
Article

HM3alD: Polymorphic Malware Detection Using
Program Behavior-Aware Hidden Markov Model

Asghar Tajoddin and Saeed Jalili *

Faculty of Electrical and Computer Engineering, Tarbiat Modares University, P.O. Box 14115-194 Tehran, Iran;
a.tajoddin@modares.ac.ir
* Correspondence: sjalili@modares.ac.ir; Tel.: +98-21-8288-4935

Received: 24 May 2018; Accepted: 25 June 2018; Published: 26 June 28
����������
�������

Abstract: Malware have been tremendously growing in recent years. Most malware use obfuscation
techniques for evasion and hiding purposes, but they preserve the functionality and malicious
behavior of original code. Although most research work has been mainly focused on program
static analysis, some recent contributions have used program behavior analysis to detect malware
at run-time. Extracting the behavior of polymorphic malware is one of the major issues that affects
the detection result. In this paper, we propose HM3alD, a novel program behavior-aware hidden
Markov model for polymorphic malware detection. The main idea is to use an effective clustering
scheme to partition the program behavior of malware instances and then apply a novel hidden
Markov model (called program behavior-aware HMM) on each cluster to train the corresponding
behavior. Low-level program behavior, OS-level system call sequence, is mapped to high-level
action sequence and used as transition triggers across states in program behavior-aware HMM
topology. Experimental results show that HM3alD outperforms all current dynamic and static
malware detection methods, especially in term of FAR, while using a large dataset of 6349 malware.

Keywords: polymorphic malware detection; program behavior-aware hidden Markov model;
dynamic analysis; system call monitoring; action sequence

1. Introduction

Endpoint security is regarded as the most important and the last defense point in security
threats [1]. According to this requirement, malware detection is the vital issue in computer security.
Today, malware are assumed as essential threats in the software industry [2]. In an annual report,
Symantec mentions that just in 2015 alone more than 430 × 106 malware variants were created [3].
In this regard, many methods have been proposed that focus on detecting and classifying malware [1].
Due to the increasing growth of malware, anti-viruses are usually unable to completely detect them,
because malware programs usually attempt to hide themselves using obfuscation methods so they are
hard to detect by static analysis [4].

1.1. Malware

The terms malicious software and malware refer to any computer program that performs
malicious activities on a host or accesses a private computer system to gather sensitive information
from users without their knowledge. From the beginning of malware’s existence, they used code
obfuscation to evade detection. Using the obfuscation technique, malware authors generate new
malware variants of known malware and easily bypass detection methods. Polymorphism is another
attribute that is commonly employed by malware. Polymorphism is an encryption technique that
is used to mutate the static binary code of malware to prevent their detection [5]. When an infected
program is run, the malware is decrypted and loaded into memory and then infects other programs

Appl. Sci. 2018, 8, 1044; doi:10.3390/app8071044 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://www.mdpi.com/2076-3417/8/7/1044?type=check_update&version=1
http://dx.doi.org/10.3390/app8071044
http://www.mdpi.com/journal/applsci

Appl. Sci. 2018, 8, 1044 2 of 23

and/or any type of executable content and tries to run a new version of itself [5]. These malware use a
permutation engine to produce a new encryption procedure at runtime. If a malware presents a new
behavior (by new functionalities or by combining the features of existing malware), it is called a zero
day malware. Malware variants refer to all new malware that are produced manually or automatically
from any existing malware [4,5].

1.2. Malware Analysis and Detection

Malware analysis is the process of understanding malware behavior and how to detect and
eliminate them by capturing the important characteristics of a given malware sample [6]. This is
particularly important for preventing and detecting future cyber attacks against the host and
network. There are two main methods of analyzing malware, known as static and dynamic analyses.
Static analysis (i.e., code analysis) examines the sample program without running it and inspects the
program’s binary code to determine its behavior. Static analysis explores all possible execution paths
in a program—not just those invoked during execution—but it cannot deal with malware employing
anti-reverse engineering technologies such as code packing and obfuscation [6]. Dynamic analysis (i.e.,
behavior analysis) executes the program in a controlled environment and monitors its behavior. Thus,
dynamic analysis explores what function with what arguments is called and detects most obfuscation
attempts [6]. The combination of these two methods, hybrid method, could certainly further improve
the detection results [7].

Based on malware analysis type, malware detection methods in general fall into two categories:
signature-based and anomaly-based. Signature-based (i.e., knowledge or misuse) detection methods
use some common sequence patterns (i.e., signatures found in the binary code of malware instances)
to identify malware. Most often, signature-based detection methods are very fast because they do
not run samples to identify malware. Note that this method is used on most popular commercial
antivirus software. The main drawback of signature-based methods is that they are not effective against
polymorphism and obfuscation methods, so they cannot detect modified and unknown malicious
executables [8,9].

Anomaly-based detection methods build a reference model for the normal behavior of benign
programs and look for deviation of programs from the normal behavior to detect them as malware [10].
While anomaly-based methods can detect unknown and zero-day malware, their main weakness is
their high false positive rate [10,11].

In this paper, we propose HM3alD, a dynamic malware detection method based on HMM and
high level actions to detect polymorphic malware such as bots, worms, viruses and Trojan horses.
Specifically, the proposed method includes the following steps in the training phase: (1) It extracts
high level action sequences from system call sequences correspondingly. (2) It clusters only malware
action sequences (i.e., malware programs) to group similar sequences. (3) It uses HMM as a one-class
classifier to learn the model of malware action sequences per each cluster. (4) It calculates the decision
threshold of each malware HMM to discriminate between benign and malware programs. Finally,
the detection phase of HM3alD gives the action sequence of a ran program to all learned HMMs and
receives the probabilities returned from them. HM3alD detects the ran program as benign, if all of
the probabilities are less than the corresponding decision thresholds of learned HMMs, otherwise it is
considered as malware.

HM3alD outperforms important previous dynamic and static malware detection methods
especially in term of FAR that is a hard work to decrease it without sacrificing DR, and its advantages
are: (1) high detection rate; (2) low false alarm rate; (3) low performance overhead; and (4) near to
online malware detection.

1.3. Contributions

In the proposed method, HMM is used to stochastically represent program behavior using traces
of action sequences issued by processes at run time. The main contributions of this paper are: (1) HMM

Appl. Sci. 2018, 8, 1044 3 of 23

topology is devised based on program stages (i.e., initialization, running, and termination) to achieve
low false alarm rate and high detection rate; and (2) HMM is applied on malware action sequences
(derived from system call sequences of programs) to detect polymorphic malware dynamically and
decrease the complexity of training phase dramatically. As a result, the proposed method is scalable
because it uses only 26 actions (i.e., observations in HMM) that are not increased by increasing the
number of malware samples.

1.4. Paper Structure

The rest of paper is organized as follows: Section 2 presents the research literature of malware
analysis and detection methods. Section 3 briefly describes the necessary background. In Section 4,
the proposed method is explained along with an analysis of its time complexity. In Section 5,
we evaluate the performance of HM3alD using a large dataset and compare it with other methods.
In Section 6, we analyze and discuss the idea behind HM3alD. In Section 7 the paper is concluded.

2. Related Work

We introduce research that detects polymorphic and metamorphic malware by behavioral
methods. According to the type of analysis, we divide this section into two parts: “static analysis” and
“dynamic analysis”.

