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Featured Application: A bi-level optimal model and relevant algorithm is proposed in the paper
to achieve the safe, stable, and economical operation of the distribution network comprising a
micro energy grid. The model and algorithm proposed in the paper can provide useful theoretical
reference for the integrated energy service company to achieve optimal operation and control of
the distribution network comprising a micro energy grid.

Abstract: With a focus on the safe, stable, and economical operation of a micro energy grid and a
distribution network, this study proposes a bi-level optimal model for the integrated operation of a
micro energy grid and a distribution network. The upper model used the minima of three objectives,
including the integrated operating cost of the distribution network, the network’s active power loss,
and the standard deviation of the voltage deviation in the distribution network. The lower model
used the minimum integrated operating cost for the micro energy grid as the objective function.
Considering the large number of objectives in the upper model, and that no single optimal solution
existed, the judgment-matrix method was used to obtain the weight factors of each objective, and the
upper multi-objective optimization problem was transformed into a single-objective problem in this
paper. A grey wolf optimization algorithm based on the dynamic adjustment of the proportional
weight and convergence factor was proposed to solve the operating model of the distribution network
comprising the micro energy grid. This algorithm offers a high solution precision, a high convergence
speed, and a strong global searching ability. The nonlinear convergent factor formula proposed in
this paper dynamically adjusted the global searching ability of the algorithm, while the proposed
proportional weight sped up the convergence of the algorithm. The superiority of the proposed
algorithm was verified mathematically by six test functions. The simulation results demonstrated
that the model and algorithm proposed in this paper improved the economic benefits, and voltage
stability of the distribution network, reduced the active power loss of the distribution network,
and enabled the safe, stable, and economical operation of the distribution network comprising a
micro energy grid.
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1. Introduction

With the increased level of integration in the fields of energy, automation, computers,
and communications, the micro energy grid attracted the attention of an increasing number of experts
and scholars [1–3], who integrated them into electricity, heating, cooling, and gas grids. The micro
energy grid is a micro integrated energy system [4–6], and a natural extension of the microgrid, which is
mainly used in urban communities, industrial and agricultural parks, and rural areas. The micro
energy grid is a user-side energy interconnection. By means of information, the power-supply grids for
cooling, heating, electricity, and gas in the micro energy grid are coordinated for optimization, in an
effort to meet the demands for various energies on the user side, and to achieve comprehensive and
efficient utilization of various energies. Photovoltaic (PV) power, wind power, microturbines, and other
distributed energies in the form of a micro energy grid accessing a distribution network are becoming
increasingly widespread [7]. The micro energy grid is the link between distribution networks and
distributed energy, such that the distribution network does not have to manage distributed energies of
various types, large quantities, or decentralized access (especially intermittent). Based on the above
advantages, many demonstration projects, such as the new Tianjin Eco-city [7], the Golden Concord
Group Limited (GCL) Suzhou Industrial Park multi-complementary model [8], and the ”Forest Town”
of Jurong [9], exist in China. Therefore, the coordination of the operation of the distribution network
and the micro energy grid, so as to maximize the consumption and utilization of renewable energy,
and improve the operating economy, security, and stability of the entire system, is an urgent problem
requiring resolution by researchers.

Numerous studies in China and abroad focused on the optimal dispatching of the distributed
energy’s direct access to the distribution network [10–19]. For example, in Reference [12], a distributed
coordinated control framework for a distribution network was proposed to enable reactive power
optimization of the distribution network with renewable energy, and to improve the power quality of
the system. In Reference [13], an optimal dispatching method for an active distribution network
considering the risk of voltage instability was proposed. In Reference [15], a comprehensive
optimization algorithm for a distribution network was proposed to enable the simultaneous
optimization of renewable energy output, distribution network reconfiguration, and capacitor
switching. According to the research reported in the above references, the control variables of the
system will feature an increasing amount of distributed renewable energy in the distribution network,
which complicates the solution process, and is disadvantageous to the solution of the model. As a
result of the continuous development of microgrid technology [20–23], experts and scholars in China
and abroad studied the optimal dispatching problem of renewable energy in the form of microgrid
access to a distribution network [24–28]. For example, Reference [27] considered the various interest
demands of the microgrid and the distribution network, established a game relationship model of the
two, proposed a cooperative evolutionary game algorithm to solve the above model, and achieved
coordinated operation of the microgrid and the distribution network. However, the above studies
were based on research on a single electrical energy. Typical situations were not fully considered,
such as the dispatching of a micro energy grid comprising cooling, heating, electricity, and gas, and the
coordination of the operation of the micro energy grid and the distribution network when the micro
energy grid is accessible by the distribution network.

For the solution of a dispatching model, the interior point method and other non-intelligent
algorithms may not be able to achieve an optimal solution when a large amount of computation is
required. The particle swarm optimization (PSO) algorithm converged early, and often provided a local
optimal solution [29]. Some references proposed the grey wolf optimization (GWO) algorithm [30–32],
which was reported to show a better convergence rate and optimization ability when compared with the
PSO algorithm. For example, Reference [31] proposed a method to solve the cogeneration dispatching
model using the GWO algorithm, and achieved economical operation of the cogeneration system.
Reference [32] proposed an innovative tuning approach for fuzzy control systems, with reduced
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parametric sensitivity using the GWO algorithm. However, some deficiencies existed in the
convergence speed and global optimization ability of the above algorithms.

