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Featured Application: Multiwavelength digital holography on objects beyond the unambiguous
measurement range.

Abstract: Digital holography is a well-established technology for optical quality control in industrial
applications. Two common challenges in digital holographic measurement tasks are the ambiguity
at phase steps and the limited depth of focus. With multiwavelength holography, multiple artificial
wavelengths are used to extend the sensor’s measurement range up to several millimeters, allowing
measurements on rough surfaces. To further extend the unambiguous range, additional highly
stabilized and increasingly expensive laser sources can be used. Besides that, unwrapping algorithms
can be used to overcome phase ambiguities—but these require continuous objects. With the unique
feature of numerical refocusing, digital holography allows the numerical generation of an all-in-focus
unambiguous image. We present a shape-from-focus algorithm that allows the extension of the
depth of field beyond geometrical imaging limitations and yields unambiguous height information,
even across discontinuities. Phase noise is used as a focus criterion and to generate a focus index map.
The algorithm’s performance is demonstrated at a gear flank with steep slopes and a step sample
with discontinuities far beyond the system’s geometrical limit. The benefit of this method on axially
extended objects is discussed.

Keywords: multi-wavelength holography; inline measurement; shape-from-focus; phase noise;
gear measurement; all-in-focus

1. Introduction

Quickly measuring three-dimensional (3D) surfaces with small 3D structures is a challenge for
industrial measurement technology. For 100% inline-inspection of components, the measuring system
has to keep up with the production cycle. Because of its great resolution and high speed, digital
holography is a well-established technology for nondestructive testing in industrial applications [1–7].
Millions of data points can be acquired in a fraction of a second, which allows measuring cycles of
multiple Hz.

Lateral resolution of holographic sensors is limited by the pixel pitch of the imaging device and
designed magnification. With the use of a lens, it can be both improved and adapted. With respect
to axial resolution and unambiguity, the wavelength of the laser and the dynamic range of the
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imaging device are limiting factors. In addition, limited depth-of-focus is a challenge addressed
by our algorithm. Spatial unwrapping allows to extend the measuring range, but often fails
(e.g., at steep edges and deep holes) [8]. Using digital multiwavelength holography, speckle
fields are captured at identical boundary conditions but at different wavelengths. This allows
a numerical generation of phase maps of an artificial wavelength. These generated synthetic
wavefronts overcome both restrictions [9–16]. As an alternative to the additional expensive lasers
and further appropriate longer synthetic wavelengths, the axial measurement range in digital
holography can be extended using shape-from-focus algorithms for focus detection, applied on
amplitude or phase images. Promising approaches have been highly investigated in the past
(e.g., amplitude stack [17], complex ratio [18], correlation coefficient [19], energy conservation [19,20],
entropy [19], Fourier spectral [19–22], Gini index [23], gradient [22], Kirchhoff [24], L1 norm [23,25],
Laplacian [21,22,26], multispectral images [19,27], self-entropy [28], speckle phase decorrelation [29],
Tamura coefficient [30,31] variance [19,21,26,32,33] Klicken oder tippen Sie hier, um Text einzugeben,
quadratic deformation of spatial coordinates [34], cubic phase plate [35], amplitude modulus [36],
or numerical axicon transformation [37]).

We present a shape-from-focus algorithm based on phase noise and use its output as a rough
estimate of the object’s surface shape, which allows us to extend the measurement range far beyond the
limits of synthetic wavelengths and geometrical depth-of-focus. This algorithm has been previously
introduced by us in 2017 [38], using a maximum filter in combination with a plane fit for height map
generation. In this paper, we present a generalized improvement using a pixel wise Gaussian fit.

The performance of our method is demonstrated using a gear test object at steep slopes and a step
object with gaps beyond the measuring unambiguous range. Even at steep slopes, we are able to
numerically compute an all-in-focus image of the gear flank beyond the measurement range of the
synthetic wavelengths being used. In order to save computing time, data processing is mostly executed
on the graphics processing unit (GPU).

