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Featured Application: Due to the mathematical complexity raised by a high continuity
requirement, developing simple/efficient standard finite elements with general polynomial
approximations applicable for arbitrary HSDTs seems to be a difficult task at the present
theoretical level. In this article, a series of High-order Shear Deformation Triangular Plate
Elements (HSDTPEs) are developed using polynomial approximation for the analysis of
isotropic thick-thin plates, through-thickness functionally graded plates, and cracked plates.
The HSDTPEs have the advantage of simplicity in formulation, are free from shear locking,
avoid using a shear correction factor and reduced integration, and provide stable solutions for
thick and thin plates. The work can be further applied to plates and shells analysis with arbitrary
shapes of elements, as well as more general problems related to the shear deformable effect, such
as fracture and functionally graded plates.

Abstract: The High-order Shear Deformation Theories (HSDTs) which can avoid the use of a shear
correction factor and better predict the shear behavior of plates have gained extensive recognition
and made quite great progress in recent years, but the general requirement of C1 continuity in
approximation fields in HSDTs brings difficulties for the numerical implementation of the standard
finite element method which is similar to that of the classic Kirchhoff-Love plate theory. As a strong
complement to HSDTs, in this work, a series of simple High-order Shear Deformation Triangular Plate
Elements (HSDTPEs) using incompatible polynomial approximation are developed for the analysis
of isotropic thick-thin plates, cracked plates, and through-thickness functionally graded plates.
The elements employ incompatible polynomials to define the element approximation functions
u/v/w, and a fictitious thin layer to enforce the displacement continuity among the adjacent plate
elements. The HSDTPEs are free from shear-locking, avoid the use of a shear correction factor, and
provide stable solutions for thick and thin plates. A variety of numerical examples are solved to
demonstrate the convergence, accuracy, and robustness of the present HSDTPEs.

Keywords: plate; FSDT; HSDT; Mindlin; incompatible approximation; fracture

1. Introduction

The classic Kirchhoff-Love plate theory based on the assumption that a plane section
perpendicular to the mid-plane of the plate before deformation remains plane and perpendicular to the
deformed mid-plane after deformation is the simplest plate theory in engineering analysis. However,
the Kirchhoff-Love plate theory is only applicable for thin plates due to the neglecting of the shear
deformation effects. The most well-known and earliest plate theories that take into account the shear
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deformation effects were proposed by Reissner [1] and Mindlin [2], in which the Mindlin plate theory
was based on an assumption of a linear variation of in-plane displacements through the thickness of
the plate, referred to as the First-order Shear Deformation Theory (FSDT). The plate elements derived
from the FSDT only require C0 continuity in approximation fields, have the advantages of physical
clarity and simplicity of application [3], and hence were widely accepted and used to model thick-thin
plates by scientists and engineers. Unfortunately, the FSDT elements suffer from the shear-locking
problem when the thickness to length ration of the plate becomes very small, due to inadequate
dependence among transverse deflection and rotations using an ordinary low-order finite element [4].
Quite a large number of techniques have been developed to overcome this problem, such as the
assumed shear strain approach, the discrete Kirchhoff/Mindlin representation, the mixed/hybrid
formulation, and the reduced/selected integration [5–15]. These formulations are free from shear
locking and are applicable to a wide range of practical engineering problems, but in general, it is rather
complex and time consuming to include the transverse shear effects for thick plates, which would
also lead to complexity and difficulty in the programming. Moreover, the assumption of FSDT causes
constant transverse shear strains and stresses across the thickness, which violates the conditions of
zero transverse shear stresses on the top and bottom surfaces of plates. A shear correction factor is
therefore required to properly compute the transverse shear stiffness. The finding of such a shear
correction factor in FSDT is difficult since it depends on geometric parameters, material, loading and
boundary conditions, etc. [16].

In recent years, High-order Shear Deformation Theories (HSDTs) have gained extensive
recognition and made quite great progress [4,16–43]. Based on polynomial or non-polynomial
transverse shear functions, various HSDTs have been proposed to avoid the use of a shear correction
factor, and to better predict the shear behavior of the plate, for instance, the third-order shear
deformation theory [17,18], the fifth-order shear deformation theory [19], the exponential shear
deformation theory [20], the hyperbolic shear deformation theory [21], and the combined or mixed
HSDTs [22,23]. Please see Thai and Kim [16] and Caliri et al. [24] for a comprehensive review of HSDTs.
In HSDTs, the bending angles of rotation and shear angles can be treated as independent variables,
and the shear-locking problem encountered in FSDT can be well-solved [4]. In [30–43], two well-know
HSDTs named as equivalent single layer (ESL) and layer-wise (LW) models are developed to evaluate
the effective mechanical behavior of composite structures correctly. The accuracy and reliability of
HSDTs have been illustrated by numerous examples in the literature [4,17,25–43]. However, the general
requirement of C1 continuity in approximation fields in HSDTs brings difficulties for the numerical
implementation of the standard Finite Element Method (FEM), which is similar to that of the classic
Kirchhoff-Love plate theory. Most examples in the literature are focused on the analytical/numerical
solutions of simple Navier-type or Levy-type square plates. The numerical examples reported for
the C1 rectangular finite element using Lagrange interpolation and Hermite interpolation proposed
by Reddy [25] and the C0 continuous isoparametric Lagrangian finite element with 63 Degrees Of
Freedom (DOFs) per element proposed by Gulshan et al. [44] are also limited to the rectangular plate
or skew plate. Owing to the striking feature of capturing the high-order continuity well, the Meshless
Methods (MM) and IsoGeometric Analysis methods (IGA) appear to be suitable potential methods to
construct the numerical formulations for the plate based on HSDTs. The successful implementation of
MM [45–48] and IGA [19,23,49–54] in a number of thick-thin plates with arbitrary geometries can be
found in the literature.

