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Featured Application: The presented control design can enrich the multi-robot technologies and
can benefit the coordination of multi-robot systems.

Abstract: This paper investigates the formation problem of multiple robots based on the
leader–follower mechanism. At first, the dynamics of such a leader–follower framework are modeled.
The input–output equations are depicted by calculating the relative degree of a leader–follower
formation system. Furthermore, the derivative and integral terminal sliding mode controller is
designed based on the relative degree. Since the formation system suffers from uncertainties,
the nonlinear disturbance observer is adopted to deal with the uncertainties. The stability of the
closed-loop control system is proven in the sense of Lyapunov. Finally, some numerical simulations
are displayed to verify the feasibility and effectiveness by the designed controller and observer.

Keywords: multiple robots; formation; sliding mode controller; nonlinear disturbance observer;
system stability

1. Introduction

In recent years, the coordination control scheme of multiple robots has drawn considerable
attention in various fields [1]. Multiple robots can be applied in many dangerous places to free the
human being, including the earthquake rescue, the warehouse translations, and some tasks at nuclear
power plants. A multi-robot system can be treated as a coupling network of some robots, where the
robots communicate with each other to achieve some complex duties [2,3]. Various investigations
have been explored to achieve the coordination control of multiple robots. These investigations
can be roughly classified into leader–follower formations [4–8], virtual structure mechanisms [9–12],
graph-based approaches [13,14], and behavior-based methods [15,16].

The leader–follower formations are attractive in the coordination control of multi-robot systems.
Partly, such formations benefit multiple robots because the formations can have guaranteed formation
stability via control design [17]. The basic control idea of the leader–follower mechanism is that
multiple robots are divided into several leader–follower pairs. In the leader–follower mechanism,
all follower robots share the same leader. In each pair, the leader robot moves along the predefined
trajectory, while the follower robots track the leader with desired relative distance and angle. In the
leader–follower system of multiple robots, only partial followers can obtain the state of the leader,
and the interaction between follower robots and leader robot is local [18]. Many control methods have
been applied in the leader–follower multi-robot systems, such as sliding mode control (SMC) based
on nonlinear disturbance observer [18], SMC [19], second-order SMC [20], adaptive control [21,22],
predictive control [23], integral terminal SMC [24], and terminal SMC [25].
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In actuality, it is unavoidable for any robots to be affected by uncertainties such as external
disturbances, unmodeled dynamics, and parameter perturbations [26]. The dynamics of multi-robot
systems becomes uncertain, due to these uncertainties [27]. These uncertainties can be categorized
into unmatched uncertainties and matched uncertainties [28]. However, the SMC method, as a strong
robust tool, has invariant nature to the matched uncertainties when an SMC system enters into the
sliding mode. Unfortunately, the effects of unmatched uncertainties cannot be suppressed by the SMC
methods [29]. The unmatched uncertainties can challenge the performance of the SMC system seriously.
The characteristic of terminal SMC (T-SMC) has its nonlinear sliding surface. Compared with those
traditional SMC approaches, the T-SMC method has faster convergence speed and higher accuracy.
However, the T-SMC method has the singular problem due to its fractional function. Therefore,
the derivative and integral T-SMC (DIT-SMC) method is proposed [30]. The DIT-SMC method is of
merit. Due to the existence of the integral term, the sliding mode of the DIT-SMC method starts on the
derivative and integral terminal sliding mode surface. Moreover, the DIT-SMC method can guarantee
the exact estimation of finite error convergence time, and resolve the singular problem of the T-SMC.
On the other hand, the derivative term of the DIT-SMC method can reduce the nonlinear effects to the
stability of a DIT-SMC system.

In the previous works [21–30], the assumption that the uncertainties have a known boundary is
assumed. Concerning the formation maneuvers of multi-robot systems, the assumption is not mild. In
fact, the boundary of uncertainties in multiple robots is hard to be known exactly in advance. In case
of the lack of the important information, several serious problems may be raised in reality, for example,
the decrease of the formation robustness, the deterioration of the formation performance, as far as the
deficiency of the formation stability. In order to resolve the problem of the uncertainties, the nonlinear
disturbance observer is adopted. The unknown unmatched uncertainties are estimated by the nonlinear
disturbance observer. The technique of nonlinear disturbance observer (NDOB) can handle the
unmatched uncertainties problem and improve the robustness of the formation control system.