In summary, the current research had the following problems: (1) In the distribution network
comprising the microgrid, only a simple electrical-load demand existed, and the demands of heating
and cooling loads were not considered. (2) Recent studies of the interaction between the microgrid
and the distribution network considered only the economic performance of both sides, and did not
consider that the output power of the microgrid would affect the operation of the distribution network.
In fact, the output power of the microgrid will affect the stability and security of the operation of the
distribution network, and the dispatching demand of the distribution network for the microgrid will
also affect the economy of the microgrid; therefore, optimal operation of both sides involves mutual
restraint and mutual influence.

To address the above problems, the contributions of this paper are presented as follows:
(1) The power-supply structure of a micro energy grid comprising cooling, heating, electricity,

and gas grids was established. The energies of cooling, heating, electricity, and gas transformed and
supported each other. Then, the operation structure of a distribution network comprising the micro
energy grid was established. At the same time, the demands of the heating, cooling, and electricity
loads were comprehensively considered.

(2) Considering the interaction between the micro energy grid and the distribution network,
a bi-level optimal model for their integrated operation was proposed. The upper model used the
minima of three objectives, including the integrated operating cost of the distribution network,
the network’s active power loss, and the standard deviation of the voltage deviation in the distribution
network. The lower model used the minimum integrated operating cost for the micro energy grid as
the objective function.

(3) A grey wolf optimization algorithm based on the dynamic adjustment of the proportional
weight and convergence factor was proposed to solve the model, which overcame the problem
of the local optimum and slow convergence rate associated with the traditional particle swarm
algorithm, and the grey wolf algorithm. Then, the superiority of the proposed algorithm was verified
mathematically by six test functions.

(4) China’s Gansu region is rich in wind and solar energy resources. To fully exploit these
resources, a demonstration project of the micro energy grid in an agricultural park is being established.
The safe, stable, and economical operation of the distribution network and the micro energy grid will
be addressed in the future. Therefore, the model and algorithm were analyzed in an actual 10-kV
distribution network in a region of Gansu Province, China.

The organization of the remainder of this paper is as follows: Section 2 establishes the operation
structure of the distribution network comprising the micro energy grid, according to the problems
discussed. Section 3 establishes a bi-level optimal model for the integrated operation of the micro
energy grid and the distribution network. Section 4 proposes a grey wolf optimization algorithm,
based on the dynamic adjustment of the proportional weight and convergence factor, to solve the
model. Section 5 uses a case study in an actual 10-kV distribution network in a region of Gansu
Province, China to demonstrate the validity of the proposed model and method. The full paper is
summarized and future work is described in Section 6. The general workflow for the optimal operation
of the distribution network comprising the micro energy grid, based on the improved grey wolf
optimization algorithm, is shown in Figure 1.
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Figure 1. General workflow for the optimal operation of the distribution network comprising the micro
energy grid, based on the improved grey wolf optimization (GWO) algorithm.

2. Operating Structure of a Distribution Network Comprising a Micro Energy Grid

The operating structure of a distribution network comprising a micro energy grid is shown in
Figure 2. The energy management module of the distribution network was the “brain”, and was
the key component of the optimal distribution-network operation. The micro energy grid and
waste-to-energy power station connected to each node were managed by the distribution-network
energy-management module. As the lower level of the distribution network, the micro energy grid
provided the necessary electrical measurement data for the distribution network, and provided decision
support for the dispatch of the distribution network. The communication network between the upper
and lower levels was an optical network, and the communication protocol was IEC61850 (International
Electrotechnical Commission) [33]. The micro energy grid included PV power, wind power,
microturbines, gas-fired boilers, heat-recovery boilers, lithium-bromide absorption-type refrigerators,
battery storage, heating and cooling storage tanks, and air-source heat pumps. The micro energy
grid was connected to a node of the distribution network. PV power, wind power, and microturbines
were used to satisfy the internal electrical load of the micro energy grid. Heat-recovery boilers,
lithium-bromide absorption-type refrigerators, and air-source heat pumps were used to satisfy the
internal heating load of the micro energy grid. Battery storage, and heating and cooling storage tanks
mainly had roles in the adjustment of the micro energy grid. The energies of cooling, heating, electricity,
and gas transformed and supported each other, thus improving the efficiency of the comprehensive
energy utilization.
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Figure 2. Operating structure of a distribution network comprising a micro energy grid.

3. Bi-Level Optimal Model of a Distribution Network Comprising a Micro Energy Grid

The power-supply structure of the micro energy grid and the distribution network were
established in the previous section. Based on that structure, a bi-level optimal dispatching model of a
distribution network with a micro energy grid was established. The upper level was the distribution
network, and the lower level was the micro energy grid. The upper model used the minima of three
objectives—the integrated operating cost of the distribution network, the network’s active power
loss, and the standard deviation of the voltage deviation in the distribution network. The lower
model used the minimum integrated operating cost for the micro energy grid as the objective function.
The exchanged power between the micro energy grid and the distribution network was set to the
optimized output of the upper level, which was regarded as a known quantity in the lower optimization
model. The integrated operating cost for the micro energy grid was set to the optimized output of the
lower level, which was regarded as a known quantity in the upper optimization model. The upper
model was optimized according to the optimal result of the lower level, and repeated until the optimal
solution was achieved. The dispatching period was 24 h. The bi-level optimization model is shown in
Figure 3.
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3.1. Optimal Model of the Distribution Network