From the above literature review, it is observed that, due to the mathematical complexity
raised by the high continuity requirement, developing simple/efficient standard finite elements
with general polynomial approximations applicable for arbitrary HSDTs seems to be a difficult and
unreachable task at the present theoretical level. In Cai and Zhu [55], a locking-free MTP9 (Mindlin type
Triangular Plate element with nine degrees of freedom) using incompatible polynomial approximation
is proposed. It also provides a new way and methodology to develop simple and efficient plate/shell
elements based on HSDTs. In this work, with a similar procedure as the MTP9, a series of simple
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High-order Shear Deformation Triangular Plate Elements (HSDTPEs) using incompatible polynomial
approximation are developed for the analysis of isotropic thick-thin plates and through-thickness
functionally graded plates. In the HSDTPEs, different orders of general polynomials can be easily
employed as element approximation functions, the displacement continuity among the adjacent plate
elements can be equivalently enforced by a fictitious thin layer which has a definite physical meaning,
and consequently, there are no extra continuity requirements under the theoretical framework of the
present HSDTPEs. The HSDTPEs avoid the shear-locking problem and the use of a shear correction
factor, and have a good convergence rate and high accuracy for both thick and thin plates. Several
representative numerical examples are solved and compared to validate the performance of the
present HSDTPEs.

2. Basic Theory of HSDTPEs

2.1. Incompatible Polynomial Approximation over Each Triangular Element

Consider a linear elastic plate with a length a, width b, and thickness h undergoing infinitesimal
deformation, as illustrated in Figure 1. The mid-plane of the plate is divided into arbitrary triangular
elements, as shown in Figure 2. The displacement function of the most well-known HSDTs [17] for
each triangular element ei is generally defined by:

u(x, y, z) = u0(x, y)− zθx + g(z)
(

∂w0
∂x − θx

)
v(x, y, z) = v0(x, y)− zθy + g(z)

(
∂w0
∂y − θy

)
w(x, y, z) = w0(x, y)

(1)

where u0, v0 and w0 are the in-plane and transverse displacements at the mid-plane, respectively;
u = [u, v, w]T denotes the displacements of a point x on the plate; θx and θy are the rotations of
the normal to the cross section; z is the coordinate in the transverse direction; and g(z) describes the
distribution of shear effect in the thickness direction. A review of transverse shear functions g(z) can be
found in Nguyen et al. [56]. For isotropic plates with infinitesimal strains, the in-plane displacements
u0(x, y) and v0(x, y) can be neglected because the thickness h is much smaller than the characteristic
length a and b, and the transverse displacement is much smaller than the thickness h, which leads
to u0(x, y) ≈ 0 and v0(x, y) ≈ 0 at the mid-plane. The transverse normal displacement w can also be
assumed as w = w(x, y, z), which is not a constant along the z axis, and can be defined by the ESL
or LW models [30–43] to capture the effective mechanical behavior along the thickness of composite
structures well.

Figure 1. A linear elastic plate.
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Figure 2. Triangular elements for the mid-plane of the plate.

To demonstrate the performance of the present theory for various transverse shear functions,
the third-order shear function g(z) = − 4z3

3h2 [17] and the fifth-order shear function g(z) = − z
8 −

2z3

h2 + 2z5

h4 [19] are used to develop the Third-order Shear Deformation Triangular Plate Element
(TrSDTPE) and Fifth-order Shear Deformation Triangular Plate Element (FfSDTPE), respectively.
For the special case g(z) = 0, Equation (1) is actually the expression of Mindlin plate theory (or FSDT).
The corresponding plate element is referred to as FiSDTPE (First-order Shear Deformation Triangular
Plate Element) for comparison in the paper.

We assume that: 

u0 = P2au0

v0 = P2av0

θx = P2aθx

θy = P2aθy

w0 = P3aw

(2)

where au0 =
[

a1 a2 · · · a6

]T
, av0 =

[
a7 a8 · · · a12

]T
, aθx =

[
a13 a14 · · · a18

]T
,

aθy =
[

a19 a20 · · · a24

]T
, aw =

[
a25 a26 · · · a34

]T
are the vector of generalized

approximation DOFs (degrees of freedom) of the triangular element ei, P2 is the second-order
polynomial basis function, and P3 is the third-order polynomial basis function in which:

P2(x) =
[

1 x0 y0 x2
0 x0y0 y2

0

]
(3)

P3(x) =
[

1 x0 y0 x2
0 x0y0 y2

0 x3
0 x2

0y0 y2
0x0 y3

0

]
(4)

where x0 = x− xi, y0 = y− yi, (xi, yi) are the coordinates of the central point of element ei. It should be
noted that only triangular elements, as well as second-order and third-order polynomial functions, are
implemented in the paper, but actually, arbitrary shape of elements and arbitrary orders of polynomials
can also be easily employed to derive high-order shear deformation plate elements in the present work.
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Substituting Equation (2) into Equation (1), the displacement approximation over element ei can
be further expressed as:

ue =


u
v
w

 =

 P2 0 αzP2 0 g(z)P3
,x

0 P2 0 αzP2 g(z)P3
,y

0 0 0 0 P3




au0

av0

aθx

aθy

aw


= N ea e (5)

where αz = −z− g(z), P3
,x = ∂P3

∂x , P3
,y = ∂P3

∂y ,

Ne =


N u

N v

N w

 =

 P2 0 αzP2 0 g(z)P3
,x

0 P2 0 αzP2 g(z)P3
,y

0 0 0 0 P3

 (6)

ae =
[

a1 a2 · · · a34

]T
(7)