2. Experimental Setup

Figure 1a shows an experimental setup for multiwavelength digital holography with an exemplary
gear tooth. However, the algorithm introduced in this paper is not limited to this setup, but is applicable
to holographic setups in general. A detailed description of our optical setup has been introduced by
the authors of [38].
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sensor internals including laser system (1); lens (2); polarizing beam splitter cubes (3)/(7); piezo (4); 

camera (8); gear test object (5); and imaging lens (6). The interferometric optical path includes 

reference and object beams, which are superimposed on the imaging device. Lenses (2) and (6) ensure 
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Figure 1. Experimental setup for temporal phase-shifting multiwavelength digital holography:
(a) sensor internals including laser system (1); lens (2); polarizing beam splitter cubes (3)/(7); piezo (4);
camera (8); gear test object (5); and imaging lens (6). The interferometric optical path includes reference
and object beams, which are superimposed on the imaging device. Lenses (2) and (6) ensure maximal
light yield; (b) data acquisition time series using three lasers and three piezo steps for temporal phase
shifting. In total, nine camera images are acquired.
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Three separate grating-stabilized diode lasers (632.9443 nm, 636.2661 nm, and 635.8239 nm) are
used. The typical linewidth of the individual laser is specified to be between 0.5 and 1 MHz. With two
wavelengths, λj and λk, the artificial wavelengths λa, as follows,

λa =
λj·λk∣∣λj − λk

∣∣ =
λj·λk

|∆λ| (1)

can be calculated to 915 µm, 140 µm, and 121 µm. The different lasers are connected through a fiber
switch to the interferometer. Only one wavelength is present in the sensor at a time. To ensure
a common source point, single-mode fibers are used to connect the lasers (1) to the sensor. The beam is
split into reference and object beam by a polarizing beam splitter cube (3). By rotating the angle of
the polarizing-maintaining fiber, the ratio between the beams can be adjusted. Later, the orthogonally
polarized beams are combined without losses by the second polarizing beam splitter cube. For the
reference beam path, an achromatic lens (2) converts the beam to a convergent beam with an interim
focus on the piezo (4). Having passed a polarizing beam splitter cube (7), the beam is deflected onto
the camera (8). For temporal phase shifting, the piezo introduces a minimum of three phase steps n by
an angle of approximately 2π/n, respectively. The piezo runs in an open-loop mode and the exact
phase-steps are calculated subsequently (Section 3) [1,39]. Passing a polarizing beam splitter cube (3),
the object beam is reflected by the sample (5), and focused onto the camera by an imaging lens (6) as
an interference pattern.

Figure 1b shows the measurement data acquisition time series for our three laser setup at three
phase steps n. With this configuration, the data acquisition for one measurement takes 60 ms and
includes nine raw images.

3. Algorithm

The numerical reconstruction of the all-in-focus height map is performed in four steps, as follows:

1. Temporal phase-shifting–determination of the global phase shifts between single images induced
by the piezoactuator and the calculation of the complex wave [39–41].

2. Propagation of the complex wave Cλ(x, y) and calculation of the synthetic wavefronts [39].
3. Shape-from-focus (described in this section):

a. Maximum filter (Section 3.1) [38]
b. Gaussian fit (Section 3.2)

4. Iterative combination of focus criterion and finer artificial wavelengths [15,38].

We propose a method to calculate an extended focus image based on the phase noise, and combine
the respective synthetic wavefronts using this output of the algorithm.

As input data, the phase information at arbitrary (even multiple) wavelengths can be processed.
A pre-filter with radius 2 has been found to effectively reduce camera noise on the complex holograms.
Firstly, the phase noise ∆x ϕ and ∆y ϕ in x and y direction of a synthetic wavefront at reconstruction
distance z, is calculated.

∆x ϕ = (ϕx+1 − ϕx) mod 2π

∆y ϕ =
(
ϕy+1 − ϕy

)
mod 2π

(2)

The gradient vector

∇ϕ =

(
∆x ϕ

∆y ϕ

)
(3)
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can be normalized as follows:

∇̂ϕ =
∇ϕ

|∇ϕ| =

(
∆x ϕ

∆y ϕ

)
√
(∆x ϕ)2 + (∆y ϕ)2

(4)

With a moving average filter (e.g., radius r = 8), the amplitude of the phase smoothness sz(x, y)
for each pixel at reconstruction distance z is used as a focus criterion, as follows:

sz(x, y) =

∣∣∣∣∣∣∣∣∣∣∣∣
∑

i = −r . . . r
k = −r . . . r

∇̂ϕ(x + i, y + k)
1

(2r + 1)2

∣∣∣∣∣∣∣∣∣∣∣∣
(5)

Figure 2 illustrates the principle of the algorithm graphically, as follows: Panel (a) shows
a synthetic phase map with linearly increasing noise from left to right. Panel (b) shows the anisotropic
normalized phase gradient ∇̂ϕ for the low-noise (green) and high-noise (orange) areas, taken from
the synthetic data in panel (a), respectively. Areas of low noise are characterized by a uniform phase
gradient direction, whereas noisy areas appear as random phase vectors. In the following, we use
a filtered sum of these gradient vectors ∑ ∇̂ϕ, shown in panel (c), as our phase noise or rather, the phase
smoothness criteria. It can be interpreted as the filtered information inside the moving average kernel.
A large gradient vector sum indicates an area of smooth phase and thus focused pixel. In out-of-focus
areas, the gradient vectors are noisy and the ∑ ∇̂ϕ is shorter.
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Figure 2. Algorithm principle from phase map input to phase noise output. (a) Simulated phase
map with linearly increasing noise from left to right; (b) phase gradient direction for low-noise and
high-noise points in a 6 × 6 px2 area; and (c) sum of gradient direction vectors ∑ ∇̂ϕ for low-noise
(top) and high-noise (bottom) points. A long sum vector indicates an area of smooth phase.

