all the prediction methods overestimate the upheaval of ground surface before the jacking machine
arriving at the monitoring points. After the arrival of the jacking machine, the results of the proposed
method are better than those of the Attewell method [74] and the Wei et al. method [61].
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Figure 13. Ground settlements adjacent to Line 1 and Line 4 at ground surface.

Figure 14 shows the variation of ground settlements with the monitoring depth increasing.
The predicted results under the ground are consistent with the field data in general. The upheaval
of ground in a deeper position is more remarkable. The difference between calculated results and
monitored values becomes less at this depth. After the arrival of the jacking machine, the same
phenomenon indicates that the calculated ground settlement becomes smaller than those calculated
by other two methods is found. Generally, the underground settlements are smaller than the
ground surface settlements. In addition, the values of settlements decrease with the increase of
monitoring depth.
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Based on above comparisons between calculated results and field observations, the effectiveness
of the proposed method for ground settlement prediction was validated. The proposed method can
predict the ground settlement caused by the pipe-jacking. The better effectiveness compared to the
other two methods can be attributed to the consideration of grouting pressure. The slurry grouting can
mitigate the ground loss, so that the prediction effectiveness after the arrival of the jacking machine is
better than that of the other methods. However, the calculated upheaval before the arriving of jacking
machine is larger than the field value.

Some limitations should be pointed out, which are expected to be improved in future projects.
The proposed method is based on the analysis in homogeneous and isotropic condition. However,
the geological conditions are always heterogeneous and anisotropic in field cases. The method used
in this study was to calculate the average value as the geological parameter, which may attribute to
the difference between calculated results and field results. As the field case shows that the ground
movement is more irregular in the position close to the tunnel, the prediction may result in a worse
result in shallower pipe construction. More case studies are expected to further compare the difference
between the proposed method and other existing solutions. In addition, the disturbance caused by
adjacent construction needs to be considered for the further improvement of proposed approach.

5. Conclusions

This paper presents an approach for calculating the ground deformation. Based on the analysis of
jacking process, the effect of grouting pressure on the ground deformation is considered to improve
the prediction effectiveness. According to the comparison between calculated results and field
observations, the effectiveness of the proposed approach was validated. More specific conclusions are
drawn as follows:

(1) The ground deformation caused by bulkhead additive thrust and the friction between jacking
machine and the surrounding soils were reanalyzed. The penetration of jacking machine makes
surrounding soils and strata in front of the jacking machine under the shearing effect. The shearing
disturbance coefficient is employed to evaluate the mitigation effect of shearing behavior on
ground deformation.

(2) The grouting process can apply pressure on surrounding soils and mitigate the ground movement.
Verruijt’s solution is used to calculate the ground movement in sectional direction caused
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by slurry grouting. Then the cumulative ground movement along the jacking direction is
determined based on the Boussinesq’s solution. The generalized prediction approach is proposed
by combining the ground movement caused by bulkhead additive thrust, friction on jacking
machine, grouting pressure and ground loss.

(3) A field pipe-jacking construction of water-conveying tunnels was used to validate the prediction
approach of ground deformation. As the consideration of grouting pressure, the calculated results
after the arrival of jacking machine are consistent with the field data. The robustness is better
than the other methods.
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