The strain–displacement relations of the linear elastic problem are given by:

εx =
∂u
∂x

, εy =
∂v
∂y

, εz =
∂w
∂z
≈ 0, γxy =

∂u
∂y

+
∂v
∂x

, γyz =
∂w
∂y

+
∂v
∂z

, γxz =
∂u
∂z

+
∂w
∂x

(8)

Substituting Equation (5) into Equation (8), we have:

ε = Lue= LNeae= Bae (9)

where ε =
[
εx, εy, γxy, γyz, γxz

]T is the strain vector and B is the strain matrix, where:

B = LNe (10)

L is a differential operator where:

L =



∂
∂x 0 0
0 ∂

∂y 0
∂

∂y
∂

∂x 0
0 ∂

∂z
∂

∂y
∂
∂z 0 ∂

∂x

 (11)

For an isotropic linear elastic material, the stress–strain relations in element ei are given by:

σ = DBae (12)

where σ =
[
σx, σy, τxy, τyz, τxz

]T, the transverse stress σz is assumed to be ignored for plate structures,
and the elasticity matrix is:

D = D0


1 v 0 0 0
v 1 0 0 0
0 0 1−v

2 0 0
0 0 0 1−v

2k 0
0 0 0 0 1−v

2k

 (13)
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where D0 = E
1−v2 , E is the elastic modulus and v is the Poisson ratio. As mentioned above, a shear

correction factor k is required to properly compute the transverse shear stiffness in the FiSDTPE
with the assumption of FSDT, which causes constant transverse shear strains and stresses across the
thickness and violates the conditions of zero transverse shear stresses on the top and bottom surfaces
of plates [16]. Usually, k is taken as k = 1.2 for the special case of FiSDTPE in Equation (13) according
to the principle of the equivalence of strain energy. However, the high-order shear deformation theory
gives a parabolic distribution of the transverse stresses/strains directly and avoids the use of a shear
correction factor, and thus k is taken as k = 1.0 in Equation (13) for the rest of the HSDTPEs.

Therefore, the strain energy of element ei can be derived as:

Πe =
1
2
(ae)T

∫ h/2

−h/2

x

∆ei

BTDBdxdy

dz ae (14)

For the plate made of Functionally Graded (FG) materials which is created by mixing two distinct
material phases, the composition of the FG materials is in general assumed to be varied continuously
from the top to the bottom surface. There are many kinds of FG materials made from all classes of solids.
But for the sake of simplicity and convenience, only a ceramic-metal composite is considered and
implemented to test the performance of the HSDTPEs in the present study, and the power-law [25,32,45]
is used to describe the through-the-thickness distribution of FG materials, which is expressed as:

Vc(z) =
(

1
2
+

z
2

)n
(0 ≤ n ≤ ∞) (15)

P(z) = (Pc − Pm)Vc + Pm (16)

where n is the volume fraction exponent, Vc is the volume fraction of the ceramic, Pm represents the
material property of the metal, Pc represents the material property of the ceramic, and P denotes the
effective material property. In this work, the Young’s modulus E in Equation (13) varies according
to Equation (16) and the Poisson ratio v is assumed to be constant for the analysis of functionally
graded plates.

2.2. Fictitious Thin Layer between Adjacent Triangular Elements

According to the definition of the displacement approximation in Equation (5), the deformation
along the share boundary of the adjacent elements ei and ej is discontinuous, which means that
uei
(

xp, yp, zp
)
6= uej

(
xp, yp, zp

)
for an arbitrary point p along the share boundary shown in Figure 2,

where point p has local coordinates
(
sp, np, zp

)
and global coordinates

(
xp, yp, zp

)
. Here, we introduce

a fictitious thin layer el shown in Figure 3 to enforce the continuous condition over the share boundary
of the elements. The geometry dimensions of el are the length l, width d, and height h, where d� l,
d� h, and h is the thickness of the plate in the transverse direction.
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Figure 3. A fictitious thin layer between adjacent triangular elements.

Because d � l and d � h, the strain–displacement relations εl = [γns, εn, γnz]
T in thin layer el

can be simplified as:

γns =
∂u
∂n
≈ upj − upi

d
, εn =

∂v
∂n
≈ vpj − vpi

d
, γnz =

∂w
∂n
≈ wpj − wpi

d
(17)

where upi
=
[
upi

, vpi
, wpi

]T
is the displacement of point p in the local coordinate (s, n, z) computed by

the approximation of triangular element ei, and upj
=
[
upj

, vpj
, wpj

]T
is the displacement of point p in

local coordinate (s, n, z) computed by the approximation of triangular element ej. upi
and upj

can be
calculated using Equation (5).

Substitution of Equation (5) into Equation (17) yields:

εl =
1
d

Nlal (18)

where
Nl = λl[−Nei

(
xp, yp, zp

)
Nej
(
xp, yp, zp

)]
(19)

where Nei
(

xp, yp, zp
)

is the shape function of point p in triangular element ei and Nej
(
xp, yp, zp

)
is the shape function of point p in triangular element ej. λl is the transformation matrix of point p from
the global coordinate

(
xp, yp, zp

)
to the local coordinate

(
sp, np, zp

)
, where:

λl =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 (20)

and

al =

[
aei

aej

]
(21)

where aei is the DOFs of element ei and aej is the DOFs of element ej.
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The stress–strain relations in fictitious thin layer el are then given by:

σl = Dlεl (22)

where σl = [τns, σn, τnz]
T and

Dl =

 G0 0 0
0 E0 0
0 0 G0/k

 (23)

where G0 = E
2(1+v) and E0 = E

1−v2 . Similar to Equation (13), the shear correction factor k is taken as
k = 1.2 for the special case of FiSDTPE, and k = 1.0 for the rest of the high-order shear deformation
plate elements, including the TrSDTPE and FfSDTPE, without the need to use a shear correction factor.