2.1. Static Analysis-Based Methods

Faruki et al. [12] used API call gram (i.e., the sequence of API calls of a program) to detect
malware. They first extracted a call graph from the disassembled instructions of a binary program,
and then converted the graph to a call gram. Finally, their pattern-matching engine performs
the detection, according to the call gram. Unfortunately, the authors did not report their performance
overhead. Kalbhor et al. [13] introduced a method to detect metamorphic malware based on HMMs.
They analyzed metamorphic malware that are produced by malware generators such as NGVCK.
One HMM is trained for each malware generator and finally malware are detected by similarity degree.
Wong and Stamp [14] also presented a method to detect metamorphic malware using HMMs. Similar
to the previously mentioned method, an offline static analysis based on Opcodes has been used in
this work too. Austin et al. [15] proposed a model using HMM in which they try to distinguish
the compiled codes and the assembly codes written by malware developers. Song and Touili [16]
presented a detection scheme based on model checking. In this work, a program and its behavior
are explained using formal language. Then, the program behavior is checked to detect malware.
Shahid et al. [5] proposed a detection framework that uses control graphs to detect metamorphic
malware online. Ding et al. [17] proposed QOOA that is an API-based association mining method
for malware detection. Hellal et al. [18] presented a new graph mining method to detect variants of
malware using static analysis. They proposed a novel algorithm, called minimal contrast frequent
subgraph miner algorithm (MCFSM), for extracting minimal discriminative and widely employed
malicious behavioral patterns which can identify an entire family of malicious programs.

2.2. Dynamic Analysis-Based Methods

Park et al. [19] proposed a method that clusters polymorphic worms. It uses system call graphs.
Thus, it has a high complexity, but its false alarm rate is zero. Shahzad et al. [20] used process control
blocks (PCB) at runtime and recorded runtime information of processes such as memory data and
execution addresses. They detected malware by decision trees. Elhadi et al. [21] proposed a method to
build call graphs of programs at runtime and distinguish malware and benign programs by comparing
their call graphs with known malware call graphs. Shehata et al. [22] presented a detection method
based on observing system calls at runtime. They mapped system calls to some high-level actions
and considered them as features to learn decision trees in order to detect malware. Salehi et al. [23]
proposed a dynamic malware feature selection method, called MAAR, based on the name of API calls

Appl. Sci. 2018, 8, 1044 4 of 23

and their arguments and/or return values recorded during runtime. Several well-known classifiers
such as Random forest (RF), Decision Trees, Sequential minimal optimization (SMO), and Bayesian
logistic regression (BLR) are used in this study. Christodorescu et al. [24] designed an algorithm to
build a call graph by which its nodes are system calls and its edges correspond to the interdependency
of system calls. Kolbitsch et al. [25] also generated behavioral graphs by using taint analysis without
considering system call arguments. In these graphs, only the data dependencies are considered.
Ding et al. [26] built a common behavior graph for each malware family. They used a dynamic
taint analysis technique to find the dependency relations between system calls, and then built a
system call dependency graph by tracing the propagation of the taint data. Based on the dependency
graphs of malware samples, they proposed an algorithm to extract the common behavior graph to
detect malware.

3. Background

In this section, we introduce some basic concepts and techniques used throughout this paper.

3.1. Malware Obfuscation

Obfuscation is a technique that obscure the control flow and data structures of a program without
differing in its functionality and behavior. Originally, this technology was introduced for the intellectual
property of software developers, but it has been broadly used by malware authors to evade from
detection engines. Obfuscation techniques are classified into the three categories: “data obfuscation”,
“static code rewriting”, and “dynamic code rewriting”. Data obfuscation modifies the form in a
program storing the data to hide it from direct analysis. Static code rewriting is similar to compiler
optimization, as it modifies program code during obfuscation without any further modifications at
runtime. Dynamic code rewriting modifies programs such that the executed code differs from the code
that is statically visible in the executable [27].

Polymorphic malware is a type of malware that constantly changes its identifiable features with
the help of the obfuscation methods to elude detection. Even though the polymorphic malware
effectively thwarts the signature based detection techniques relied on by security solutions such as
antivirus software [28].

3.2. Hierarchical Clustering

Clustering is defined as an unsupervised learning to find groups such that objects in the same
group (called a cluster) are more similar to each other than to those in other groups. Among many
approaches for clustering, hierarchical clustering only uses similarities of objects, without any other
requirement on the data [29].

There are two hierarchical clustering algorithms: divisive and agglomerative. A divisive clustering
algorithm follows the top-down approach, starting with a single group and breaking up large
groups into smaller groups, until each group contains a single object or it meets certain termination
conditions. The agglomerative clustering algorithm follows the bottom-up approach, starting with
groups, each initially containing one training object, and then merging similar groups into larger
groups, until there is a single one or certain termination conditions are satisfied. At each iteration of an
agglomerative clustering algorithm, the two closest groups are selected to merge based on similarity
measures or links. In single-link clustering, the distance between groups is defined as the smallest
distance between their closest objects of the two groups. In complete-link clustering, the distance
between groups is taken as the farthest distance between their objects of the two groups [29].

Choosing the number of clusters in a dataset is a fundamental issue. There are various ways to
fine-tune the number of clusters. One of the common methods is the “elbow method”. In this method,
first the reconstruction error or log likelihood is plotted as a function of k (i.e., the number of clusters)
and then the “elbow” points are sought as an indicator of the appropriate number of clusters. In this

Appl. Sci. 2018, 8, 1044 5 of 23

method, the number of clusters is chosen such that adding another cluster does not give much better
modeling of the data [29].

3.3. Hidden Markov Model

Markov models [29] are state machines in which the current state depends on previous states
statistically. In a first order Markov model, the next state depends on only the current state. A hidden
Markov model (HMM) is a statistical Markov model in which the states are not observable directly
so they are called hidden states. In summary and formally, HMM includes the following elements,
the set of N distinct states: S = {s1, s2, . . . , sN}; the set of M distinct observations in each state:
V = {v1, v2, . . . , vM}; A: state transition probabilities, A = [arj] where arj = P(qt + 1 = Sj|qt = Sr); B:
observation probabilities, B = [bj(m)] where bj(m) = P(Ot = vm|qt = Sj); π: initial state probabilities;
and π = [πr] where πr = P(q1 = Sr). Recall that qt denotes the state at time t where t = 1, 2, ..., N.
Thus, an HMM, λ = (A, B, π), is defined by A, B, and π (and implicitly by M and N dimensions). For a
set of observation sequences X = {Ol}l , an HMM λ is trained such that P(X |λ), the probability X
generated from λ is maximized. Then, for any given observation sequence Ol , and the learned model λ,
HMM by applying a forward algorithm finds the corresponding state sequence Q = {q1, q2, . . . , qT}
of Ol , such that it maximizes P(Ol |λ).

The last issue is HMM topology, which is defined by the number of the states and their connections.
Three kinds of general topologies can be found: “Bakis topology”, “left–right topology” and “fully
connected topology” [30]. In Bakis topology, the rule is: arj > 0 only for j = r or j = r + 1. In the
left–right topology, the rule is: arj > 0 for j ≥ r; and in the fully connected topology the rule is: arj > 0
for any r, j. The third topology is also called the ergodic model. Note that the HMM topology can
be serial or parallel. In a parallel mode, a sequence of states is parallelized with another sequence
of states.

4. Proposed Method: HM3alD

HM3alD dynamically detects polymorphic malware based on system calls. It comprises two
main phases: the training phase and detection phase. Figure 1 shows the architecture of the HM3alD
method. In the following subsections, we describe each of these phases in detail.