This paper deals with the formation problem of multiple robots with uncertainties. The control
scheme combining derivative and integral terminal sliding mode and nonlinear disturbance observer
is investigated. The derivative and integral terminal sliding mode method allows the system start
on the sliding surface. The reaching time of sliding surface is eliminated. The matched uncertainties
in formation system are suppressed by the DIT-SMC method. Under the mild assumption that
the uncertainties have an unknown boundary, the NDOB is designed to estimate the unmatched
uncertainties in the formation system. The estimate errors will converge to zero in the limited time
by setting the parameter of NDOB. In the sense of Lyapunov, the system stability is guaranteed in
spite of uncertainties. Finally, some numerical simulations are displayed to illustrate the feasibility
and effectiveness.

2. Problem Formulation

2.1. Modeling of Single Robot

Shown by Figure 1, a unicycle-like robot is taken into account. The robot is round, with r in radius,
and has two parallel wheels controlled independently by two DC motors. Because the robot is capable
of simultaneous arbitrary rotation and translation in the horizontal plane, a three dimensional vector
q = [x, y, θ]T is used to describe the robot. In Figure 1, (x, y) represents the translational coordinates of
the robot, and is the center of the robot. The rotational coordinate is depicted by the variable θ.
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Figure 1. Sketches of the mobile robot. 

There are n robots in the formation system of multi-robot. Provided the pure rolling and no-
slipping condition, the ideal dynamic models of the nth robot are described by 
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where un = [αn βn]T is the control input of nth robot. αn, βn are the acceleration and angular acceleration
respectively, which are described by αn = Fn/mn, βn = τn/Jn. Here, Fn, mn, τn, and Jn donate the force,
the nominal mass, the torque of the robot, and the nominal moment of inertia, respectively. ∆n
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is described by [πnx πny

πnθ]T, meaning the uncertainties and external disturbances in the lumped model.

2.2. Leader–Follower Formation Framework

In this section, the kinematics model of the leader–follower formation system is given. The
leader–follower formation mechanism is displayed in Figure 2. In the leader–follower formation
system, there is a leader robot, and others are selected as follower robots. The ith robot is set as the
leader robot, and the kth robot is picked up as the representative of all follower robots. The relative
distance lik and relative bearing angle ϕik between the leader robot and follower robot are defined in
Figure 2. The relative distance lik means the distance between the center of the leader robot ith and the
front castor of the follower robot kth, described by

lik =
√
(xi − xk)

2 + (yi − yk)
2. (3)
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Here, (xi, yi) denotes the center of the leader robot i, and (xk, yk) represents the caster position of the
follower robot k. The calculation of xk, yk has the following form

xk = xk + r cos θ

yk = yk + r sin θ
. (4)

Here, r is the radius of the round robot, and (xk, yk) denotes the center of the follower robot k.
Simultaneously, ψik is formulated by

ψik = π + ζik − θi. (5)

Here, θi denotes the orientation angle of the leader robot i, ζik = arctan yi−yk−r sin θk
xi−xk−r cos θk

.
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Figure 2. Sketches of the leader–follower coordinated framework.

In this paper, the derivative and integral terminal sliding mode controller is designed so that
the follower robots can follow the leader robot with desired relative distance and angler. Therefore,
the following conditions are satisfied: The collisions between the robots are avoided. There is no
communication delay between the leader robot and the follower robot. Each follower robot knows its
position, velocity, and corresponding information of the leader robot.