The width d of fictitious thin layer el is an important artificial parameter for the present HSDTPEs,
but it is easy to select a reasonable d to satisfy d� l and d� h for simplifying the strain–displacement
relations of thin layer el in Equation (17). Numerical studies show that the variation of d in a large
range has little effect on the accuracy of the calculation results. In this paper, width d is taken as
d = 0.0001l.

Thus, the strain energy of thin layer el can be derived as:

Πl =
1

2d

(
al
)T ∫ h/2

−h/2

(∫ l/2

−l/2

(
Nl
)T

DlNlds
)

dz al (24)

2.3. Imposing Displacement Boundary Condition

As illustrated in Figure 4, along boundary 1–2 of element ek, rotations
(
θs, θn

)
in the local

coordinate (s, n, z) or the displacements (u0, v0, w0) in the local coordinate (s, n, z) are fixed, where
(u0, v0, w0) represents the in-plane and transverse displacements at the mid-plane. A fictitious thin
layer eb over boundary 1–2 shown in Figure 4 is also introduced to enforce the displacement boundary
condition. We divide the displacement approximation in Equation (5) into two parts to the follow to
separately enforce the rotation and mid-plane displacement boundaries.

upr
(
sp, np, zp

)
≈ λbNr(xp, yp, zp

)
ar (25)

upt
(
sp, np, zp

)
≈ λbNt(xp, yp, zp

)
at (26)

where upr represents the displacement function of point p for rotations in triangular element ek, upt

represents the displacement function of point p for mid-plane displacements in triangular element ek,
and ar and at are the corresponding DOFs of element ek.

Nr =

 0 0 αzP2 0 g(z)P3
,x

0 0 0 αzP2 g(z)P3
,y

0 0 0 0 0

 (27)

Nt =

 P2 0 0 0 0
0 P2 0 0 0
0 0 0 0 P3

 (28)

where “0” in bold in Equations (27) and (28) represents zero matrix , and λb is the transformation
matrix similar to Equation (20) where

λb =

 cos ω sin ω 0
− sin ω cos ω 0

0 0 1

 (29)
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Using the same derivation process as in Equation (24), the strain energy of the thin layer eb is
derived as:

Πb =
1

2d

∫ h/2

−h/2

∫ l/2

−l/2
[(ar)T(Nr

)
T

DrNrar +
(
at)T

(Nt
)

T
DtNtat]dsdz (30)

where Db is calculated using Equation (23), Nr
= λbNr, and Nt

= λbNt.
Please refer to Cai and Zhu [55] for the detailed derivation of the displacement boundary condition

fixed at a point or the given displacement boundary condition.

Figure 4. Fixed displacement boundary condition.

2.4. Load Boundary Condition

A distributed force f0 =
[

0 0 fz (x, y)
]T

along the transverse direction z is applied at element
ed, as illustrated in Figure 5. By using Equation (5), the external force potential energy of element ed is
written as:

Π f = −(aed)T
x

∆ed

(Ned)Tf0 dx dy (31)

where Ned is the shape function of element ed calculated by Equation (5), and aed is the DOFs of element ed.

Figure 5. Distributed transverse force.
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Similarly, a distributed resultant moment M0 =
[

Ms Msn 0
]T

is applied to the edge of
element em, as illustrated in Figure 6. By using Equation (5), the external force potential energy of
element em is written as:

Πm = −(aem)T
∫ l/2

−l/2

(
λmÑem

)T
M0 ds (32)

where aem is the DOFs of element em, and Ñem is the shape function of element em corresponding to the
moment, where:

Ñem =

 0 0 P2 0 0
0 0 0 P2 0
0 0 0 0 0

 (33)

and the transformation matrix

λm =

 cos β sin β 0
− sin β cos β 0

0 0 1

 (34)

Figure 6. Moment boundary condition.

2.5. Equilibrium Equation

From Equations (14), (24), (30), (31), and (32), the total potential energy of a plate is obtained as:

Π = ∑
(

Πe+Πl + Πb + Π f + Πm
)

(35)

The variation of total potential energy Π results in the following discrete equation:

∂Π
∂a

= ∑
(

Keae + Klal + Kbab − Fed − Fem
)
= 0 (36)

where

Ke =
∫ h/2

−h/2

x

∆ei

BTDBdx dy

dz (37)
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Kl =
1
d

∫ h/2

−h/2

(∫ l/2

−l/2

(
Nl
)T

DlNl ds
)

dz (38)

Kb =
1
d

∫ h/2

−h/2

∫ l/2

−l/2

[(
Nr
)T

DbNr
+
(

Nt
)T

DbNt
]

ds dz (39)

Fed =
x

∆em

(
N̂ed
)Tf0 dx dy (40)

Fem =
∫ l/2

−l/2

(
λmÑem

)T
M0 ds (41)

Assembling the above stiffness matrix and force vector, the equilibrium equation for a plate is
then obtained as:

K·U = F (42)

where K is the global stiffness matrix, F is the force vector, and U is the vector of DOFs to be solved.
As described in Senjanović et al. [4], the shear-locking problem could be well and naturally solved

because the bending angles of rotation and shear angles are treated as independent variables in HSDTs.
The regular full integration can be applied to make HSDTPEs valid for the thick-thin plates for the
computation of Equation (42), for instance, seven quadrature points for each triangular element [57],
four Gauss quadrature points for transverse direction z (where the analytical integration can also be
applied for the direction z), and four Gauss quadrature points for the local direction s of each fictitious
layer are used for the integration of the TrSDTPE using the third-order shear function g(z) [58–60].