4.1. Training Phase

In the training phase, first we collect the behavior (i.e., sequence of system calls) of malware
programs in a controlled environment called sandbox and we extract high-level action sequences from
system call sequences. After that, we cluster all malware action sequences. Therefore, we get some
malware clusters where the action sequences of each cluster are very similar to each other. We denote
the malware cluster set by C = {c1, c2, . . . , ck} where k is the number of malware clusters. Then,
we consider a fraction of action sequences of each malware cluster ci as training observation sequences,

Xci = {Ol}|Xci |
l=1 and train its corresponding HMM, λci , where Ol = {Ol

1, Ol
2, . . . , Ol

Tl
} is the lth action

sequence and |Xci | (cardinality of Xci) denotes the number of training action sequences in cluster ci.
Finally, we compute a decision threshold, Tci , for each malware HMM, λci , based on another fraction
of ci, called Vci and some benign action sequences, called Vb.

Appl. Sci. 2018, 8, 1044 6 of 23

Figure 1. The architecture of HM3alD.

4.1.1. Training Profiler

In dynamic program analysis, we monitor programs’ executions and extract their system calls
using “API (Application programming interface) hooking” [31]. This technique allows us to intercept
all system call sequences made by running processes. A system call is basically a user request to the
kernel of the operating system to get some services, such as opening and closing files, creating and
executing a process, or accessing network resources. Sandbox [32] is used to record system calls
of a program that are being executed. The training profiler module provides an application level
virtualization using sandbox.

4.1.2. Preprocessing

System call sequence is an important resource for dynamic malware detection, but it is too
fine-grained, so we map a system call sequence S = {s1, s2, . . . , sn} to a high-level action sequence
AS = {v1, v2, . . . , vT} where each action vi is a subsequence of system calls. Twenty-six actions are
defined that are classified in seven sets and are described in Appendix A. The process of generating an
action sequence from a system call sequence is presented by Algorithm 1.

4.1.3. Clustering Action Sequences

Since learning techniques (i.e., HMM) have high performance when input samples are more
similar to each other and since malware programs may have different classes of action sequences,
we therefore partition all action sequences of malware set to some clusters (i.e., C = {c1, c2, . . . , ck})
using complete-link agglomerative hierarchical clustering method [33], where each cluster has
high cohesion (i.e., high similarity) and less similarity with other clusters. In the process of
clustering, we compute the normalized similarity of every two action sequences ASi and ASj based
on Equation (1). Here, ED(ASi, ASj) is the edit distance of ASi and ASj, which is computed by the
Levenshtein technique [34].

Sim(ASi, ASj) = 1−
ED(ASi, ASj)

max(length(ASi), length(ASj))
. (1)

Appl. Sci. 2018, 8, 1044 7 of 23

Algorithm 1 : Preprocessing, generating an action sequence from a system call sequence
Input:

S = A system call sequence S = {s1, s2, . . . , sn}.

Output:

AS = An action sequence for system call sequence S.

1: Define an empty array B such that each array element specifies a system call sequence during the

execution of algorithm.
2: Initialize A with 26 base actions: A = {v1, v2, . . . , v26}
3: for each si ∈ S do
4: ` = OS_Handle(si) . get the Operating System handle pointer of si
5: insert(B(`),si) . for any system call, insert it to B(`)
6: if si is a releasing system call then . A releasing system call releases the dependent resources

and invalidate the handle.
7: v = Match(A,B(`)) . Match B(`) to the corresponding action in A by a hash function
8: insert(AS,v) . Insert action (v) to AS
9: end if

10: end for

In the hierarchical clustering method, we plot the reconstruction error as a function of k and look
for an elbow. Then, we set k at elbow. k_Set denotes the set of all candidate k values that points to the
one of the elbow points. In HM3alD, the principle rule is to select the smallest possible k that leads to
set of suitable HMMs. We select the smallest k such that: (1) k ∈ k_Set; and (2) there is only at most
one cluster ci where its members are not similar enough and has just few action sequences. Note that,
according to our experience on HMM, if the average similarity of a cluster is less than 0.5, then the
corresponding HMM is not converged accurately and leads to a high false alarm rate.

4.1.4. Training HMMs

This section is presented in three parts: (1) input sequences; (2) HMM topology; and (3) yraining.
Input sequences: Action sequences of programs at runtime are observation sequences.
HMM topology: We define the topology of HMMs based on program behavior. Recall that each

program consists of three main stages at runtime: (1) initialization; (2) running; and (3) termination.
In the initialization stage, each program sets its variables by initial values and allocates its required
resources. Thus, we consider this stage as following the serial Bakis topology. In the running stage,
programs perform some iterative units of work in the form of conditions and loops. Thus, we consider
this stage as following the parallel fully connected (ergodic) topology. The termination stage is
somewhat similar to the initialization stage: it publishes the program outputs, deallocates the resources,
and terminates the program. Thus, we consider this stage as following the Bakis topology. Figure 2
expresses the novel program behavior-aware HMM topology where the number of states at running
stage should be determined.

Training: To learn an HMM, λci = (πci , Aci , Bci), on each malware cluster ci, we must set its initial
state probability πci = {π1 = 1}; its transition probability matrix Aci = {arj = P(qt+1 = Sj|qt = Sr)};
and its observation probability matrix Bci = {bj(vm) = P(Ot = vm|qt = Sj)}. To learn HMM λci ,
we first determine the number of states Nci and then initialize Aci and Bci matrices.

According to the proposed program behavior-aware topology (Figure 2), matrix Aci consists
of some transitions so the weights of other transitions are zero. Thus, we initialize the values of its

non-zero elements randomly with constraint ∑
Nci
j=1 arj = 1. We initialize matrix Bci randomly with

constraint ∑M
m=1 bj(vm) = 1, where M = 26 (i.e., the number of actions). Figure 3 shows a six-state

HMM topology and its corresponding matrix A.

Appl. Sci. 2018, 8, 1044 8 of 23

Figure 2. The proposed program behavior-aware HMM topology in HM3alD.

Figure 3. A six-state program behavior-aware HMM topology and its corresponding transition
probability matrix A.

To estimate the number of states of each cluster (i.e., Nci), we compute the number of unique
actions that are observed across all sequences corresponding to that cluster. Since they are based
on three-stage program behavior-aware topology, the minimum and maximum values of Nci are
3 and 26, respectively.

After calculation of Nci and initialization of Aci and Bci , we apply the Baum–Welch algorithm [29]
on each cluster ci to train (the parameters of) its corresponding HMM, λci . The Baum–Welch algorithm
is an EM-like algorithm and guarantees to converge towards local optima. The Baum–Welch algorithm
iterates the E step and the M step, yielding monotonically increasing log-likelihoods, and the algorithm
is terminated when the difference of two subsequent log-likelihoods falls below ε that is near to zero
or the maximum number of iterations is met. Typically, the algorithm reaches different local maxima
or saddle points for different initializations, so we run it multiple times on each cluster ci with different
initializations and we finally select HMM, λci that has the highest probability. Algorithm 2 shows the
steps of training HMMs.

4.1.5. Computing Decision Thresholds

Recall that, in HM3alD, we learn only malware HMMs λci , to distinguish between malware and
benign programs at detection phase. In this section, we compute a threshold Tci on each HMM λci

using another fraction of malware action sequences and some benign action sequences. To present well
the process of computing the decision thresholds, first we devise some definitions about the HMM
threshold concept.

Appl. Sci. 2018, 8, 1044 9 of 23

Algorithm 2 : HM3alD-Training phase
Input:

C = {c1, c2, . . . , ck} denotes the set of malware clusters

Output:

Trained HMMs set, TrainedHMMs = {λc1 , λc2 , . . . , λck}.