According to leader–follower formation mechanism, the robots move along a specified trajectory
with desired relative distance and bearing angle. It is necessary to shape the dynamics of the
leader–follower formation system. Differentiate (3) and (5) twice with the respect to time t,
and substitute (2) into the second derivative of (3) and (5). Define the state variable xik = [x1 x2

x3 x4]T, where x1 = lik, x2 = ψik, x3 =
.
lik, x4 =

.
ψik. The dynamic model of the formation system has

the form of .
xik = f (xik, dik(t)) + Bik,1uk
yik = h(xik)

. (6)

Here, Bik,1 is a 2× 2 matrix whose columns are smooth vector fields Bik,1K. h(xik) is the output equation
of formation system. Here,

f (xik, dik(t)) = Aikxik + Bik,2d̃ik(t) + Bik,1∆kuk

Aik, Bik,1, Bik,2, h(xik) are described by

Aik =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

, Bik,2 =


0 0
1 0
0 0
0 1

, Bik,1 =


0 0

cos ϕik r sin ϕik
0 0

− sin ϕik
lik

d cos ϕik
lik

, h(xik) =

[
x1

x3

]
.
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Here, ϕik = ψik + θik, d̃ik(t) denotes the uncertainties of the leader–follower formation system (6),
written by

d̃ik(t) = Lik(I2 + ∆i)ui + Fik + Pik (7)

Lik =


0 0

− cos ψik 0
0 0

sin ψik
lik

−1

, Fik =


0
F1

0
F2

, Pik =


0
P1

0
P2

.

F1, F2, P1, P2 are depicted respectively by

F1 = (
.
ψik)

2
lik + 2

.
ψik

.
θilik + (

.
θi)

2
lik − r cos ϕik(

.
θk)

2

−( .
yk

.
θk −

.
yi

.
θi) cos(ψik +

.
θi)− (

.
xi

.
θi −

.
xk

.
θk) sin(ψik + θi)

F2 =
−( .

yk
.
ϕik−

.
ψik

.
yi) sin(ψik+θi)−r

.
θk

.
ϕik sin ϕik

lik
−( .

xk
.
ϕik−

.
ψik

.
xi) cos(ψik+θi)+iik((

.
yi−

.
yk) cos(ψik+θi)

lik

− (
.
xi−

.
xk) sin(ψik+θi )−r

.
θk

.
ϕik cos ϕik)

lik
P1 = −(πix − πkx) cos(ψik + θi)− (πiy − πky)sin(ψik + θi)

+rπkθ sin ϕik

P2 =
(πix−πkx)sin(ψik+θi)−(πiy−πky) cos(ψik+θi)

lik
+rπkθ sin ϕik−likπiθ

lik

.

2.3. Control Problem Formulation

Considering the dynamic mode (6) of the leader–follower formation system, a relative-degree is
calculated by

L f h1(xik) =
∂h1(xik)

∂x
f (xik, dik) (8)

L f h2(xik) =
∂h2(xik)

∂x
f (xik, dik) (9)

LBik,1K L f h1(xik, dik) = LBik,1K

(
L f h1(xik, dik)

)
=

∂
(

L f h1(xik, dik)
)

∂xik
· Bik,1K (10)

LBik,1K L f h2(xik, dik) = LBik,1K

(
L f h2(xik, dik)

)
=

∂
(

L f h2(xik, dik)
)

∂xik
· Bik,1K. (11)

Here, rK (K = 1, 2) is the smallest integer so that the least one of the control inputs appears in yrK
K (K = 1,

2), then [
yr1

1
yr2

2

]
=

 Lr1
f h1(xik) +

m
∑

K=1
LBik,1K L f h1(xik, dik)uk

Lr2
f h2(xik) +

m
∑

K=1
LBik,1K L f h2(xik, dik)uk

. (12)

Here, r1 = r2 = 2, m = 2. LBik,1K , L f are lie derivatives. Further, the input–output dynamic equation is
depicted by

..
yik = dik + H(xik, dik)uk. (13)

Here, dik = L̃ik(I3 + ∆i)ui + P̃ik + F̃ik, H(xik, dik) = Gik(I4 + ∆k). Here, I3, I4 are 2 × 2 matrices, ui is
the control input of ith robot, and other matrices are described by