3.1.1. Objective Function

The power-supply equipment connected to the upper distribution network mainly included two
waste-to-energy power stations, and the micro energy grid. The upper model used the minima of
three objectives—the integrated operating cost of the distribution network, the network’s active power
loss, and the standard deviation of the voltage deviation in the distribution network. Because the
number of objectives in the distribution-network level was large, the judgment-matrix method [34]
was used to transform the multi-objective problem into a single-objective problem in this research.
The weight vector was W = (0.5393, 0.2974, 0.1633). The independent variables of the function were
the electrical power of the two waste-to-energy power stations, the integrated operating cost of the
micro energy grid, the network’s active power loss, and the nodal voltage. In this paper, the costs
of the distribution line, transformer, and switchgear mainly considered the overall cost of periodical
inspection, cleaning, and annual preventive experiments, which was set as a fixed cost and was not
embodied in the objective function. The objective function was defined as follows:

F1 = min[w1F2(t) + w2F3(t) + w3F4(t)]. (1)

F2(t) =
T
∑

t=1
[Cgp1Pgp1(t) + Cgp2Pgp2(t) + F5(t)]

F3(t) =
T
∑

t=1
Ploss(t)

F4(t) =
T
∑

t=1

√
1
N

N
∑

i=1
(∆Ui(t))

2) =
T
∑

t=1

√
1
N

N
∑

i=1
(Ui(t)−UR)

2)

, (2)

where F2(t) is the integrated operating cost of the distribution network; F3(t) is the active power loss
of the distribution network; F4(t) is the standard deviation of the voltage deviation in the distribution
network, which was used to measure the voltage deviation in the distribution network in a dispatching
cycle; F5(t) is the integrated operating cost of the micro energy grid; Cgp is the cost of garbage power;
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Pgp(t) is the electrical power of garbage power; Ploss(t) is the active power loss of the distribution
network; ∆Ui(t) is the voltage deviation in the distribution network; Ui(t) is the voltage of node i;
UR is the rated value of the nodal voltage; N is the number of nodes in the distribution network; and T
is the dispatching cycle.

3.1.2. Constraint Conditions

(1) Constraints for the balance of the electrical power

Pgp1(t) + Pgp2(t) + Pexgrid(t) = Pload(t) + Ploss(t), (3)

where Pload(t) is the electrical load, and Pexgrid(t) is the exchanged electrical power between the micro
energy grid and the distribution network.

(2) Constraints for the load flow equations
Pi = Ui

N
∑

j=1
Uj(Gij cos θij + Bij sin θij)

Qi = Ui
N
∑

j=1
Uj(Gij cos θij − Bij sin θij)

, (4)

where Pi is the injected active power of node i; Qi is the injected reactive power of node i; Ui and Uj
are the voltage magnitudes of nodes i and j, respectively; Gij is the conductivity between nodes i and j;
Bij is the electrical susceptance; and θij is the phase difference between nodes i and j.

(3) Constraints for the electrical power of garbage power{
Pmin

gp1 ≤ Pgp1(t) ≤ Pmax
gp1

Pmin
gp2 ≤ Pgp2(t) ≤ Pmax

gp2
, (5)

where Pmin
gp and Pmax

gp are the minimum and maximum electrical powers of garbage power, respectively.
(4) Constraints for the nodal voltage

Umin
i ≤ Ui(t) ≤ Umax

i , (6)

where Umin
i and Umax

i are the minimum and the maximum values of nodal voltage, respectively.
(5) Constraints for the voltage deviation
According to the GB12325-2008-T allowable deviation of power-quality supply voltage, the voltage

deviation was expressed as the following:

∆Ui(t) = Ui(t)−UR, Ui ≤ 0.93UR or Ui ≥ 1.07UR. (7)

3.1.3. Processing Method for Transforming the Multi-Objective Model into a Single-Objective Model

A multi-objective problem cannot be visually compared with data values; instead, it must be
transformed into a single-objective function. The judgment matrix is a method for the quantitative and
qualitative calculation of weights that reflect the objective situation to a certain extent, and consider
the importance of different users to each objective. In this paper, the judgment-matrix method [34]
was used to transform the multi-objective function into a single-objective function. The original
multi-objective function was transformed into the following:

F1 = min(B1F2
′(t) + B2F3

′(t) + B3F4
′(t)]), (8)

where F2
′(t), F3

′(t), and F4
′(t) are the normalized values of the objective function (i.e., transformed

into the range [0, 1]). B1, B2, and B3 are the weight factors. The different dimensions of the objective
function were eliminated based on the effect of the optimal result.
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The main goal of the judgment-matrix method was to determine the judgment matrix according
to the hierarchical relationship between the goals. The criteria were formed as shown in Table 1.

Table 1. Formation criteria of the judgment matrix.

Scale Meaning

1 Comparing two factors, they are equally important.
3 Comparing two factors, one is slightly more important than the other.
5 Comparing two factors, one is more important than the other.
7 Comparing two factors, one is significantly more important than the other.
9 Comparing two factors, one is strongly more important than the other.