1: TrainedHMMs = ∅ . an empty set
2: for i = 1 to |C| do
3: Estimate the number of states (Nci) for cluster ci
4: Initialize πci , Ai and Bi using the proposed program behavior-aware topology
5: Compute λci (Ai, Bi) using Baum–Welch algorithm
6: Add λci to TrainedHMMs
7: end for

Definition 1. For each malware HMM λci and its corresponding threshold Tci , the pair (λci , Tci) is a
discriminator such that an observation (action) sequence Ol is identified as a malware action sequence if
Equation (2) is satisfied. Note that, from now on, we use LP(O|λ) instead of log(P(O|λ)) for simplicity.

LP(Ol |λci) ≥ Tci =

{
1, if Ol is a malware action sequence

0, otherwise, no decision
. (2)

In Equation (2), if the output is zero, the result (benign/malware) depends on the other
HMM decisions.

Definition 2. For each malware HMM λci , its corresponding rejection rate Rci is a certain fraction of Vci

(the validation part of observation sequences of malware cluster ci) that specifies the maximum permissible error
on HMM λci . For simplicity, we set Rc1 = Rc2 = . . . = Rck , which leads to different values of the decision
thresholds Tci .

Definition 3. For each malware HMM λci , the maximum benign probability Pbci is the greatest log probability
that is returned by HMM λci for Vb, benign action sequences, and is computed by Equation (3).

Pbci = max
l
{LP(Ol |λci), for all Ol ∈ Vb}. (3)

The pseudo-code of computing decision thresholds is shown in Algorithm 3.
To compute threshold Tci by using Algorithm 3, we proceed as follows. First, we estimate the log

probabilities of the all action sequences belong to Vci and reorder them in ascending order (Lines 3–8).
Then, we obtain the malware threshold point tm (Lines 9–10). In many conditions, we find that the
Pbci is less than or equal to tm, which means that the corresponding HMM λci is sufficiently powerful
and returns small log probabilities for benign action sequences. Thus, we finally compute Tci based on
this condition (lines 12–16).

Appl. Sci. 2018, 8, 1044 10 of 23

Algorithm 3 : Computing decision thresholds for all malware HMMs, λci

Input:

f racrej = Rc1 = Rc2 = . . . = Rck .

VC = {Vc1 , Vc2 , . . . , Vck} and each Vci = {Ol}|Vci |
l=1 is the malware validation part of cluster ci.

Vb = {Ol}|Vb |
l=1 , is a set of benign action sequences.

Malware_HMM = {λc1 , λc2 , . . . , λck}, learned HMM set corresponding to malware clusters.

Output:

TV = {Tc1 , Tc2 , . . . , Tck}, the threshold vector corresponding to malware HMMs. In other words,
{(λc1 , Tc1), (λc2 , Tc2), . . . , (λck , Tck)}

1: for i = 1 to k do
2: TV = ∅ . an empty set
3: PV = ∅ . an empty set
4: for each Ol ∈ Vci do
5: Pm = LP(Ol |λci)
6: insert(PV,Pm)
7: end for
8: sort(PV) . sort in ascending order
9: t_index=round(f racrej× |PV|)

10: tm = PV(t_index)
11: Compute Pbci by using Equation (3)
12: if Pbci ≤ tm then
13: Tci = Pbci
14: else
15: Tci = tm
16: end if
17: insert(TV,Tci)
18: end for

4.2. Detection Phase

In the detection phase, as shown in the bottom part of Figure 1, for each program Pl at runtime,
first its corresponding system call sequence is collected (by detection profiler module), and then its
corresponding action sequence Ol is generated (by preprocessing module). The induced action sequence
Ol is given to all learned malware HMMs, {(λc1 , Tc1), (λc2 , Tc2), . . . , (λck , Tck)} and then HM3alD
aggregates their returned results by Algorithm 4. Note that, in Algorithm 4, the forward values
are calculated by multiplying small probabilities, and with long action sequences we risk getting
underflow. To avoid this, at each time step in the forward algorithm, we normalize the forward values.
This technique is presented as Algorithm 5 in Appendix B.

Algorithm 4 applies HMM forward algorithm, forward(Ol ,λci) on the induced action sequence
Ol from the running of program Pl and it calculates LP(Ol |λci) iteratively. The result will be “Malware”
when at least one of the malware HMMs return the probability value f orward_valuei greater than or
equal to the corresponding threshold value Tci , otherwise it will be “Benign”.

4.3. Time Complexity Analysis

In this subsection, we analyze the time complexity of HM3alD. Recall that HM3alD consists of
two main phases: training and detection. In the following, we discuss the time complexity of these
steps in detail.

4.3.1. Training Phase

Without loss of generality, we focus on the core of the training phase: Clustering malware action
sequences and Training HMMs. For an initial training set X of Nt samples generated from the malware

Appl. Sci. 2018, 8, 1044 11 of 23

program dataset, first we partition X to the k malware cluster. The complexity of the naive complete-link
agglomorative algorithm becomes O(Nt

3). Because we exhaustively scan the Nt × Nt matrix for the
largest similarity in each of Nt − 1 iterations [29]. After clustering malware action sequences, we train
HMMs for each of them using Baum–Welch algorithm. if the number of HMM states is N and the
length of an action sequence is T, then the time complexity of Baum–Welch algorithm is O(N2T) [29].
We suppose the average length of each malware action sequence is T and, without loss of generality,
the average number of states of all malware clusters is N. Thus, the time complexity of Algorithm 2
becomes O(NtN2T). Therefore, we conclude that the overall time complexity of the training phase is
O(NtN2T + Nt

3).

4.3.2. Detection Phase

In the detection phase, Algorithm 4 applies HMM forward algorithm to the action sequence
Ol and then aggregates their returns. The time complexity of the forward algorithm is O(N2T) [29].
Therefore, the time complexity of the detection phase for action sequence Ol becomes O(kN2Tl),
where N, Tl , and k are the average number of states of all malware clusters, the length of action
sequence Ol , and the number of malware clusters, respectively.

Algorithm 4 : HM3alD-Detection phase
Input:

Ol = an induced action sequence Ol from the running of program Pl in the real environment.
Malware_HMM = {(λc1 , Tc1), (λc2 , Tc2), . . . , (λck , Tck)}, learned HMM set corresponding to
malware clusters.

Output:

program type: Malware/Benign

/*Compute LP(Ol |λci) of action sequence Ol with the forward algorithm, for all i = 1 . . . k malware

HMMs.*/
1: for i = 1 to k do
2: f orward_valuei=forward(Ol ,λci)

/* The forward() is presented as Algorithm 5 in Appendix B.*/
3: if f orward_valuei ≥ Tci then
4: return “Malware” & exit . returns “Malware” and then exit.
5: end if
6: end for

/* If none of the malware HMMs detect the program Pl as malware, then the algorithm decides

that it is a benign program. */
7: return “Benign”

5. Experimental Evaluation

This section is composed of: (1) introducing dataset; (2) experimental setup; (3) evaluation metrics;
(4) presenting the performance of HM3alD with different settings; and (5) the comparison of HM3alD
with the state-of-the-art methods.

5.1. Dataset

We used a dataset that consists of 9025 programs, such that 6349 of them are polymorphic
malware including bots, worms, viruses and Trojan horses, and the rest (2676) are benign programs.
The malware programs are downloaded from VX Heaven virus collection [35] and belong to different
families. Each family includes polymorphic samples of a malware that malware writers have made
gradually and then they have been registered in VX Heaven’s dataset. For the benign program set,

Appl. Sci. 2018, 8, 1044 12 of 23

several applications were downloaded from sourceforge.net [36]. These applications also fall into
different categories including: video and audio, scientific, educational, games, communications, etc.