Gik =

[
cos ϕik r sin ϕik

− sin ϕik
lik

r cos ϕik
lik

]
, L̃ik =

[
− cos ψik 0

sin ψik
lik

−1

]
, F̃ik =

[
F1

F2

]
, P̃ik =

[
P1

P2

]
.
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Hypothesis 1. H(xik, dik) has the normal part Gik and nonlinear part Gik∆k, and meets the following
in equation

δik I ≤ H(xik)H−1
dik ≤ δ−1

ik I. (14)

Here, δik > 1, Hdik = H
(

xd
ik

)
, I is the 2 × 2 square matrix,xd

ik denotes the desired state vector in (6).

Remark 1. Gik∆kuk is the matched uncertainties in (13), meaning the parameter fluctuations of the follower
robot k. The term dik depicts the unmatched uncertainties in the leader–follower formation system, and consists
of three parts. Due to the formation, framework (13) is applied to the follower robot, and the information of leader
robot ui can't be matched.

The terms F̃ik, P̃ik denote the model uncertainties and external disturbances caused by slipping,
friction, and obstacles etc., which are also hard to be matched.

3. Control Design

Due to the inherent characteristics of centralization, the scheme mainly depends on the leader
robots and exists as the “single point of failure” problem. In order to develop derivative and integral
terminal sliding mode approach to coordinate the leader robot i and follower robot k, a recursive
structure of the terminal sliding function for high relative-degree MIMO systems (with r1, r2 > 1) is
designed as

eik,DO1 = yik,1 − yd
ik,1, eik,DO2 = yik,2 − yd

ik,2, (15)

eik,D11 =
.
eP11/q11

ik,D01
+ γik,1eik,DO1, eik,D12 =

.
eP12/q12

ik,D02
+ γik,2eik,DO2, (16)

sik =

[
sik,1
sik,2

]
=

[
eik,D11 + λik,1eik,I1
eik,D12 + λik,2eik,I2

]
, (17)

where
.
eik,I1 = eq21/p21

ik,D11
, eik,I2 = eq22/p22

ik,D12
. γik,1, γik,2, λik,1, λik,2 are all positive constants. pKj > qKj, here K,

j = 1, 2. pKj and qKj are all odd positive constants.

Theorem 1. Considering the derivative and integral terminal sliding mode surface Sik(t) with the fractional
function, the state error of formation system can reach the equilibrium point e = 0 at the limited time

T = max
K=1,2

(
|eD1K(0)|1−q2K/q2K

αK(1− q2K/q2K)
+
|eD0K(t1K)|1−q1K/q1K

βK(1− q1K/q1K)

)
. (18)

Here, t1K (K = 1, 2) is the reaching time of terminal slide mode eD1K.

Proof. From (17), the sliding mode sik starts on t = 0. Then, the equations eik,D11 = −λik,1eik,I1 and
eik,D12 = −λik,2eik,I2 can always hold true by control design. Subsequently, substituting eik,D11 =

−λik,1eik,I1, eik,D12 = −λik,2eik,I2 into
.
eik,I1 = eq21/p21

ik,D11
and eik,I2 = eq22/p22

ik,D12
, respectively, yields

.
eik,I1(t) = −λ

q21/p21
ik,1 eq21/p21

ik,I1 ,
.
eik,I2(t) = −λ

q22/p22
ik,2 eq22/p22

ik,I2 . (19)

�

The converge time of sliding mode eik,I1 and eik,I2 can obtained by solving (19).

t11 =

∣∣eik,D11(0)
∣∣1−q21/p21

λik,1(1− q21/p21)
, t12 =

∣∣eik,D12(0)
∣∣1−q22/p22

λik,2(1− q22/p22)
(20)
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In sliding mode sik = 0, eik,D11 = −λik,1eik,I1, and eik,D12 = −λik,2eik,I2 can always hold true.
Therefore, the reaching time of eik,D11 and eik,D12 are the same as the convergence time of eik,I1 and eik,I2,
respectively. When eik,D11 = eik,D12 = 0, eik,I1 and eik,I2 will converge to zero successfully. At t = t1K (K
= 1, 2), the eik,I1 and eik,I2 are formulated by