3. Analysis of Cracked Plates

The present HSDTPEs are also applied to the calculation of Stress Intensity Factors (SIFs) of
cracked thick-thin plates. As illustrated in Figure 7, the mid plane of a cracked plate is taken as the
x-y plane and is divided into arbitrary triangular elements. Accurate computation of SIFs remains
challenging in the field of fracture mechanics. For plates loaded by a combination of bending and
tension, the SIFs can also be computed by the Virtual Crack Closure Technique (VCCT) [61–63], the
path-independent J-integral technique or interaction integral [64,65], and the stiffness derivative
method [66]. In this paper, the Virtual Crack Closure Technique (VCCT) [61–63] is employed to
calculate the SIFs of the cracked plate. For the convenience of implementing the VCCT, point T2 shown
in Figures 7 and 8 is temporarily moved to T3 along the extended line direction of T1 − T. In the
local coordinates (s, n, z) shown in Figure 9, the relative displacements [∆u(s, z), ∆v(s, z), ∆w(s, z)] of
T1 − T and the stresses [τns(s, z), σn(s, z), τnz(s, z)] of T − T1 can be easily calculated using Equations
(18) and (22) for the fictitious thin layer el . For example, assuming that the T1 − T is simulated by a
fictitious thin layer with width d shown in Figure 3, the relative displacements can be evaluated by
∆u(s, z) = γnsd, ∆v(s, z) = εnd and ∆w(s, z) = γnzd. Then, the energy release rate at crack tip T is
obtained by the VCCT as:

GI ∼= 1
2hr0

∫ h/2
−h/2

∫ r0
0 σn(s, z)∆v(s− r0, z)ds dz

GII ∼= 1
2hr0

∫ h/2
−h/2

∫ r0
0 τns(s, z)∆u(s− r0, z)ds dz

GIII ∼= 1
2hr0

∫ h/2
−h/2

∫ r0
0 τnz(s, z)∆w(s− r0, z)ds dz

(43)

where GI is the energy release rate of crack mode I, GII is that of crack mode II, and GIII is that of crack
mode III. Then, the SIFs of the crack tip can be computed by means of the relations between the energy
release rate and SIFs for the plate theory, for instance, K1 =

√
3EGI [63].
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Figure 7. Triangular elements for a cracked plate.

Figure 8. Minor movement for the implementation of VCCT.

Figure 9. Calculating SIFs by VCCT.

4. Numerical Examples

4.1. Simply Supported Square Plate Subjected to Uniform Load

A simply supported square plate subjected to a uniform load q is tested to show the reliability
and convergence of the present elements. The side length of the plate is L, and the thickness of the
plate is h. A quarter of the plate is modeled as a result of symmetry, as illustrated in Figure 10. For the
isotropic plates, the in-plane displacements (u0, v0) and their DOFs in Equations (1), (2), and (5) are
neglected in the following analyses. The displacement boundary conditions of the present theory
along the simply supported edges in local coordinates are θs = 0 and w = 0. The n× n regular mesh
and irregular mesh illustrated in Figures 11 and 12 are employed for convergence studies.
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Figure 10. A quarter model of the square plate.

Figure 11. Regular 16 × 16 mesh for the square plate.

The elements DST-BL (Discrete Mindlin triangular plate element) [7] and RDKTM (Re-constituting
discrete Kirchhoff triangular plate element) [14] have been selected for comparison with the present
elements based on HSDTs. The reference solutions in the following Tables 1–6 are taken from
Long et al. [67], which are also labeled as analytical solutions in [67]. Table 1 lists the normalized

defection W0 = Wc/ qL4

100Db
of the simply supported square plate, where Wc is the central deflection of

the plate and Db = Eh3

12(1−v2)
. Table 2 reports the normalized bending moment M0 = Mc/ qL2

10 of the
simply supported square plate, where Mc is the central bending moment of the plate. The convergence
of the deflection for the simply supported square plate using different elements when the aspect ratio
h/L = 0.1 is shown in Figure 13. It is observed that all the present TrSDTPE, FfSDTPE, and FiSDTPE
shows a good convergence rate and high accuracy, and avoids the shear-locking problem. The results
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also indicate that the present elements are insensitive to element distortions of the irregular mesh
shown in Figure 12.

Figure 12. Irregular mesh for the square plate.

Table 1. Normalized deflection for the simply supported square plate.

h/L 0.001 0.01 0.10 0.15 0.20 0.25 0.30

TrSDTPE (4 × 4) 0.4027 0.4050 0.4266 0.4529 0.4897 0.5367 0.5941
TrSDTPE (8 × 8) 0.4058 0.4064 0.4273 0.4536 0.4903 0.5375 0.5949

TrSDTPE (16 × 16) 0.4063 0.4065 0.4274 0.4536 0.4904 0.5375 0.5950
TrSDTPE (Figure 12) 0.4063 0.4066 0.4274 0.4537 0.4904 0.5375 0.5950
FfSDTPE (16 × 16) 0.4063 0.4065 0.427 0.4528 0.4888 0.5350 0.5911
FiSDTPE (16 × 16) 0.4063 0.4065 0.4274 0.4537 0.4905 0.5379 0.5958
DST-BL (16 × 16) 0.4057 0.4059 0.4267 0.4529 0.4896 0.5367 0.5944
RDKTM (16 × 16) 0.4057 0.4059 0.4270 0.4532 0.4899 0.5371 0.5847

Ref. [67] 0.4064 0.4064 0.4273 0.4536 0.4906 0.5379 0.5956

Table 2. Normalized bending moment for the simply supported square plate.