5.2. Experimental Setup

Detection in HM3alD was performed at runtime, so recording the system call sequence of a
running program must be started when the program begins to run. HM3alD uses Cuckoo sandbox
tool which provides an isolated and safe environment to run programs. All the benign and malware
programs are executed under Cuckoo sandbox tool [32] on a host, in a virtual environment. A machine
with Intel Core i7-4790K processor and 16 GB RAM was used to execute all experiments. We installed
the sandbox tool under Ubuntu-13.03 on this machine. The guest OS in this experiment was Windows
XP 32 bit. For each program, Cuckoo sandbox restores the guest OS to a safe state, and then,
after executing the program, it returns the corresponding system call sequence in JSON format
comprehensively. To extract the action set, we developed a set of basic tools in C++ and they are
executed in the sandbox environment. We implemented Algorithm 1 as a python script to drive the
action sequence of a program from its corresponding system call sequence. We clustered benign
(malware) action sequence sets using MATLAB toolbox. We used GHMM library with python
wrapper [37] to implement HMM algorithms.

To evaluate the performance of HM3alD, we used cross-validation strategy. The malware program
set was randomly partitioned into two parts, 70% for learning malware HMMs λci and computing
the corresponding malware decision thresholds, and 30% for detection phase. Similarly, the benign
program set was randomly partitioned into two parts, i.e. 30% for computing the decision thresholds
and 70% for detection phase. To train good HMMs, λci , we randomly repeated the cross-validation
strategy 10 times. Note that, in the learning process, Algorithm 2 (Baum–Welch algorithm) was
repeated 30 times.

5.3. Evaluation Metrics

According to the general definitions, true positive (TP) is the number of truly detected malware
programs, true negative (TN) is the number of truly recognized benign programs, false positive (FP) is
the number of benign programs that are detected as malware, and false negative (FN) is the number of
malware that are detected as benign programs. Nm and Nb are the number of malware and benign
programs, respectively.

Accuracy (Equation (4)) indicates the ratio of malware and benign programs that are truly
identified. TP rate (Equation (5)), also called detection rate (DR), is the proportion of malware that are
recognized as malware and FP rate (Equation (6)), also called false alarm rate (FAR), is the proportion
of benign programs that are incorrectly detected as malware.

Accuracy =
TP + TN
Nm + Nb

, (4)

DR =
TP
Nm

, (5)

FAR =
FP
Nb

. (6)

Note that one-class classification methods typically suffer from a relatively large value of FAR,
because they learn from just samples with the same label [38]. Thus, we intended to maximize DR and
Accuracy and minimize FAR.

5.4. The Performance of HM3alD

In this section, the different parameters of the proposed method are determined and the results
of HM3alD, in different conditions, are presented.

Appl. Sci. 2018, 8, 1044 13 of 23

5.4.1. Training Phase

First, we determined the basic parameters such as the number of malware clusters and the number
of states for each malware HMM. Then, we clustered malware action sequence sets, and, according
to the program based HMM topology (Figure 2), we trained HMMs λci on the training part of all
malware clusters {Xci}k

i=1. Finally, we applied Algorithm 3 to compute their corresponding decision
thresholds, Tci .

Determining the number of malware clusters

According to the cross-validation strategy, we should choose different values for k in hierarchical
agglomerative clustering method. As stated in Section 4.1.3, we applied the complete-link agglomerative
clustering method on malware action sequence set. Then, for different values of k, its results in terms of
reconstruction error are presented in Figure 4.

Figure 4. Variation of reconstruction error for different number of malware clusters. Black points shows
candidate k values.

As Figure 4 shows, different values can be considered for k. According to the elbow method
(see Section 4.1.3), the suitable value of k is one of the candidate values of k_Set = {3, 6, 12, 17, 20, 24,
26, 27, 31, 36, 39}. As mentioned in Section 4.1.3, we tended to select the smallest k from the k_Set
such that it satisfies Conditions (1) and (2). To summarize, Tables 1 and 2 show the results of two
values of k in which k = 17 satisfies the corresponding conditions but k = 12 does not. In other words,
by considering k = 12, we have a cluster (i.e., Cluster 4) such that its size is great and its centroid is
less than 0.5 (highlighted row in Table 1). Thus, we can choose one of the k values that is greater than
or equal to 17. According to the experiments, which are discussed in Section 5.4.2, the best value of k
is 24.
Training HMMs

As in Section 4.1.4, first we calculated the number of states of each cluster (i.e., Nci). Table 3
presents the number of states for each malware cluster as their corresponding unique actions on
training data. According to Figure 2 and Table 3, we design program behavior-aware topology of each
HMM, λci . Then, by applying Algorithm 3, we computed their corresponding decision thresholds,
Tci and finally built all malware HMMs, (λci , Tci). Note that we only use 15% of benign action
sequences to compute decision thresholds, Tci .

Appl. Sci. 2018, 8, 1044 14 of 23

Table 1. The malware clusters for k = 12.

Cluster No. Cluster Size Centroid

1 273 0.65

2 1638 0.59

3 243 0.89

4 318 0.41

5 311 0.82

6 268 0.81

7 376 0.56

8 510 0.62

9 372 0.73

10 588 0.68

11 592 0.83

12 860 0.95

Table 2. The malware clusters for k = 17.

Cluster No. Cluster Size Centroid

1 468 0.79

2 1170 0.61

3 54 0.13

4 264 0.58

5 492 0.90

6 100 0.63

7 92 0.72

8 284 0.59

9 308 0.79

10 64 0.56

11 273 0.65

12 243 0.89

13 311 0.82

14 268 0.81

15 510 0.62

16 588 0.68

17 860 0.95

Table 3. The number of HMM states for k = 24.

Cluster No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Nci 21 22 17 18 16 15 17 23 26 23 15 21 20 19 22 18 14 23 23 10 12 16 21 9

5.4.2. Detection Phase

In the detection phase, we monitor the running of programs and compute the probability of their
corresponding action sequences by applying Algorithm 4. In the experiments, we assume the rejection

Appl. Sci. 2018, 8, 1044 15 of 23

rate f racrej = 0.05 in Algorithm 3 and, by default, we use program behavior-aware topology to train
the HMMs, λci .

The impact of clustering on the performance of HM3alD

When k, the number of clusters, increases in the clustering process of HM3alD, the corresponding
reconstruction error decreases and also the number of clusters is increased, so it means we should
learn more HMMs. It means we should trade off between k and the set of {DR, FAR, Accuracy} metrics
derived from corresponding HMMs, (λci , Tci). Figures 5–7 show the average and STD (Standard
deviation) of DR, FAR, and Accuracy of HM3alD for different candidate values of k, based on
Figure 4 respectively.

Figure 5. DR for different candidate values of k based on Figure 4.

Figure 6. FAR for different candidate values of k based on Figure 4.

Appl. Sci. 2018, 8, 1044 16 of 23

Figure 7. Accuracy for different candidate values of k based on Figure 4.

As it can be seen in Figures 5–7, DR, FAR, and Accuracy metrics for k = 24 are better in comparison
with the results for other k values. This happens because, when considering a small number of clusters
(for example k = 3, 6, 12), malware action sequences that are less similar are assigned to the same
cluster, so no suitable HMMs are learned. Thus, the learned HMMs are neither able to detect malware
programs properly nor discriminate between malware and benign programs as good as possible.
On the other hand, the large number of clusters increases the complexity of HM3alD and causes each
cluster to have too few action sequences (for example, k = 26, 27, 31).