Figure 3 shows the output sz of the algorithm at a single point (x, y), and different reconstruction
distances z for a gear sample. The graph clearly shows a maximum at around z = 6 mm.

To find the in-focus distances within the stack of images at propagation distances z, a minimum
phase–noise value of the stack of calculated propagation distances z for each pixel coordinate (x, y)
has to be found. In the following, two methods for the synthesis of a phase map with extended depth
of field are proposed.
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Figure 3. Phase smoothness sz at different reconstruction distances z for a gear sample. A maximum
around 6 mm can be found, corresponding to the in-focus distance.

3.1. Maximum Filter

Previously, we used a similar phase–noise algorithm with pixel wise maximum filter data
processing [38]. The maximum filter output zopt,max can be calculated with a low computation effort
and shows a very even yet discrete focusing map, as follows:

zopt,max = argmaxz(s(x, y)) (6)

3.2. Gaussian Fit

Further investigations qualify the pixel wise Gaussian fit as a tremendous improvement.
The results presented in Section 4 could be achieved by the following algorithm: all pixels (x, y)
of the shape-from-focus stack are used as sampling points for a pixel wise Gaussian fit with four
degrees of freedom, as follows:

f
(

x
∣∣∣a, µ, σ2, c

)
= a· 1√

2πσ2
e(−

(x−µ)2

2σ2 )
+ c (7)

The fit is initialized using the distance of the maximum phase smoothness as a first estimate for
the peak position µ, and c being the ground noise of the signal. The scaling parameter a is initialized
as the peak value of the maximum phase smoothness, along with the experimentally determined σ2 of
0.5, complete our initial parameters for up to 1000 iterations. The expected value µopt of each Gaussian
fit is used for the final focus map zopt,Gauss.

zopt,Gauss = µopt (8)

The values with a maximum phase smoothness below 0.3 are marked in a separate mask.
The corresponding height h

h = −zopt (9)

is used as a rough synthetic wavelength and serves as the starting information for the combination of
further synthetic wavelengths.

In order to being able to use this method for inline-measurements, computation-intensive
calculations are processed on the GPU, since pixel wise operations can be efficiently evaluated in
parallel. Having transferred the complex holograms to the GPU, the phase noise, filtering, and Gaussian
fitting are computed on the GPU.

4. Results

Unless otherwise stated, all calculations in this section are conducted on the finest synthetic
wavelength at 121 µm.
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4.1. Gear Tooth Sample

An evaluation of a gear tooth with an axial extension greater 5 mm is presented in this Section.
Thirty equally spaced propagation distances from 0 mm to 10 mm have been calculated. Figure 4
shows our experimental setup, including the gear test sample.
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Figure 4. Experimental setup including the gear tooth sample and holography sensor.

Figure 5 shows the phase ϕ (top) and phase smoothness sz (bottom) maps for two propagation
distances z = 3.0 mm and z = 6.0 mm, respectively. For areas of low noise and thus focused parts,
the phase shows sharp stripes, whereas the unfocused areas are superimposed by noise. In the left
panels, a propagation distance of z = 3.0 mm is pictured with the focused point and the associated phase
smoothness on the right area of the measurement. The right panels were evaluated at a propagation
distance of z = 6.0 mm and show a clear maximum band and horizontally decreasing focus on the left
of the measurement.
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Figure 5. Phase ϕ (left/right) and phase smoothness sz for two propagation distances z. Left: z = 3 mm,
right: z = 6 mm. Sharp stripes can be observed in areas of low phase noise, whereas areas of high phase
noise appear as random phase distribution.
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As a next step, the synthesis of phase maps with an extended depth of field has to be
addressed—the calculated propagation stack holds a best phase–noise distance for each pixel
coordinate (x, y). Figure 6 shows the progression of the phase–noise signal at different reconstruction
distances z for equally distributed points on the gear flank. Two thumbnails at z = 3.50 mm (left) and
z = 6.33 mm (right) illustrate the position of the crosses on the sample near the focus or the orange
cross (left) and the red cross (right).
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Figure 6. Phase smoothness sz of several points at different propagation distances, z. zopt,max is marked
with a ∗, whereas zopt,Gauss can be read at the peak of the Gaussian fit. Two thumbnails at z = 3.50 mm
(left) and z = 6.33 mm (right) illustrate the position of the crosses on the sample near the focus or the
orange cross (left) and the red cross (right).