2, 4, 6, 8 The scale of compromise between two adjacent judgments.

Note: When comparing factors i and j, the judging result is xij, whereas the judging result is xji = 1
xij

when comparing factors j and i.

According to the problems outlined in this study, the goals were graded by importance.
The importance of each index was judged by expert experience. According to the actual circumstances
of distribution networks in China, the power-supply voltage quality can meet the national standard;
therefore, reducing the operating cost is the primary concern of power enterprises. In this paper,
the integrated operating cost of the distribution network was the first grade goal. The standard
deviation of the voltage deviation in the distribution network was the second grade goal. The
network’s active power loss was the third grade goal. Combined with the above analysis, the judgment
matrix was formed as follows:

J =

 1 2 3
1/2 1 2
1/3 1/2 1

. (9)

After matrix processing, the weight vector of the objective function was determined to be
W = (0.5393, 0.2974, 0.1633).

3.2. Optimal Micro-Energy-Grid Model

3.2.1. Objective Function

The power-supply equipment of the lower micro energy grid mainly included PV power,
wind power, microturbines, gas-fired boilers, heat-recovery boilers, lithium-bromide absorption-type
refrigerators, battery storage, heating and cooling storage tanks, and air-source heat pumps. The lower
model used the minimum integrated operating cost for the micro energy grid as the objective function.
The integrated operating costs of the micro energy grid included the cost of equipment maintenance,
the cost of the exchanged electrical power between the distribution network and the micro energy
grid, the cost of environmental pollution, the cost of fuel, and the cost of investment depreciation in a
dispatching cycle. The independent variables of the function were the power of each micro-source,
and the exchanged power between the micro energy grid and the distribution network. In the micro
energy grid, the cost of line maintenance was set to a fixed cost, and was not reflected in the objective
function. The objective function is shown below.

minF5(t) = min[
24
∑

t=1
( Z1(t)+Z2(t)

2

∣∣∣Pexgrid(t)
∣∣∣+ Z1(t)−Z2(t)

2

∣∣∣Pexgrid(t)
∣∣∣+

n
∑

x=1
(Cx(t) + Ex

l(1+l)Ax

(1+l)Ax−1
)Px(t) +

n
∑

x=1
CfuelxPx(t) +

n
∑

x=1

m
∑

y=1
((Cy + Dy)BxyPx(t)))]

, (10)

where Cx(t) is the cost of equipment maintenance of micro-source x; Cfuelx is the cost of fuel of
micro-source x; Ex is the cost of initial fixed investment of micro-source x; l is the interest rate; Ax is the
lifespan of micro-source x; Px(t) is the electrical power of micro-source x; Cy is the penalty of pollutant
gas y; Dy is the environmental value of pollutant gas y; and Bxy is the value of pollutant gas y, which is
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produced by micro-source x. Z1(t) is the price of purchasing electricity for the micro energy grid.
Z2(t) is the price of selling electricity for the micro energy grid.

3.2.2. Constraint Conditions

(1) Constraints for the cooling-heating-electrical power balance of the micro energy grid
PCASHP(t) + PAC(t) + Pcstor(t) = Pcoolingload(t)

PHASHP(t) + PEB(t) + PGB(t) + Phstor(t) = Pheatload(t)
Pestor(t) + PMT(t) + Pexgrid(t) + PWT(t) + PPV(t) = Pelectriload(t) + PASHP(t)

, (11)

where PCASHP(t) is the exchanged cooling power of the air-source heat pump; PAC(t) is the cooling
power of the lithium-bromide absorption-type refrigerator; Pcstor(t) is the charging or discharging
cooling power of the cooling storage tank (the value of discharging cooling power is negative, and the
value of charging cooling power is positive); Pcoolingload(t) is the cooling load; PHASHP(t) is the
exchanged heating power of the air-source heat pump; PEB(t) is the heating power of the heat-recovery
boiler; PGB(t) is the heating power of the gas-fired boiler; Phstor(t) is the charging or discharging
heating power of the heating storage tank (the value of discharging heating power is negative, and the
value of charging heating power is positive); Pheatload(t) is the heating load; Pestor(t) is the charging
or discharging electrical power of the battery storage (the value of discharging electrical power is
negative, and the value of charging electrical power is positive); PMT(t) is the electrical power of
the microturbine; PWT(t) is the electrical power of wind power; PPV(t) is the electrical power of PV;
PASHP(t) is the electrical power of the air-source heat pump in exchanging cooling or heating power;
and Pelectriload(t) is the electrical load.

(2) Constraints for battery storage, and the cooling and heating storage tanks
Battery storage, and heating and cooling storage tanks played the role of peak load shifting in the

micro energy grid. Their working principles were similar. Therefore, their general constraints were
as follows:

Emin ≤ E(t) ≤ Emax. (12)

E(0) = E(T). (13)

Pt
stor =

{
Pt

dis, 0 ≤ Pt
dis ≤ Pdmax, Pt

stor ≥ 0
−Pt

ch, 0 ≤ Pt
ch ≤ Pcmax, Pt

stor < 0
, (14)

where E(t) is the capacity of battery storage, and the heating and cooling storage tanks at time t;
Emin and Emax are the maximum and minimum capacities of battery storage, and the heating and
cooling storage tanks, respectively; and Pcmax and Pdmax are the maximum charging and discharging
powers of battery storage, and the heating and cooling storage tanks, respectively.