Cross-validation results show that 19 of 24 malware HMMs (i.e., 80% of the learned HMMs)
compute their decision thresholds based on the maximum benign probability Pbci in Algorithm 3.
This fact means that HMMs are trained suitably and effectively discriminate between malware and
benign action sequences.

The impact of program behavior-aware topology

Figure 8 shows the comparison results of HM3alD and HM3alD R (without program
behavior-aware topology). As it is seen, HM3alD R dramatically increases FAR. In other words,
HM3alD that preserves program behavior-aware topology, effectively reduces FAR 227%, which is
hard work without any impact on DR.

The impact of expressing system call sequences as action sequences

To explain the importance of the action sequences, we examine the proposed method by
considering the raw system call sequences (called HM3alD S) instead of the action sequences.
HM3alD S R denotes the random topology version of HM3alD S. Recall that it is shown that
methods based on raw system call sequences produce many false positives [39], and not considering
their parameters such as frequency and arguments would result in high false alarm rate [40,41].
Figure 9 shows the efficiency of HM3alD in comparison with HM3alD S and HM3alD S R in terms
of FAR and DR. It is seen that in HM3alD, FAR is decreased 453%, and DR is increased 5.8%. As an
important result, using action sequences in HM3alD achieves high DR and low FAR, that is a difficult
task in HMM methods as a one-class classifier approach.

Appl. Sci. 2018, 8, 1044 17 of 23

Figure 8. The performance comparison of HM3alD with and without the program behavior-aware
topology for k = 24 and f racrej = 0.05.

Figure 9. The performance comparison of HM3alD (for k = 24), HM3alD S (for k = 26) and
HM3alD S R (for k = 26).

5.5. Comparing with Other Work

In this section, the performance of HM3alD in terms of DR, FAR, and Accuracy is compared to
important previous works. For fair comparison, we consider the number of dataset members same as
the compared methods when we train HMMs of HM3alD. To express the detection performance of
HM3alD, we compare HM3alD to dynamic malware detection methods and show the corresponding
results in Table 4. Moreover, Table 5 shows the results of HM3alD in comparison with static malware
detection methods. As shown in Tables 4 and 5, HM3alD outperforms all dynamic and static malware
detection methods especially in term of FAR that is a hard work to decrease it without affecting DR.

Appl. Sci. 2018, 8, 1044 18 of 23

Table 4. Comparison of HM3alD with current dynamic malware detection methods.

Approaches Dataset Size (Benign/Malware) DR(%) FAR(%) Accuracy (%)

Shahzad (2013) [20] 105/114 93.7 0 96.65
HM3alD 105/114 100 0 100

Elhadi (2014) [21] 98/416 97.57 0 98.05
HM3alD 98/416 100 0 100

Salehi (2017) [23] 1359/3009 98.4 4.6 —
HM3alD 1359/3009 98.89 1.12 98.88

Shehata (2015) [22] 2000/2000 97.6 2.37 96.89
HM3alD 2000/2000 98.83 1.18 98.87

Table 5. Comparison of HM3alD with the current static malware detection methods.

Methods Dataset Size (Benign/Malware) DR(%) FAR(%) Accuracy (%)

Kalbhor (2015) [13] 370/760 88.95 0.2 97.58
HM3alD 370/760 99.12 0.23 99.38

Song (2012) [16] 8/200 100 12.5 99.52
HM3alD 8/200 100 0 100

Shahid (2015) [5] 2330/1020 98.9 4.5 —
HM3alD 2330/1020 98.99 1.27 98.85

Furuki (2012) [12] 2595/3639 98.4 2.7 97.85
HM3alD 2595/3639 98.81 1.36 98.70

Ding (2013) [17] 3760/4410 97.3 — 91.2
HM3alD 2676/4410 98.79 1.85 98.39

Expressing the behavior of a malware program leads to detect its polymorphic instances,
effectively. HM3alD tries to extract realistic behavior of malware from polymorphic instances. First,
HM3alD abstracts malware behavior by using high-level action sequences instead of system call
sequences. Then, it clusters similar malware action sequences leading to integrate polymorphic
instances of a malware. Finally, HM3alD models the realistic behavior of each malware cluster
using HMM. Thus, HM3alD provides a high detection rate and low false rate in comparison with
other work.

Note that a false positive occurs when HM3alD erroneously labels a benign program as malware.
If a malware detector blocks access or deletes a program or file that is vital to the proper functioning
of some system programs, those may become unusable and, in some cases, the deletion may render
a system unstable, although the anti-malware methods try to reduce FAR to zero. For Virus Bulletin [42],
“the ‘no false positives’ rule is one of the main requirements for certification in the VB100 test process”.
AV-Comparatives [43] considers false positives “an important measurement for AV quality”, and an
important factor in determining the reliability of a product, besides its detection capabilities. Thus,
we introduce new metric, PenalizedDR, as Equation (7).

PenalizedDR = DR− α ∗ FAR, (7)

We analyze the impact of α by increasing it from 0 to 10 in increments of 0.5. Figures 10 and 11
show the results of PenalizedDR for HM3alD and current dynamic and static methods, respectively.

The important findings from the results shown in Figures 10 and 11 are as follows: (1) FAR
is the most important and impressive measurement for malware detection methods; (2) high DR
is not enough to have a good result and its effectiveness depends on FAR; and (3) high FAR
significantly reduces the usefulness and applicability of such methods. According to Tables 4 and 5,

Appl. Sci. 2018, 8, 1044 19 of 23

and Figures 10 and 11, the performance of HM3alD is always higher than the other methods in terms
of DR and Accuracy and is significantly better than the other methods in term of FAR.

Figure 10. PenalizedDR for HM3alD and current dynamic methods: (a) Salehi (2017) [23]; and (b)
Shehata (2015) [22].

Figure 11. PenalizedDR for HM3alD and current static methods: (a) Shahid (2015) [5]; (b) Furuki
(2012) [12]; (c) Ding (2013) [17]; and (d) Kalbhor (2015) [13]. Note that we estimated FAR value of Ding
work [17] from DR and Accuracy.

6. Analysis and Discussion

We analyze the proposed method, HM3alD, from three aspects: action sequences, HMM topology,
and the impact of clustering and decision thresholds on learned HMMs.

Expressing the realistic behavior of a malware program is definitely effective in detecting its
polymorphic instances. Therefore, it is crucial to have an effective yet feasible way to express malware
behavior. According to experimental results, raw data from malware at runtime that is merely
a sequence of system calls is too fine-grained to be helpful in expressing the realistic behavior of
a suspicious program. Therefore, HM3alD defines and operates on some high-level “actions” (i.e.,
read file, write file, send data, and remove a registry key) where a sequence of these actions represents
a more meaningful behavior. Results shown in Figure 9 indicate that, without a high level action
sequence, we would not find acceptable performance for the proposed method especially in term
of FAR.

In HMM, designing HMM topology is really important. Taking this fact into account, HM3alD
employs a special HMM topology to learn malware behaviors in coarse grain. The resulting HMM

Appl. Sci. 2018, 8, 1044 20 of 23

topology is built based on a triple-stage (initialization, running, and termination) execution of
a program. This approach has a great impact on training and building suitable HMMs and, compared
to the other similar methods (e.g., [13]), HM3alD provides a drastic decrease in FAR without any
alteration in DR. As Figure 8 shows, if we use a random topology rather than a program behavior-aware
topology in the training phase, the learned HMMs are not much effective.

Furthermore, a key feature of HM3alD is that we train each HMM using only malware action
sequences (i.e., without using any benign action sequences) that leads to reducing the complexity
of HM3alD dramatically, in the training phase. Note that, in computing the HMM decision thresholds,
we use malware and a few benign action sequences.