In the following sections, we propose two methods for the focus point selection with
different applications.

4.1.1. Maximum Filter

Figure 7a shows the reconstruction distance at the maximum phase smoothness for each pixel.
Since the shape-from-focus algorithm outputs the focus distance to the sample, its height information
is inverse to the sample’s real surface. We note the inverse height information in the shape-from-focus
output compared with the sample’s real surface. Except for the gear flank edge, the resulting height
map shows a very smooth yet discrete focusing map. At the joint of both areas, a focus distance
peak can be observed in Figure 7a. This outlier is due to a drop in the amplitude of sz in areas
of low gradients, as shown at the yellow point in Figure 7b, which can lead to the wrong focus
plane estimation.
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Figure 7. Shape-from-focus output including phase smoothness sz as the quality criterion, high values
show a strong result; (a) discrete focus map zopt,max reconstructed by pixel wise shape-from-focus
maximum. The z sections at colored crosses are illustrated in Figure 6; (b) optimized values of sz using
maximum filter.
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4.1.2. Gaussian Fit

Using the Gaussian fit approach introduced in Section 3, we can overcome the discrete distribution
and get the result shown in Figure 8a. The output now shows an even smoother progression
with similar outliers at the gear flank edge. Using the amplitude of the phase gradient direction
vectors, shown in Figure 8b, we get information about the signal quality, which can be used for
weighted filtering.
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Figure 8. Shape-from-focus output including phase smoothness sz as a quality criterion, high values
show a strong result; (a) focus map zopt,Gauss reconstructed by pixel wise shape-from-focus Gaussian
fit. The z sections at colored crosses are illustrated in Figure 6; (b) optimized values of sz using the
Gaussian approach.

Gaussian fits based on the sampling points, as described in Section 3, are plotted in Figure 6.
The dashed-line shows the initial Gaussian fit guess for each point plotted in Figure 8a. The final
Gaussian fits are shown as solid lines and are in very good agreement with the reconstruction distances.

Applied to all pixel values, both focus plane selections result in a continuously focused
measurement, as shown in Figure 9.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  8 of 13 

4.1.2. Gaussian Fit 

Using the Gaussian fit approach introduced in Section 3, we can overcome the discrete 

distribution and get the result shown in Figure 8a. The output now shows an even smoother 

progression with similar outliers at the gear flank edge. Using the amplitude of the phase gradient 

direction vectors, shown in Figure 8b, we get information about the signal quality, which can be used 

for weighted filtering. 

  
(a) (b) 

Figure 8. Shape-from-focus output including phase smoothness 𝑠𝑧 as a quality criterion, high values 

show a strong result; (a) focus map 𝑧𝑜𝑝𝑡,𝐺𝑎𝑢𝑠𝑠  reconstructed by pixel wise shape-from-focus Gaussian 

fit. The 𝑧 sections at colored crosses are illustrated in Figure 6; (b) optimized values of 𝑠𝑧 using the 

Gaussian approach. 

Gaussian fits based on the sampling points, as described in Section 3, are plotted in Figure 6. The 

dashed-line shows the initial Gaussian fit guess for each point plotted in Figure 8a. The final Gaussian 

fits are shown as solid lines and are in very good agreement with the reconstruction distances. 

Applied to all pixel values, both focus plane selections result in a continuously focused 

measurement, as shown in Figure 9.  

  
(a) (b) 

Figure 9. (a) All-in-focus phase map 𝜑–the whole measurement shows sharp stripes and minimized 

phase noise. In the 3072 × 3072 pixels original image, the fringes are clearly resolved; (b) Magnified 

view of the red area of (a). The fringe spacing is 10 pixels. 

Now instead of using a very large synthetic wavelength, the shape-from-focus output can be 

used as rough estimation of the object’s surface shape for the combination of wavelengths. By 

combining the shape-from-focus data with all three synthetic wavelengths, we get the focused 

unambiguity-extended 3D results in Figure 10. However, due to the discrete progression of the shape-

from-focus estimation, we get various combination errors applying finer wavelengths to the 

maximum filtered input data as shown in Figure 10a. Maximum filtered height estimation data works 

Figure 9. (a) All-in-focus phase map ϕ–the whole measurement shows sharp stripes and minimized
phase noise. In the 3072 × 3072 pixels original image, the fringes are clearly resolved; (b) Magnified
view of the red area of (a). The fringe spacing is 10 pixels.