h/L 0.001 0.01 0.10 0.15 0.20 0.25 0.30

TrSDTPE (4 × 4) 0.4266 0.4531 0.4741 0.4771 0.4785 0.4791 0.4794
TrSDTPE (8 × 8) 0.4633 0.4734 0.4786 0.4789 0.4791 0.4791 0.4791

TrSDTPE(16 × 16) 0.4759 0.4778 0.4788 0.4789 0.4789 0.4789 0.4789
TrSDTPE (Figure 12) 0.4807 0.4806 0.4807 0.4807 0.4807 0.4807 0.4807
FfSDTPE (16 × 16) 0.4757 0.4775 0.4788 0.4788 0.4788 0.4788 0.4788
FiSDTPE (16 × 16) 0.4762 0.4789 0.479 0.4790 0.4790 0.4790 0.4790
DST-BL (16 × 16) 0.4792 0.4788 0.4773 0.4770 0.4768 0.4767 0.4767
RDKTM (16 × 16) 0.4792 0.4790 0.4789 0.4790 0. 4790 0.4790 0.4790

Ref. [67] 0.4789

Table 3. Convergence of normalized deflection with different width-to-length ratios.

d/l 0.1 0.01 0.001 0.0001 0.00001 0.000001 0.0000001

TrSDTPE 0.5235 0.4371 0.4283 0.4274 0.4273 0.4273 0.4273
FfSDTPE 0.5229 0.4367 0.4279 0.4270 0.4269 0.4269 0.4269
FiSDTPE 0.5247 0.4372 0.4283 0.4274 0.4273 0.4273 0.4273
Ref. [67] 0.4273
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Table 4. Normalized deflection for the clamped square plate.

h/L 0.001 0.01 0.10 0.15 0.20 0.25 0.30

TrSDTPE (4 × 4) 0.1171 0.1241 0.1459 0.1708 0.2044 0.2463 0.2962
TrSDTPE (8 × 8) 0.1255 0.1266 0.1491 0.1757 0.2112 0.2553 0.3077

TrSDTPE (16 × 16) 0.1265 0.1268 0.1497 0.1766 0.2124 0.2569 0.3097
TrSDTPE (Figure 12) 0.1266 0.1268 0.1496 0.1764 0.2122 0.2567 0.3095
FfSDTPE (16 × 16) 0.1265 0.1268 0.1491 0.1750 0.2093 0.2516 0.3013
FiSDTPE (16 × 16) 0.1265 0.1268 0.1505 0.1788 0.2173 0.2659 0.3247
DST-BL (16 × 16) 0.1265 0.1267 0.1488 0.1756 0.2127 0.2601 0.3179
RDKTM (16 × 16) 0.1265 0.1267 0.1502 0.1784 0.2167 0.2650 0.3236

Ref. [67] 0.1265 0.1265 0.1499 0.1798 0.2167 0.2675 0.3227

Table 5. Comparisons of the normalized deflections with 3D FEM solutions for thick plates.

h/L 0.20 0.25 0.30

TrSDTPE (16 × 16) 0.2124(0.19%) 0.2569(−0.42%) 0.3097(−1.02%)
FfSDTPE (16 × 16) 0.2093(−1.27%) 0.2516(−2.48%) 0.3013(−3.71%)
FiSDTPE (16 × 16) 0.2173(2.50%) 0.2659(3.06%) 0.3247(3.77%)
DST-BL (16 × 16) 0.2127(0.33%) 0.2601(0.81%) 0.3179(1.60%)
RDKTM (16 × 16) 0.2167(2.22%) 0.2650(2.71%) 0.3236(3.42%)

3D FEM 0.2120 0.2580 0.3129

Note: Value in parentheses is the relative error with respect to 3D FEM.

Figure 13. Convergence of normalized deflection for the simply supported square plate.

The width-to-length ratio d/l of the fictitious thin layer el plays an important role in the present
formulations. Table 3 reports the effect of the ratio d/l on the normalized defection W0 for the simply
supported square plate, where 16× 16 regular mesh and an aspect ratio of h/L = 0.1 are employed.
The results in Table 3 indicate that the artificial parameter d/l has little effect on the solution accuracy
when d/l ≤ 0.001, and it is easy to select a reasonable d in the current formulation. In this work,
width d is taken as d = 0.0001l. The condition numbers of the global stiffness matrices of the simply
supported square plate using the present elements are also computed and reported in Figure 14.
As seen, the variation of the condition number in Figure 14 reflects that the present elements show a
good conditioning and stability in the case of mesh refinement.
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Figure 14. Variation of condition number versus number of elements.

Table 6. Normalized deflection for the clamped circular plate.

h/L 0.001 0.01 0.10 0.15 0.20 0.25 0.30

TrSDTPE (32) 1.3964 1.5225 1.6029 1.6846 1.798 1.9428 2.1187
TrSDTPE (128) 1.5441 1.5572 1.6262 1.7119 1.8312 1.9835 2.1682
TrSDTPE (512) 1.5607 1.5622 1.6316 1.7186 1.8394 1.9935 2.1801

TrSDTPE (2048) 1.5626 1.5632 1.6330 1.7203 1.8414 1.9957 2.1825
FfSDTPE (2048) 1.5620 1.5632 1.6315 1.7166 1.8343 1.9836 2.1637
FiSDTPE (2048) 1.5623 1.5633 1.6340 1.7233 1.8483 2.0090 2.2054
DST-BL (2048) 1.5634 1.5642 1.6452 1.7385 1.8665 2.0293 2.2273
RDKTM (2048) 1.5634 1.5640 1.6346 1.7239 1.8490 2.0098 2.2063

Ref. [67] 1.5625 1.5632 1.6339 1.7232 1.8482 2.0089 2.2054

4.2. Clamped Square Plate Subjected to Uniform Load

A clamped square plate subjected to a uniformly distributed load q is further investigated to
test the performance of the present elements for clamp boundary conditions. The geometry and
material parameters of the clamped plate are the same as those of the above simply supported plate.
The displacement boundary conditions of the present theory along the clamped edges in Figure 10 in
local coordinates are θs = 0, θn = 0 and w = 0.