Clustering action sequences makes it possible to put similar action sequences in the same group.
Results indicate that without proper clustering of action sequences, we cannot train suitable HMMs in
the training phase, which leads to unacceptable malware detection results.

Our implementation of HM3alD shows great promise in DR and especially in FAR even when
the number of programs goes beyond the capability of some current methods.

7. Conclusions and Future Work

In this study, we showed that it is possible to employ HMMs to detect polymorphic malware in
a dynamic manner. In this paper, we propose a novel dynamic detection method, named HM3alD,
based on HMM to detect polymorphic malware. We show that the proposed method could effectively
distinguish between benign and malware programs. HM3alD was trained only by malware action
sequences to detect polymorphic malware on the host side at runtime.

In the future, we will work on the applications of this method in classifications of malware
programs, detecting anomalies and generating behavioral signatures. We will also try to perform
the detection at the early stages of program execution, as much as possible.

Author Contributions: A.T. is the author who mainly contributed to this research, performing experiments,
and writing the manuscript. S.J. read and approved the final manuscript, and reviewed the results.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Mapping a Subsequence of System Calls to Actions

High-level actions derived from subsequences of system calls are classified into seven sets:

1. File Actions include “write file”, “read file”, “delete file”, “execute file”, “copy file”, and “move file”.
2. Registry Actions indicate the program behavior regarding the registry of Windows operating

system (OS), which includes writing, reading, and deleting in the registry.
3. Service Actions relate to the registered services in Windows OS. These actions include creating,

deleting, and executing a service in Windows.
4. Network Actions cover the behavior of executing sample in the transport layer. This Action set

is formed based on the state diagram in the TCP protocol, which includes opening and closing
a connection (socket), listening on a socket, binding a socket, accepting a socket, sending and
receiving on a socket, etc.

5. Internet Actions include all actions that occur during communications of a running program in
the Application Layer. These actions include opening a session, session connection, and sending
and reading files via the network.

6. System Actions consist of the sequence of system calls which express a system operation to begin
the execution. Load library, memory allocation, address allocation to procedures, etc. are some
examples of system actions.

7. Process Actions include all the actions related to process and threads, (e.g., creating, executing,
and killing a thread.)

Appl. Sci. 2018, 8, 1044 21 of 23

For example, we map the subsequence of system call {NTCreateFile, NTOpenFile, NTReadFile,
NTReadFile, NTReadFile, NTCloseFile} to the action ReadFile.

Appendix B. The Forward Algorithm

Algorithm 5 : Forward algorithm
It implements the scaled forward algorithm and returns:
(1) log(P(O|λ)); (2) scale factor set F = { f1, f2, . . . , fT}; and (3) scale forward variables, α̂t(i).
Input:

O = an induced action sequence {O1, O2, . . . , OT} corresponding to a program P
A = state transition probability matrix with the number of states (N)
B = observation probability matrix

Outputs:

scaled forward value = logP(O|λ)
scale factor set F = { f1, f2, . . . , fT}
scale forward variables, α̂t(i) for all i = 1 . . . N and t = 1 . . . N

Initialization:
1: f1 = 0
2: for i = 1 to N do
3: α1(i) = πibi(O1)
4: α′1(i) = α1(i)
5: f1 = f1 + α1(i)
6: end for
7: f1 = 1

f1
8: for i = 1 to N do
9: α̂1(i) = f1α1(i)

10: end for
Induction:

11: for t = 2 to T do
12: ft = 0
13: for i = 1 to N do
14: x = 0
15: for j = 1 to N do
16: x = x + α̂t−1(j)aji
17: end for
18: α′t(i) = bi(Ot)x
19: ft = ft + α′t(i)
20: end for
21: ft =

1
ft

22: for i = 1 to N do
23: α̂t(i) = ftα

′
t(i)

24: end for
25: end for

Termination
26: log_p = 0
27: for t = 1 to T do
28: log_p = log_p + log(ft)
29: end for
30: log_p = −log_p
31: return log_p

Appl. Sci. 2018, 8, 1044 22 of 23

References

1. Kang, B.; Han, K.S.; Kang, B.; Im, E.G. Malware categorization using dynamic mnemonic frequency analysis
with redundancy filtering. J. Digit. Investig. 2014, 11, 323–335. [CrossRef]

2. Shin, S.; Zhaoyan, X.; Guofei, G. EFFORT: A new host–network cooperated framework for efficient and
effective bot malware detection. Comput. Netw. 2013, 57, 2628–2642. [CrossRef]

3. Symantec. Available online: http://www.symantec.com/threatreport/ (accessed on 25 June 2018).
4. Lu, H.; Wang, X.; Zhao, B.; Wang, F.; Su, J. ENDMal: An anti-obfuscation and collaborative malware detection

system using syscall sequences. J. Math. Comput. Model. 2013, 58, 1140–1154. [CrossRef]
5. Shahid, A.; Horspool, R.N.; Traore, I.; Sogukpinar, I. A framework for metamorphic malware analysis and

real-time detection. J. Comput. Secur. 2015, 48, 212–233.
6. Cha, S.K.; Moraru, I.; Jang, J.; Truelove, J.; Brumley, D.; Andersen, D.G. SplitScreen: Enabling efficient,

distributed malware detection. J. Commun. Netw. 2011, 13, 187–200. [CrossRef]
7. Egele, M.; Scholte, T.; Kirda, E.; Kruegel, C. A survey on automated dynamic malware-analysis techniques

and tools. ACM Comput. Surv. 2012, 44, 6. [CrossRef]
8. Bruschi, D.; Martignoni, L.; Monga, M. Code normalization for self-mutating malware. IEEE J. Secur. Priv.

2007, 5, 46–54. [CrossRef]
9. Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection: A survey. J. ACM Comput. Surv. 2009, 41, 15.

[CrossRef]
10. Grill, M.; Pevny, T. Learning combination of anomaly detectors for security domain. Comput. Netw. 2016,

107, 55–63. [CrossRef]
11. Preda, M.D.; Christodorescu, M.; Jha, S.; Debray, S. A semantics-based approach to malware detection.

ACM Trans. Program. Lang. Syst. 2008, 30, 25. [CrossRef]
12. Faruki, P.; Laxmi, V.; Gaur, M.S.; Vinod, P. Mining control flow graph as API call-grams to detect portable

executable malware. In Proceedings of the ACM International Conference on Security of Information and
Networks, Jaipur, India, 25–27 October 2012.

13. Kalbhor, A.; Austin, T.H.; Filiol, E.; Josse, S.; Stamp, M. Dueling hidden Markov models for virus analysis.
J. Comput. Virol. Hacking Tech. 2015, 11, 103–118. [CrossRef]

14. Wong, W.; Stamp, M. Hunting for metamorphic engines. J. Comput. Virol. 2006, 2, 211–229. [CrossRef]
15. Austin, T.H.; Filiol, E.; Josse, S.; Stamp, M. Exploring hidden markov models for virus analysis: A semantic

approach. In Proceedings of the 46th Hawaii International Conference on System Sciences, Wailea, HI, USA,
7–10 January 2013.