Now instead of using a very large synthetic wavelength, the shape-from-focus output can be used
as rough estimation of the object’s surface shape for the combination of wavelengths. By combining the
shape-from-focus data with all three synthetic wavelengths, we get the focused unambiguity-extended
3D results in Figure 10. However, due to the discrete progression of the shape-from-focus estimation,
we get various combination errors applying finer wavelengths to the maximum filtered input data
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as shown in Figure 10a. Maximum filtered height estimation data works perfectly for all-in-focus
calculations as shown in Figure 10 but has to be generated with very small propagation step width z
in order to suffice as a rough synthetic starting point for wavelength combination. Since this is very
time-consuming, the Gaussian fit algorithm should be used instead here.
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Figure 10. Masked height map h of the combined tooth data using (a) maximum filter: combination
errors due to discrete and hence imprecise shape-from-focus data; (b) Gaussian filter: almost no
combination errors occur onto the Gaussian fit output.

Applying all the finer wavelengths on the inverse of the Gaussian filter output, we get the
focused unambiguity-extended 3D result in Figure 10b. The combined data considerably exceeds the
geometrical ambiguity and focus limits, and is almost free of combination errors. sz is used in both of
the height maps to mask out data points, but the shape-from-focus algorithm could not reconstruct
safely. Masked data points are shown as white points.

4.2. Steps Sample

In this section, a tilted sample with discontinuous height steps larger than the measurement,
the unambiguous range is evaluated. Figure 11a shows a photograph of this part, including a mm
scale, and Figure 11b shows the sensor setup with the tilted step sample and its step height of 1.2 mm.
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Figure 11. (a) Photograph of step sample with discontinuous height steps ∆z = 1.5 mm beyond the
sensor’s unambiguous range; (b) sketch of the sensor setup including the sample step height.
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Figure 12a shows the shape-from-focus output using the superior Gaussian fit approach from
Section 3.2. We were able to fully reconstruct the tilted sample very smoothly. However, because of
two reasons, the edges of the plateaus show artefacts, as follows: Within the filter radius, we get mixed
phase information and thus mixed sz values. Additionally, at very steep slopes, strong artefacts can
be observed due to the stripes not being sufficiently sampled. These effects can be suppressed by
additional szweighted filtering.
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unambiguousness beyond 12 mm at the largest synthetic wavelength of only 915 µm. In this range, 

we could not observe a decrease in signal quality. To date, no fundamental limit to the possible range 

Figure 12. Focus map zopt,Gauss reconstructed by pixel wise Gaussian fit to shape-from-focus output
stack; (a) discrete focus map zopt,Gauss reconstructed by pixel wise shape-from-focus Gaussian fit;
(b) optimized values of sz using the Gaussian filter. At very steep slopes, strong artefacts can be
observed because of the stripes not being sufficiently sampled.

Figure 13 shows the combined height information for both filtering approaches. Even in a complex
sample crossed by many steps far beyond the measurement’s unambiguous range, we get focused
unambiguity-extended height information. For the maximum filter approach, the height map, as shown
in panel (a), is disturbed by many combination errors. Conversely, the Gaussian filtered height map in
panel (b) is almost free of combination errors.
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5. Discussion

We presented a shape-from-focus algorithm for multi-wavelength holography using a phase
noise measure, based on phase gradients. Firstly, a generic measuring setup for the application of
this method was introduced. Two approaches (pixel wise maximum filter and the Gaussian fit on
the shape-from-focus stack output) for the all-in-focus measurement data calculation were presented
subsequently. The output of the algorithm is further used as a rough height estimation to overcome
the phase ambiguities, and allows the extension of the unambiguous measurement range.

We were able to calculate an all-in-focus measurement and extend the range of unambiguousness
beyond 12 mm at the largest synthetic wavelength of only 915 µm. In this range, we could not
observe a decrease in signal quality. To date, no fundamental limit to the possible range are known.
Using a setup with collimated illumination, experiments at meter-scale distances would be possible.

After having explained the algorithm in general, their respective performance at complex
free-form surfaces was demonstrated. A gear tooth flank and a step sample at steep viewing angles
demonstrate the performance of the algorithm. Both filters are able to reconstruct an all-in-focus phase
map. However, only the Gaussian filter approach is able to reconstruct an unambiguity-free height
map on top of the synthetic measurement data without combination errors.
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