(3) Exchanged electrical power between the distribution network and the micro energy grid

Pmin
exgrid ≤ Pexgrid(t) ≤ Pmax

exgrid, (15)

where Pmin
exgrid and Pmax

exgrid are the minimum and maximum exchanged power between the distribution
network and the micro energy grid, respectively.

(4) Ramping constraints{
−Rdown

MT ≤ PMT(t)− PMT(t− 1) ≤ Rup
MT

−Rdown
GB ≤ PGB(t)− PGB(t− 1) ≤ Rup

GB
, (16)

where Rdown
MT and Rup

MT are the lower and upper ramp speeds of the microturbine, respectively;
and Rdown

GB and Rup
GB are the lower and upper ramp speeds of the gas-fired boiler, respectively.
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(5) Constraints for each micro-source power limit

Pmin
every ≤ Pevery(t) ≤ Pmax

every, (17)

where Pevery(t) is the cooling, heating, or electrical power of each micro-source in the micro energy
grid; and Pmin

every and Pmax
every are the minimum and maximum cooling, heating, or electrical powers of

each micro-source in the micro energy grid, respectively.

4. GWO Algorithm Based on the Dynamic Adjustment of the Proportional Weight and
Convergence Factor

The problem solved for the operating model of the distribution network comprising the micro
energy grid was a multivariate, nonlinear optimal problem with complex equations. The particle
swarm optimization (PSO) algorithm converged early, and often provided a local optimal solution.
Based on the above problem, the grey wolf optimization (GWO) algorithm based on the dynamic
adjustment of the proportional weight and convergence factor was adopted to solve an optimal
operating model in this study. This algorithm offers high solution precision, high convergence speed,
and strong global searching ability.

4.1. Improved GWO Algorithm

The GWO algorithm is a new intelligent optimization algorithm proposed by Mirjalili in 2014.
The GWO algorithm simulates the social hierarchy and predatory behavior of the grey wolf. The grey
wolf is considered the predator at the top of the food chain. The GWO algorithm has the advantages
of reduced parameter adjustment, simple principles, and ease of understanding. In the context of
function optimization, the GWO algorithm surpasses the basic particle swarm algorithm in terms of
accuracy and stability [30]. The search for the optimal solution is performed according to the three
important steps in the hunting strategy of wolves: approaching, surrounding, and attacking prey.
This process and the associated results were used to establish the model. Every grey wolf represented
a potential solution in the population. The wolves were divided into four levels in the GWO algorithm:
α, β, δ, and ω. The current best individual was α, which represented the optimal solution. The second-
and third-best individuals were β and δ, respectively, which represented the suboptimal solution
and third-best solution. The other individuals were recorded as ω, which represented an ordinary
solution. The corresponding hierarchical relationship was α > β > δ > ω. A detailed description of
the algorithm was provided in Reference [30].

However, the GWO algorithm also exhibits the problem of easily reaching a local optimal solution,
as with any other swarm intelligence algorithm [35–38]. To address this problem, the GWO algorithm
was improved in this study as follows:

(1) According to Reference [30], the value of
→
A had a strong relationship with the local and

global searches in the GWO algorithm. In Formula (19),
→
A changes with the transformation of the

convergence factor
→
a . The convergence factor

→
a linearly decreases from 2 to 0 with continued iterations,

easily resulting in a local optimal solution. In order to improve the global search abilities of the wolves,
the improved nonlinear formula about the convergence factor

→
a proposed in this study is shown in

Formula (18). The original formulas of convergence factor
→
A,
→
a are shown in Formula (19).

→
a =

→
aini − (

→
aini −

→
afin + 1)(

t
tmax

)
2
. (18)

{ →
A = 2

→
a
→
r2 −

→
a

→
a = 2− 2(t/tmax)

, (19)
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where
→

aini and
→

afin are the initial and final values, respectively, of convergence factor
→
a , with values of

2 and 0, respectively.
(2) In the later portion of the iterative process, loss of group diversity occurred because all grey

wolves were close to the best individual region. If the current best individual grey wolf was the local
optimal solution, then the GWO algorithm suffered from local optimization, resulting in premature
convergence. Based on the PSO algorithm, a new proportional weight factor was introduced in this
study. By adjusting the weight, the global search and local search abilities of the algorithm were
balanced, and the convergence rate of the algorithm was improved. The proportional weight formulas
were as follows: 

w1 = (
→
A1·

→
K1)

2·
→

(X1)
2

→
(X1)

2+
→

(X2)
2+

→
(X3)

2
· 1

tmax

w2 =
(
→
A2·

→
K2)

2·
→

(X2)
2

→
(X1)

2+
→

(X2)
2+

→
(X3)

2
· 1

tmax

w3 =
(
→
A3·

→
K3)

2·
→

(X3)
2

→
(X1)

2+
→

(X2)
2+

→
(X3)

2
· 1

tmax

(20)

→
X(t + 1) =

(w1X1(
→
t + 1) + w2

→
X2(t + 1) + w3

→
X3(t + 1))

3
, (21)

where w1, w2, and w3 are proportional weight factors;
→
A1,

→
A2, and

→
A3 are convergence factors; and

→
K1,

→
K2, and

→
K3 are swing factors.