.
eik,D01(t11) = −γ

q11/p11
ik,1 eq11/p11

ik,D01 (t11),
.
eik,D02(t12) = −γ

q12/p12
ik,2 eq12/p12

ik,D02 (t12). (21)

Solving (21), the
.
eik,D01,

.
eik,D02 from

.
eik,D01(t11),

.
eik,D02(t12) to

.
eik,D01 =

.
eik,D01 = 0 will spend

the time

t01 =

∣∣eik,D01(0)
∣∣1−q11/p11

γik,1(1− q11/p11)
, t02 =

∣∣eik,D02(0)
∣∣1−q12/p12

γik,2(1− q12/p12)
. (22)

Since the sliding mode sik = 0 consists of the derivative term and integral term, the time TK
spending from sik.K = 0 (K = 1, 2) to eik,K = 0 (K = 1, 2) is the summation of the two terms. Since the
fact that each sliding mode sik,1, sik,2 is independent, the time spent for equilibrium point is the max of
the TK.

Hypothesis 2. ‖ dik ‖∞ ≤ dik. It means that the unmatched uncertainties of formation system (13) have
a boundary.

Differentiating the sliding function sik with the respect to time t, and substituting (13) into the
derivative of sik can get

.
sik = diag

[
p11

q11

.
e(P11/q11−1)

D01 ,
p12

q12

.
e(P12/q12−1)

D02

][
dik + H(xik, dik)uk −

..
yd

ik

]
+ φik, (23)

where yd
ik =

[
yd

ik,1 yd
ik,2

]T
denotes the desired distance and angle between the leader robot and

follower robots. φik =
[

φik,1 φik,2

]T
. φik,1 and φik,2 are depicted respectively by

φik,1 = γik,1
.
eD01 + λik,1eq21/p21

D11 , φik,2 = γik,2
.
eD02 + λik,2eq22/p22

D12 . (24)

The derivative and integral terminal sliding mode control law is set as

u = Ĥ−1
dik

[ ..
yd

ik − keik‖ φik ‖diag
[

q11
p11

, q12
p12

]
A−1

πik
sik
‖sik‖1

]
−H−1

ik

(
dik(t)− kiksign(sik)− ηiksik

) , (25)

where sign(sik) = sign
[

sik,1 sik,2

]T
, keik, ηik are all the positive constant set by designer. dik(t) is the

upper bound of the unmatched uncertainties.

Aπik =
[

Aπik,1 Aπik,2

]T
, Aπik,K (K = 1, 2) are written as

Aπik,K =

{ .
e(p1K/q1K−1)

ik,0K , f or
∣∣∣ .
e(p1K/q1K−1)

ik,0K

∣∣∣ ≥ εik

εik, otherwise
. (26)

Here, εik > 0, χik and keik meet the following conditions

‖
(

Aπik − diag
[ .
e(P11/q11−1)

ik,D01 ,
.
e(P12/q12−1)

ik,D02

])
A−1

πik ‖ ≤ χik < 1, (27)

keik > 1/(1− χik). (28)
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Substitute the control law (25) into (23), considering the conditions (26). Then,
.

Vik < 0 can be
guaranteed when kiek > dik holds true. However, apart from Hypothesis 2, the unmatched uncertainties
dik in (13) are unknown, which means that the upper bound is also unknown. Therefore, it cannot
select an appropriate parameter kiek to guarantee

.
Vik < 0. Therefore, the stability of control system

cannot be guaranteed.

DIT-SMC Design Based NDOB

In order to resolve the above problem, the nonlinear disturbance is proposed to estimate the
uncertainties dik in the leader–follower formation system (13). At first, the following assumption is
taken into account.

Hypothesis 3. The unmatched uncertainties possess a slow change rate, meaning that
.
dik ≈ 02×1, where

02×1 =
[

0 0
]T

.