The results for the normalized central deflection W0 of the clamped square plate are compared in
Table 4. It is seen that, for the plate with the clamped boundary conditions, the predictions of FiSDTPE,
DST-BL, and RDKTM based on FSDT agree well with the reference solutions [67] for plates, but the
TrSDTPE and FfSDTPE based on HSDTs seem to underestimate the deflections compared with the
reference solutions [67] for thick plates of h/L ≥ 0.2. To further illustrate the accuracy of the present
shear elements, the comparisons of the predictions by different elements and the solutions by 3D
elasticity FEM software ANSYS using 20-nodes hexahedron isoparametric element and an element
side length of 0.05 are listed in Table 5. By taking the 3D FEM solutions as the benchmark, Table 5
indicates that the present TrSDTPE and FfSDTPE show better solution accuracy than the elements
DST-BL, RDKTM, and FiSDTPE based on FSDT for the plates involving clamp boundaries. Moreover,
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the TrSDTPE with a third-order shear function g(z) shows the best solution accuracy among all the
elements for the clamped plate.

The DOFs of the different methods employed in Table 5 are compared by taking the case of
h/L = 0.3 for the clamped plate. Assuming that a 16× 16 regular mesh is employed for the plate
element discretization and a 16 × 16 × 9 regular mesh for the 20-nodes hexahedron 3D element
discretization, we can see that the total DOFs of the DST-BL/RDKTM element, HSDTs, and 3D
20-nodes hexahedron element are 867, 17408, and 41337, respectively. It is seen that the total DOFs
and the efficiency of HSDTs are between the DST-BL/RDKTM and the 3D FEM. Although the number
of DOFs only decreases to 42% of the 3D FEM method, the present 2D HSDTs have the advantage of
simplicity and flexibility in the mesh generation compared with 3D FEM for the plates with different
thicknesses. Compared with other 2D plate elements such as DST-BL and RDKTM, the computational
DOFs of the present 2D HSDTs seem to be relatively higher, but the formulation and the numerical
implementation of the high-order shear deformation theory in the present HSDTs are much simpler
than those of the DST-BL/RDKTM. From the point of view of the 2D analysis, the total computational
cost of the present elements is bearable and worthy in terms of its advantages in formulation and
implementation. HSDTs which have almost the same computational efficiency of DST-BL/RDKTM
could also be constructed using the reduced integral method similar to our previous work [55], but
the present HSDTs avoiding the reduced integration by paying a certain computational cost are more
practicable in engineering analysis.

4.3. Clamped Circular Plate Subjected to Uniform Load

A clamped circular plate subjected to a uniformly distributed load q is taken into consideration in
this section. The thickness of the plate is h. The radius of the plate is r = 100. A quarter of the plate with
symmetry conditions on axes x and y is modeled in Figure 15. The displacement boundary conditions
of the present theory along the clamped edges in local coordinates are θs = 0, θn = 0, and w = 0.
Divisions of 32, 128, 512, and 2048 triangular elements are employed for the convergence studies.
Typical meshes of 512 and 2048 triangular elements for the circular plate are shown in Figure 16.

The results for normalized deflection W0 = Wc/ qr4

100Db
of the clamped circular plate are listed in Table 6,

where Wc is the central deflection of the circular plate. Again, an excellent agreement between the
present solutions and the reference solutions is observed for this problem.

Figure 15. Model of the circular plate.
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Figure 16. Typical meshes for the circular plate.

4.4. Rectangular Plate Involving a Center Crack

Consider a rectangular plate involving a center crack as shown in Figure 17. The material
properties are E = 1.0 × 106 Pa and v = 0.3. The width and length are 2b = 1m and 2c = 2m,
respectively. The crack length is 2a and the plate thickness is h. Divisions of 2728 and 7338 triangular
elements are employed for the calculation of SIFs of the center crack plate. The displacement and
moment boundary conditions are also illustrated in Figure 17. The numerical results obtained by
TrSDTPE, FfSDTPE, and FiSDTPE for different a/h values are reported in Table 7, along with the
reference solutions by Tanaka et al. [68] and Boduroglu et al. [69] based on FSDT for comparison.
In Tanaka et al. [68], a cracked plate is analyzed by employing the mesh-free reproducing kernel
approximation formulated by Mindlin-Reissner plate theory, and the moment intensity factor is
evaluated by the J-integral with the aid of nodal integration. In Boduroglu et al. [69], the crack problem
is solved by the dual boundary element method based on Reissner plate formulation, and the stress
resultant intensity factor is calculated by employing the J-integral techniques. The SIFs in Table 7 are

normalized by F1 = h2K1
6M
√

πa . It is observed that the present elements show a high solution accuracy for
the calculation of the SIFs.

Table 7. Normalized SIFs F1 for the center cracked plate.

a/h 0.8 (0.2/0.25) 1.0 (0.25/0.25) 4.0 (0.2/0.05) 5.0 (0.25/0.05)

TrSDTPE (2728) 0.8577 0.8981 0.7235 0.7602
TrSDTPE (7338) 0.8589 0.9005 0.7243 0.7622
FfSDTPE (7338) 0.8548 0.8968 0.7224 0.7610
FiSDTPE (7338) 0.8627 0.9036 0.7266 0.7633

Tanaka [68] 0.8683 0.9096 0.7287 0.7663
Boduroglu [69] 0.8694 0.9094 0.7347 0.7702
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Figure 17. Model of the center cracked plate.