The improved GWO algorithm was used to solve the dispatching model of the upper distribution
network, and the lower micro energy grid in this study. The solving steps of the upper and lower
models were similar. Therefore, the solving process for the dispatching model of the lower micro
energy grid was used as an example. The solving steps were as follows:

(1) Initialize the population
N was the size of the grey wolf population, and n2 was the dimension of the grey wolf population

(that is, the dimension of independent variables in the micro energy grid). The parameter tmax was
the maximum number of iterations. The grey wolf population was randomly initialized between the
upper and lower limits of the independent variables in the micro energy grid.

(2) Calculate the fitness value for each grey wolf
The fitness value of each grey wolf was calculated (that is, the integrated operating cost of

the micro energy grid corresponding to the initial independent variables of each grey wolf). Then,

the fitness values were compared. The optimal solution
→
Xα, suboptimal solution

→
Xβ, and third-best

solution
→
Xδ of the initial independent variables of the grey wolves were determined.

(3) Calculate the distance between the grey wolf and the prey (that is, approach the prey)
When the grey wolves are hunting prey, they identify its position first. Then, they approach the

prey. The formulas for this step were as follows:

→
D =

∣∣∣∣→K · →XP(t)−
→
X(t)

∣∣∣∣. (22)

→
X(t + 1) =

→
Xp(t)−

→
A ·
→
D. (23)

→
K = 2

→
r1

→
a =

→
aini − (

→
aini −

→
afin + 1)( t

tmax
)

2

→
A = 2

→
a
→
r2 −

→
a

, (24)

where
→
D is the distance between the grey wolf and the prey;

→
Xp(t) is the location of the prey at

iteration t;
→
X(t) is the location of the grey wolf at iteration t;

→
K is the swing factor;

→
r1 and

→
r2 are random
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numbers between 0 and 1;
→
A and

→
a are convergence factors; t is the current iteration; and tmax is the

maximum number of iterations.
(4) Update the location of the grey wolf (that is, surround and attack the prey)
When the prey was surrounded, the grey wolves α, β, and δ (the first three historical optimal

locations of grey wolves
→
Xα,

→
Xβ, and

→
Xδ, respectively) better understood the location of potential prey.

Therefore, the best three individuals α, β, and δ led other members to evaluate the location of the
prey, so as to update their location. Finally, the grey wolves surrounded and attacked the prey (that is,
identified an optimal solution of independent variables, and then obtained the optimal solution of the
integrated operating cost of the micro energy grid). At this moment, the GWO algorithm completed
an iteration. If t < tmax, then the solving program returned to Step (2) for recalculation to obtain the
optimal solution. If t > tmax, then an optimal solution of the independent variables of an individual,
and an objective function for the last iteration were shown. The formulas for this step were as follows:

→
Dα =

∣∣∣∣→K1 ·
→
Xα(t)−

→
X(t)

∣∣∣∣
→
Dβ =

∣∣∣∣→K2 ·
→
Xβ(t)−

→
X(t)

∣∣∣∣
→
Dδ =

∣∣∣∣→K3 ·
→
Xδ(t)−

→
X(t)

∣∣∣∣
. (25)



w1 = (
→
A1·

→
K1)

2·
→

(X1)
2

→
(X1)

2+
→

(X2)
2+

→
(X3)

2
· 1

tmax

w2 =
(
→
A2·

→
K2)

2·
→

(X2)
2

→
(X1)

2+
→

(X2)
2+

→
(X3)

2
· 1

tmax

w3 =
(
→
A3·

→
K3)

2·
→

(X3)
2

→
(X1)

2+
→

(X2)
2+

→
(X3)

2
· 1

tmax

(26)

→
X(t + 1) =

w1
→
X1(t + 1) + w2

→
X2(t + 1) + w3

→
X3(t + 1)

3
. (27)

The flowchart of the bi-level optimal model of the distribution network comprising the micro
energy grid based on the improved GWO algorithm is shown in Figure 4.

4.2. Verification of the Superiority of the Improved GWO Algorithm

An optimal simulation was performed to test the optimal ability of the improved GWO algorithm.
A single-mode function and multi-mode function were selected for the test [35–38]. f1(x), f2(x),
and are single-mode functions that represent the typical method of evaluating the global convergence
of an algorithm. f4(x), f5(x), and f6(x) are multi-mode functions, which are typically used to evaluate
the development performance, and searching ability of the algorithm. This function contains additional
local minimums. The solution process easily reached a local optimal solution, and the optimal result
was not easily obtained. The test function dimension was set to 10, and the corresponding expression
is shown in Table 2.

A comparison experiment featuring the particle swarm optimization (PSO) algorithm, the
invasive weed optimization (IWO) algorithm [39], the grey wolf optimization (GWO) algorithm [31],
the grey wolf optimization/evolutionary population dynamics (GWO-EPD) algorithm [40], and the
improved GWO algorithm was performed. The parameters of the PSO algorithm were as follows:
the proportional weight was w = 0.8, the particle swarm size was N = 100, the learning factor was
s1 = s2 = 2, and the maximum number of iterations was 200. The parameters of the IWO algorithm
were as follows: the particle swarm size was N = 100, the maximum number of iterations was 200,
and the maximum and minimum number of seeds were five and two, respectively. The parameters of
the GWO and GWO-EPD algorithms were as follows: the grey wolf swarm size was N = 100, and the
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maximum number of iterations was 200. The parameters of the improved GWO algorithm were the
same as those of the GWO algorithm, in addition to adopting the improved strategy in this study.
Every test function was evaluated and solved using the above five types of algorithms. The simulation
results are shown in Figure 5, where the ordinate is represented in logarithmic form.
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Table 2. Test functions.