16. Song, F.; Touili, T. Efficient malware detection using model-checking. J. Formal Methods (FM) 2012, 7436,
418–433.

17. Ding, Y.; Yuan, X.; Tang, K.; Xiao, X.; Zhang, Y. A fast malware detection algorithm based on
objective-oriented association mining. J. Comput. Secur. 2013, 39, 315–324. [CrossRef]

18. Hellal, A.; Lotfi, B.R. Minimal contrast frequent pattern mining for malware detection. J. Comput. Secur. 2016,
62, 19–32. [CrossRef]

19. Park, Y.; Reeves, D.S.; Stamp, M. Deriving common malware behavior through graph clustering. J. Comput.
Secur. 2013, 39, 419–430. [CrossRef]

20. Shahzad, F.; Shahzad, M.; Farooq, M. In-execution dynamic malware analysis and detection by mining
information in process control blocks of Linux OS. J. Inf. Sci. 2013, 231, 45–63. [CrossRef]

21. Elhadi, A.A.E.; Maarof, M.A.; Barry, B.I.; Hamza, H. Enhancing the detection of metamorphic malware using
call graphs. J. Comput. Secur. 2014, 46, 62–78. [CrossRef]

22. Shehata, G.H.; Mahdy, Y.B.; Atiea, M.A. Behavior-based features model for malware detection. J. Comput.
Virol. Hacking Tech. 2015, 12, 59–67.

23. Salehi, Z.; Sami, A.; Ghiasi, M. MAAR: Robust features to detect malicious activity based on API calls, their
arguments and return values. J. Eng. Appl. Artif. Intell. 2017, 59, 93–102. [CrossRef]

24. Christodorescu, M.; Jha, S.; Kruegel, C. Mining specifications of malicious behavior. In Proceedings of the
the 6th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering, Dubrovnik, Croatia, 3–7 September 2007.

http://dx.doi.org/10.1016/j.diin.2014.06.003
http://dx.doi.org/10.1016/j.comnet.2013.05.010
http://www.symantec.com/threatreport/
http://dx.doi.org/10.1016/j.mcm.2013.03.008
http://dx.doi.org/10.1109/JCN.2011.6157418
http://dx.doi.org/10.1145/2089125.2089126
http://dx.doi.org/10.1109/MSP.2007.31
http://dx.doi.org/10.1145/1541880.1541882
http://dx.doi.org/10.1016/j.comnet.2016.05.021
http://dx.doi.org/10.1145/1387673.1387674
http://dx.doi.org/10.1007/s11416-014-0232-9
http://dx.doi.org/10.1007/s11416-006-0028-7
http://dx.doi.org/10.1016/j.cose.2013.08.008
http://dx.doi.org/10.1016/j.cose.2016.06.004
http://dx.doi.org/10.1016/j.cose.2013.09.006
http://dx.doi.org/10.1016/j.ins.2011.09.016
http://dx.doi.org/10.1016/j.cose.2014.07.004
http://dx.doi.org/10.1016/j.engappai.2016.12.016

Appl. Sci. 2018, 8, 1044 23 of 23

25. Kolbitsch, C.; Comparett, P.M.; Kruegel, C.; Kirda, E.; Zhou, X.; Wang, X. Effective and efficient malware
detection at the end host. In Proceedings of the International Conference on USENIX Security Symposium,
Montreal, QC, Canada, 10–14 August 2009.

26. Ding, Y.; Xiaoling, X.; Sheng, C.; Ye, L. A malware detection method based on family behavior graph.
J. Comput. Secur. 2018, 73, 73–86. [CrossRef]

27. Schrittwieser, S.; Stefan, K.; Johannes, K.; Georg, M.; Edgar, W. Protecting software through obfuscation:
Can it keep pace with progress in code analysis? ACM Comput. Surv. 2016, 49, 4:1–4:37. [CrossRef]

28. Cohen, Y.; Danny, H. Scalable Detection of Server-Side Polymorphic Malware. Knowl.-Based Syst. 2018, 156,
113–128. [CrossRef]

29. Alpaydin, E. Introduction to Machine Learning; MIT Press: London, UK, 2014.
30. Camastra, F.; Vinciarelli, A. Machine Learning for Audio, Image, and Video Analysis; Springer: London, UK, 2008.
31. Francis, H.; Chen, H.; Ristenpart, T.; Li, J.; Su, Z. Back to the future: A framework for automatic malware

removal and system repair. In Proceedings of the 22nd Annual Computer Security Applications Conference,
Miami Beach, FL, USA, 11–15 December 2006.

32. Cuckoo Foundation. Available online: https://www.cuckoosandbox.org (accessed on 25 June 2018).
33. Murtagh, F. A survey of recent advances in hierarchical clustering algorithms. Comput. J. 1983, 26, 354–359.

[CrossRef]
34. Yujian, L.; Bo, L. A normalized Levenshtein distance metric. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29,

1091–1095. [CrossRef] [PubMed]
35. VxHeavens. Available online: http://vxheaven.org/vl.php (accessed on 1 March 2016).
36. Sourceforge. Available online: https://sourceforge.net/ (accessed on 25 June 2018).
37. GHMM Library. Available online: http://www.ghmm.org/ (accessed on 25 June 2018).
38. Giacinto, G.; Perdisci, R.; Del Rio, M.; Roli, F. Intrusion detection in computer networks by a modular

ensemble of one-class classifiers. J. Inf. Fusion 2008, 9, 69–82.
39. Lanzi, A.; Balzarotti, D.; Kruegel, C.; Christodorescu, M.; Kirda, E. Accessminer: Using system-centric models

for malware protection. In Proceedings of the 17th ACM conference on Computer and communications
security, Chicago, IL, USA, 4–8 October 2010; pp. 399–412.

40. Das, S.; Liu, Y.; Zhang, W.; Chandramohan, M. Semantics-Based Online Malware Detection: Towards Efficient
Real-Time Protection Against Malware. IEEE Trans. Inf. Forensics Secur. 2016, 11, 289–302. [CrossRef]

41. Maggi, F.; Matteucci, M.; Zanero, S. Detecting intrusions through system call sequence and argument
analysis. IEEE Trans. Dependable Secur. Comput. 2010, 7, 381–395. [CrossRef]

42. Virus Bulletin. Available online: https://www.virusbulletin.com (accessed on 25 June 2018).
43. AV-Comparatives. Available online: http://www.av-comparatives.org/false-alarm-tests (accessed on

1 September 2016).

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.cose.2017.10.007
http://dx.doi.org/10.1145/2886012
http://dx.doi.org/10.1016/j.knosys.2018.05.024
https://www.cuckoosandbox.org
http://dx.doi.org/10.1093/comjnl/26.4.354
http://dx.doi.org/10.1109/TPAMI.2007.1078
http://www.ncbi.nlm.nih.gov/pubmed/17431306
http://vxheaven.org/vl.php
https://sourceforge.net/
http://www.ghmm.org/
http://dx.doi.org/10.1109/TIFS.2015.2491300
http://dx.doi.org/10.1109/TDSC.2008.69
https://www.virusbulletin.com
http://www.av-comparatives.org/false-alarm-tests
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Malware
	Malware Analysis and Detection
	Contributions
	Paper Structure

	Related Work
	Static Analysis-Based Methods
	Dynamic Analysis-Based Methods

	Background
	Malware Obfuscation
	Hierarchical Clustering
	Hidden Markov Model

	Proposed Method: HM3alD
	Training Phase
	Training Profiler
	Preprocessing
	Clustering Action Sequences
	Training HMMs
	Computing Decision Thresholds

	Detection Phase
	Time Complexity Analysis
	Training Phase
	Detection Phase

	Experimental Evaluation
	Dataset
	Experimental Setup
	Evaluation Metrics
	The Performance of HM3alD
	Training Phase
	Detection Phase

	Comparing with Other Work

	Analysis and Discussion
	Conclusions and Future Work
	Mapping a Subsequence of System Calls to Actions
	The Forward Algorithm
	References