Considering the formation dynamic model (6), the nonlinear disturbance observer is
formulated by { .

zik = −LikBik,2 pik − Lik(Bik,2Likxik + Aikxik + Bik,1(1 + ∆k)uk)

d̂ik = zik + Likxik
. (29)

Here zik ∈ R2×1, Lik ∈ R2×1, d̂ik ∈ R2×1 are the state vector of nonlinear disturbance observer, the
observer gain matrix set by designer, and the estimated value of unmatched uncertainties respectively.

Define the estimate error vector as

edik = dik − d̂ik.

Differentiate edik with respect to time t and take the Hypothesis 3 into account. Furthermore, the
dynamics of edik is presented as

.
edik =

.
dik −

.
d̂ik

= − .
pik − Lik

.
xik

= LikBik,2 pik + Lik(Bik,2Likxik + Aikxik + Bik,1(I + ∆k)uk)

−Lik(Aikxik + Bik,1(I + ∆k)uk + Bik,2dik)

= LikBik,2

(
d̂ik − Likxik

)
+ Lik(Bik,2Likxik + Aikxik + Bik,1(I + ∆k)uk)

−Lik(Bik,2dik + Aikxik + Bik,1(I + ∆k)uk)

= LikBik,2

(
d̂ik − dik

)
= −LikBik,2edik

. (30)

The solution of (30) is edik = exp(−LikBik,2t)edik(0), which indicates the estimate error will
exponentially converge to zero as t→ ∞ if LikBik,2 is set as a positive constant. Here, edik(0) is the
initial state of edik.

Considering input–output dynamics (13) and observer (29), the control law based on NDOB is
determined by

u = Ĥ−1
dik

[ ..
yd

ik − keik‖ φik ‖diag
[

q11
p11

, q12
p12

]
A−1

πik
sik
‖sik‖1

]
−H−1

ik

(
d̂ik(t)− kiksign(sik)− ηiksik

) . (31)

Theorem 2. Consider the dynamic model of leader–follower formation system (6), take the assumption 1, 2, 3,
4 into account, adopt the input–output model (13), design the derivative and integral terminal sliding mode
surface (17) and nonlinear disturbance observer (29). If the derivative and integral terminal control law is
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set as (31), the leader–follower formation system with unmatched uncertainties is asymptotically stable when
kiek > e∗d .

Proof. Selecting the Lyapunov function as Vik =
1
2 s

.
s, differentiating Vik with the respect to time t and

substituting the
.
sik into the derivative of Vik yields

.
Vik =

sT
ik

‖sik‖2
diag

[
p11
q11

, p12
q12

]
Jik

{
dik − d̂ik − ηiksik
−kiksgn(sik)

}
+

sT
ik

‖sik‖2
φik − δikkeik‖ φik ‖sT

ik HĤ−1
dik Jik A−1

πik
sik

‖sik‖1‖sik‖2

. (32)

Here, Jik = diag
[ .
e(P11/q11−1)

D01 ,
.
e(P12/q12−1)

D02

]
. Since p1K > 0, q1K > 0, p2K > 0, q2K > 0, p1K > q1K, p2k > q2K

exist in the controller,
.
e(P11/q11−1)

D01 and
.
e(P12/q12−1)

D02 hold true for all
.
e(P11/q11−1)

D01 6= 0,
.
e(P12/q12−1)

D02 6= 0.
According to the Hypothesis 1, (27), the second term and the third term can be deduced by

sT
ikφik − δikkeik‖ φik ‖sT

ik Jik HĤ−1
dik A−1

πik
sik
‖sik‖

≤ ‖ φik ‖‖ sT
ik ‖ − keik‖ φik ‖‖ sT

ik ‖
+ke‖ φik ‖‖ (Aπik − Jik)A−1

πik ‖‖ sik ‖
≤ ‖ φik ‖‖ sik ‖ − keik(1− χik)‖ φik ‖‖ sik ‖
≤ 0

. (33)

�

In (33), the condition keik > 1/(1− χik) can be picked up so that the ‖ φik ‖‖ sik ‖ −
keik(1− χik)‖ φik ‖‖ sik ‖ ≤ 0 holds true.