Test Function Search Scope

f1(x) =
n
∑

i=1
|xi|+

n
∏
i=1
|xi| [−10, 10]

f2(x) =
n
∑

i=1
ix4

i + random[0, 1] [−1.28, 1.28]

f3(x) =
n
∑

i=1
x2

i [−100, 100]

f4(x) =
n
∑

i=1
[x2

i − 10 cos(2πxi) + 10] [−5.12, 5.12]

f5(x) = −20 exp(−0.2

√
1
n

n
∑

i=1
x2

i )− exp( 1
n

n
∑

i=1
cos(2πxi)) + 20 + e [−32, 32]

f6(x) = 1
4000

n
∑

i=1
x2

i −∏ cos(xi/
√

i) + 1 [−600, 600]
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Figure 5. Result comparison of test function 1 (a); function 2 (b); function 3 (c); function 4 (d);
function 5 (e); and function 6 (f) with five types of algorithms—the particle swarm optimization (PSO)
algorithm, the invasive weed optimization (IWO) algorithm, the GWO algorithm, the improved GWO
algorithm, and the GWO/evolutionary population dynamics (GWO-EPD) algorithm.

According to Figure 5, in the process of optimizing the six test functions, the improved grey
wolf optimization (GWO) algorithm, the grey wolf optimization/evolutionary population dynamics
(GWO-EPD) algorithm, and the GWO algorithm exhibited better performance and a faster convergence
rate than the basic particle swarm optimization (PSO) algorithm, and invasive weed (IWO) algorithm.
Moreover, the improved GWO algorithm was more convergent than the GWO and GWO-EPD
algorithms, and exhibited better optimization capabilities. The above conclusions verified the accuracy
and superiority of the proposed algorithm.

5. Example Analysis

5.1. Overview of the Simulation System

An actual distribution network in a region of Gansu Province, China was used as an example to
verify the model and algorithm proposed in this paper. The simulation system is shown in Figure 6.
The waste-to-energy power stations were connected to nodes 19 and 23 in the system, and the
maximum output power of the waste-to-energy power station was 600 kW. The micro energy grid
of the agricultural park was connected to node 11, and the maximum exchanged power between
the distribution network and the micro energy grid was 500 kW. The rated voltage of the lines was
10 kV, and the impedance of the lines is shown in Table A1. The simulation platform was MATLAB
2014a. The improved GWO algorithm was used to solve the model in this paper. The parameters of
the algorithm were as follows: the grey wolf swarm size was N = 20, and the maximum number of
iterations was 50.

The power-supply equipment in the micro energy grid of the agricultural park included PV power,
wind power, microturbines, gas-fired boilers, heat-recovery boilers, lithium-bromide absorption-type
refrigerators, battery storage, heating and cooling storage tanks, and air-source heat pumps. The price
of gas was 0.35 RMB/kW·h. The price of the power grid was determined using the peak and
valley electricity prices issued by the Gansu Provincial Development and Reform Commission,
as shown in Table 3. The related environmental pollution parameters were provided in Reference [41].
The equipment parameters of the micro energy grid are provided in Tables 4 and 5 [7,41]. Load curves
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of the distribution network in the summer and in the winter are shown in Figure 7. The cooling,
heating, and electrical load curves, and the wind power and PV prediction curves of the micro energy
grid in the summer and in the winter are shown in Figure 8. The curves in Figures 7 and 8 were
simulated with Monte Carlo technology [42,43].Appl. Sci. 2017, 7, x  8 of 17 
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Table 3. Time-of-use electricity prices.

Period Time Buying Electricity
Price/(RMB·kW·h−1)

Selling Electricity
Price/(RMB·kW·h−1)

Peak period 08:00 a.m.–11:00 a.m.,
06:00 p.m.–11:00 p.m. 0.7590

0.65Flat period 07:00 a.m.–08:00 a.m.,
11:00 a.m.–06:00 p.m. 0.5100

Valley period 11:00 p.m.–12:00 a.m.,
12:00 a.m.–07:00 a.m. 0.2610
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Table 4. Storage equipment parameters of the micro energy grid.

Storage Equipment
Maximum Efficiency of Combined

Electricity Heating and Cooling
Charged State of Combined

Electricity Heating and Cooling Lifespan/a Capacity/(kW·h) Initial Investment
Cost/(RMB/kW)

Maintenance
Cost/(RMB/kW·h)

Charging Discharging Maximum Minimum

Battery storage 0.2 0.2 0.9 0.2 5 1000 1100 0.03

heating and cooling storage tank 0.2 0.2 0.9 0.1 10 600 1200 0.02

Table 5. Supply equipment parameters of the micro energy grid.