4.5. Symmetric Edge Cracks in a Rectangular Plate

As illustrated in Figure 18, a rectangular plate with symmetric double edge cracks is analyzed
in this example. The geometry dimensions, material properties, and boundary conditions are the
same as those of the center cracked problem described in Section 4.4. The crack length is a and the
plate thickness is h. Division of 2728 triangular elements shown in Figure 17 is also employed for this
analysis. The normalized SIFs obtained by the present elements for different values of d/b and b/h
are presented in Tables 8 and 9, along with reference solutions [68,69]. The numerical methods and
plate theories for solving the problem are the same as the above rectangular plate problem involving a
center crack. As expected, the present results are in good agreement with the reference solutions.

Table 8. Normalized SIFs F1 for the symmetric edge cracks problem (b/h = 2.0).

d/b 0.2 0.3 0.4 0.5 0.6

TrSDTPE 1.3429 1.1024 0.9739 0.9016 0.8601
FfSDTPE 1.3353 1.0971 0.9697 0.8990 0.8568
FiSDTPE 1.3502 1.1070 0.9776 0.9028 0.8629

Tanaka [68] 1.3719 1.1201 0.9886 0.9110 0.8706
Boduroglu [69] 1.3689 1.1174 0.9844 0.9086 0.8673
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Figure 18. Model of symmetric edge cracks.

Table 9. Normalized SIFs F1 for the symmetric edge cracks problem (b/h = 10.0).

d/b 0.2 0.3 0.4 0.5 0.6

TrSDTPE 1.0966 0.9156 0.8201 0.7687 0.7317
FfSDTPE 1.0941 0.9140 0.8187 0.7690 0.7306
FiSDTPE 1.0995 0.9173 0.8218 0.7656 0.7328

Tanaka [68] 1.1144 0.9225 0.8246 0.7697 0.7377
Boduroglu [69] 1.1140 0.9250 0.8268 0.7692 0.7351

4.6. Simply Supported FG Plate

In this section, a simply supported FG plate subjected to a uniformly distributed load q is
analyzed and compared. The FG plate is comprised of aluminum (Em = 70 GPa, vm = 0.3) and ceramic
(Ec = 151 GPa, vc = 0.3). The side length of the plate is L = 1m, and the thickness of the plate is h.
A quarter of the FG plate is modeled as a result of symmetry, as shown in Figure 19. The displacement
boundary conditions for the symmetric and simply supported sides in local coordinates are also
illustrated in Figure 19. The 16× 16 regular mesh similar to Section 4.1 is employed for computation.
Tables 10 and 11 list the normalized defection W0 of the FG plate for different aspect ratios h/L and

different exponents n in Equation (15), where W0 = Wc/ qL4

Emh3 and Wc is the central deflection of the
plate. In Ferreira et al. [45], the FG plate is solved by the meshless collocation method with multiquadric
radial basis functions and a third-order shear deformation theory. The problem is also solved by Talha
and Singh [70] using the C0 isoparametric finite element with 13 degrees of freedom per node, and the
power-law similar to Equations (15) and (16) is used to describe the through-the-thickness distribution
of FG materials in the HSDT model. The results obtained by the present TrSDTPE, FfSDTPE, and
FiSDTPE are in good agreement with the meshless solutions of Ferreira et al. [45], which compute the
effective elastic moduli by the rule of mixture.



Appl. Sci. 2018, 8, 975 21 of 25

Figure 19. Modal of the FG plate.

Table 10. Normalized deflection for the FG plate (h/L = 0.2).

Exponent n TrSDTPE FfSDTPE FiSDTPE Ferreira et al. [45] Talha & Singh [70]

0.0 (ceramic) 0.0248 0.0247 0.0248 0.0248 0.0250
0.5 0.0314 0.0313 0.0315 0.0314 0.0319
1.0 0.0352 0.0351 0.0353 0.0352 0.0358
2.0 0.0389 0.0388 0.0387 0.0388 0.0393

Metal 0.0535 0.0534 0.0536 0.0534 0.0541

Table 11. Normalized deflection for the FG plate (h/L = 0.05).

Exponent n TrSDTPE FfSDTPE FiSDTPE Ferreira et al. [45]

0.0 (ceramic) 0.0208 0.0208 0.0208 0.0208
0.5 0.0266 0.0266 0.0266 0.0265
1.0 0.0298 0.0298 0.0298 0.0297
2.0 0.0325 0.0325 0.0325 0.0324

Metal 0.0449 0.0449 0.0449 0.0448

5. Conclusions

In this work, a series of novel HSDTPEs using incompatible polynomial approximation are
developed for the analysis of isotropic thick-thin plates and through-thickness functionally graded
plates. The HSDTPEs are free from shear-locking, avoid the use of a shear correction factor, and
provide stable solutions for thick and thin plates. The present formulation, which defines the element
approach with incompatible polynomials and avoids the need to satisfy the requirement of high-order
continuity in approximation fields in HSDTs, also provides a new way and methodology to develop
simple plate/shell elements based on HSDTs. The accuracy and robustness of the present elements are
well demonstrated through various numerical examples.

Only two types of HSDTPEs including TrSDTPE and FfSDTPE, and one special type of first-order
shear deformation triangular plate element FiSDTPE, have been studied and discussed in the paper.
The present formulation can be further extended to plates and shells with arbitrary shapes of
elements, and further applied to more general problems related to the shear deformable effect
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such as the thermomechanical, vibration, and buckling analysis of functionally graded plates and
laminated/sandwich structures.
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