The first term of
.

Vik has the following form of

sT
ik

‖sik‖2
diag

[
p11
q11

, p12
q12

]
Jik

{
Z(xik, dik)− d̂ik − kiksgn(sik)− ηiksik

}
≤ min

{
diag

[
p11
q11

, p12
q12

]
Jik

}(
−kik

‖sik‖1
‖sik‖2

− ηik
‖sik‖2

2
‖sik‖2

+ sT

‖sik‖2

[
‖ edik ‖∞
‖ edik ‖∞

])
≤ min

{
diag

[
p11
q11

, p12
q12

]
Jik

}(
−kik

‖sik‖1
‖sik‖2

− ηik
‖sik‖2

2
‖sik‖2

+
‖sik‖1
‖sik‖2

‖ edik ‖∞

)
= min

{
diag

[
p11
q11

, p12
q12

]
Jik

}(
−(kik − ‖ edik ‖∞)

‖sik‖1
‖sik‖2

− ηik
‖sik‖2

2
‖sik‖2

)
. (34)

ηik > 0, kik > ‖ edik ‖∞ can be selected in the control design in order to ensure

sT
ik

‖sik‖2
diag

[
p11
q11

, p12
q12

]
Jik


Z(xik, dik)− d̂ik
−kiksgn(sik)

−ηiksik

 ≤ 0 is held true.

.
Vik < 0 can be picked up by deducing from (32)–(34). That illustrates the control law can

asymptotically stabilize the leader–follower formation system by the derivative and integral terminal
sliding mode. Therefore, the follower robots can trace the leader robot with the desired distance and
angle steadily. The characteristics of DIT-SMC method are as follows: (1) the convergence time Tk can
be adjusted by the parameters of the control law; (2) the formation system starts on the derivative and
integral terminal sliding surface; (3) the singular problem of T-SMC is avoided; (4) the derivative term
can weaken the nonlinear effect.

In (31), the parameter must be assigned as a conservative value to guarantee the formation system
stability. From (30), edik can be exponentially convergent to 02×1 by selecting Lik, meaning that κik can
be very small. Even if κik is assigned from a conservative perspective, its value may not be very large.
That illustrates the DIT-SMC based NDOB control law protects the formation from the high switching
frequency problem, and can substantially alleviate the chattering problem.
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4. Numerical Simulations

Considering the dynamic model of the leader–follower formation system (6), the derivative and
integral terminal sliding mode controller is proposed. There are three robots in the leader–follower
framework, where the two follower robots track along with the leader robot. The radius of each robot
is 0.05 m. The parameter fluctuations in formation system are determined by

∆i = ∆k =

[
0.3rand()− 0.15 0

0 0.3rand()− 0.15

]
, (35)

where i = 1 denotes the leader robot, and k = 2, 3 represent the two follower robots. The uncertainties
and external disturbances in lumped model (6) are depicted by

πix = πiy = πiθ = 0.5 sin(2πt)
πkx = πky = πkθ = 0.2 sin(πt)

(36)

The parameters in control design are set as γ12,1 = γ12,2 = γ13,1 = γ13,2 = 4, λ12,1 = λ12,2 = λ13,1 =
λ13,2 = 1, p11 = p12 = 9, q11 = q12 = 7, q21 = 3, p21 = 5, q22 = 7, p22 = 9, ke12 = ke13 = 20, ε12 = ε13 = 4, k12 =
k13 = 2, δ12 = δ13 = 4, η12 = η13 = 0.2.

Considering the circle trajectory for the formation system in Figure 3, the initial state vector is
respectively set as x0

12 = [0.5 m 0 m/s−1 3.2π/4 rad 0 rad/s], x0
13 = [0.707 m 0 m/s−1 3π/4 rad 0 rad/s].

The desired state vectors are respectively designated as xd
12 = [0.13 m 0 m/s−1 π/2 rad 0 rad/s], xd

13
= [0.26 m 0 m/s−1 π/2 rad 0 rad/s]. The desired linear and angular velocities of leader robot are
designated as vd

1 = 0.5 m, ωd
1 = 1 rad/s. The simulation results are shown in Figures 4–6.
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Figure 3. Moving trajectory of leader–follower formation system.

Figure 3 displays the moving curve of the formation system, which shows the robots are in a line
while moving along the circular trajectory. In Figure 3, the solid point denotes the initial position of the
formation robots. The arrows are the moving directions of the three robots. It is seen form the Figure 3
that the follower can track the leader robot with the desired distance and angle, while the leader robot
tracks the circular trajectory.
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In order to provide more insight into the system performance, some comparisons among the
SMC method, the second-order SMC, the SMC based NDOB [18], and the DIT-SMC based NDOB are
shown in Figures 4–6. The parameters of the sole SMC and SMC based NDOB method are presented
in [18], and the parameters of second-order SMC are same as paper [20]. The relative distance and
relative angular between the leader robot 1 and the two follower robots 2, 3 are displayed in Figure 4.
Comparing with the SMC method, the second-order SMC and the SMC based NDOB, the DIT-SMC
based NDOB method has shorter convergence time and smoother than the other methods.Appl. Sci. 2018, 8, x FOR PEER REVIEW  12 of 16 
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Figure 5. The acceleration and angular acceleration of follower robot 2; (a) α2; (b) β2.

Figure 5 denotes the control input of follower robot 2 using different control method. In Figure 5a,
the acceleration of follower robot 2 are shown, while the angular accelerations of follower robot 2 are
displayed in Figure 5b. From Figure 5a,b, the control input of DIT-SMC based NDOB is smoother than
other control methods, which denotes the acceleration and angular acceleration are more stable.
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Figure 6. The acceleration and angular acceleration of follower robot 3; (a) α3; (b) β3.

The control inputs of follower robot 3 are shown in the Figure 6, which denotes the acceleration
and angular acceleration of follower robot 3. The accelerations of follower robot of follower robot
using the three control methods are displayed in Figure 6a, while the angular acceleration using
three methods are shown in Figure 6b. From Figures 5 and 6, the combination of the DIT-SMC and
NDOB can benefit the decrease of the chattering phenomenon that is an inherent drawback of the
SMC methodology.

Figure 7 denotes the sliding mode vectors of two follower robots. As proven in the Theorem 1,
the reaching time of sliding surface will be eliminated, and the error of formation system will reach
to the equilibrium point in the finite time. From Figure 7, the formation system can enter the sliding
mode in the beginning, which can guarantee the system stability.
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Figure 8 illustrates the elements of the estimate-error vectors, where the vectors ed12 are shown in
the Figure 8a, and the vectors ed13 are shown in the Figure 8b. From the Figure 8, the estimate-error can
converge to zero in the finite time. The value of estimate-error is max when t = 0, that is, the maximum
is less than 0.5. However, the value of kik is selected 2. Therefore, the system stability can be guaranteed.Appl. Sci. 2018, 8, x FOR PEER REVIEW  15 of 16 
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5. Conclusions 

This paper investigates the formation control problem of multi-robot systems based on the 
leader–follower mechanism. The leader–follower formation system becomes uncertain because of 
some adverse effects, such as the parameter fluctuations, external disturbances, and so on. In order 
to estimate the uncertainties, a control scheme, combining the DIT-SMC and the NDOB, is proposed 
under the assumption that the uncertainties have an unknown boundary. The stability of the control 
scheme is proven in the light of Lyapunov theorem. Some simulation results are demonstrated to 
show the feasibility of the control scheme. 
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5. Conclusions

This paper investigates the formation control problem of multi-robot systems based on the
leader–follower mechanism. The leader–follower formation system becomes uncertain because of
some adverse effects, such as the parameter fluctuations, external disturbances, and so on. In order
to estimate the uncertainties, a control scheme, combining the DIT-SMC and the NDOB, is proposed
under the assumption that the uncertainties have an unknown boundary. The stability of the control
scheme is proven in the light of Lyapunov theorem. Some simulation results are demonstrated to show
the feasibility of the control scheme.
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