Equipment Parameter Value Equipment Parameter Value

Microturbine(four)

Maximum generated power/(kW·one−1) 100

Gas-fired boiler

Maximum input power/kW 200

Rated efficiency 0.26 Rated efficiency 0.8

Maintenance cost/(RMB/kW·h) 0.03 Maintenance cost/(RMB/kW·h) 0.02

Initial investment cost/(RMB/kW) 5000 Initial investment cost/(RMB/kW) 2500

Lifespan/a 10 Lifespan/a 10

Ramp speed/(kW/min) Upper 30
Lower 20 Ramp speed/(kW/min) Upper 30

Lower 20

Heat-recovery boiler

Maximum input power/kW 480

Air-source heat pump

Maximum input power/kW 600

Rated efficiency 0.9 Heating and cooling efficiency parameter 3.7

Maintenance cost/(RMB/kW·h) 0.02 Maintenance cost/(RMB/kW·h) 0.02

Initial investment cost/(RMB/kW) 3000 Initial investment cost/(RMB/kW) 3900

Lifespan/a 10 Lifespan/a 10

Photovoltaic (PV) system

Maximum generated power/kW 300

Wind-power system

Maximum generated power/kW 100

Maintenance cost/(RMB/kW·h) 0.03 Maintenance cost/(RMB/kW·h) 0.03

Initial investment cost/(RMB/kW) 6500 Initial investment cost/(RMB/kW) 6300

Lifespan/a 20 Lifespan/a 20

Exchanged power between
the micro energy grid and the

distribution network

Maximum exchanged power/kW
500

Lithium-bromide
absorption-type

refrigerator

Maximum input power/kW 576

Rated efficiency 1.2

Maintenance cost/(RMB/kW·h) 0.025

Initial investment cost/(RMB/kW) 3000

Lifespan/a 10
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Figure 8. Cooling, heating, and electrical load curves, and wind power and photovoltaic (PV) prediction
curves for the micro-energy grid on a typical day in the winter (a), and in the summer (b).

5.2. Analysis of the Simulation Results

5.2.1. Active Power Loss Analysis of the Distribution Network Comprising the Micro Energy Grid

The network’s active power losses before and after the grid connection of the micro energy grid,
on a typical day in the winter (a), and in the summer (b), are shown in Figure 9. The system network’s
active power loss was larger when no micro energy grid was connected. However, when the micro
energy grid was connected, and the proposed model was used, the average reduction in the network’s
active power loss was 13.2% in the winter, and 32.4% in the summer. The network’s active power
loss after the grid connection of the micro energy grid was significantly reduced when compared
with that before the grid connection of the micro energy grid. The proposed model established the
micro-energy-grid level needed to provide power support to the distribution-network level.
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Figure 9. Comparison of the network’s active power loss before and after the grid connection of the 
micro energy grid on a typical day in the winter (a), and in the summer (b). 
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The average voltage deviations before and after the grid connection of the micro energy grid, 
on a typical day in the winter (a), and in the summer (b), are shown in Figure 10. When the proposed 
model was used, the average reduction in the average voltage deviation was 6.4% in the winter, and 
2.7% in the summer. The voltage fluctuation after the grid connection of the micro energy grid was 
significantly reduced when compared with that before the grid connection. The micro-energy-grid 
level supported the voltage of the distribution-network level, and improved the stability of the 
system voltage. 

Figure 9. Comparison of the network’s active power loss before and after the grid connection of the
micro energy grid on a typical day in the winter (a), and in the summer (b).

5.2.2. Voltage Deviation Analysis of the Distribution Network Comprising the Micro Energy Grid

The average voltage deviations before and after the grid connection of the micro energy grid, on a
typical day in the winter (a), and in the summer (b), are shown in Figure 10. When the proposed model
was used, the average reduction in the average voltage deviation was 6.4% in the winter, and 2.7% in
the summer. The voltage fluctuation after the grid connection of the micro energy grid was significantly
reduced when compared with that before the grid connection. The micro-energy-grid level supported
the voltage of the distribution-network level, and improved the stability of the system voltage.
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Figure 10. Comparison of the average voltage deviations before and after the grid connection of the
micro energy grid on a typical day in the winter (a), and in the summer (b).

5.2.3. Optimal Dispatching Scheme of the Upper Distribution-Network Level

The optimal dispatching schemes of the distribution network comprising the micro energy grid,
on a typical day in the winter (a), and in the summer (b), are shown in Figure 11. The micro energy
grid bought electricity from the distribution network, which consumed the surplus power of the
distribution network when the electricity price was in a valley period (11:00 p.m. to 07:00 a.m.).
The micro energy grid sold its surplus electricity to the distribution network when the electricity price
was in the flat or peak period (07:00 a.m. to 11:00 p.m.). The output power of the micro energy grid
adapted to the load change in the distribution network, and played the role of peak load shifting
in the distribution network. The micro energy grid effectively relieved the adjustment pressure of
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the unit in the distribution network, and allowed itself and the distribution network to gain the
corresponding benefits.
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5.2.4. Optimal Dispatching Scheme of the Lower Micro-Energy-Grid Level

The electrical load (a) and heating load (b) dispatching schemes of the micro energy grid, for a
typical day in the winter when the distribution network comprising the micro energy grid was in
the optimal dispatching state, are shown in Figure 12. In Figure 12a, when PV and wind power
could generate electricity, PV and wind power were at full power at the predicted output power,
satisfying a portion of the energy needs of the micro energy grid. In the valley period of the electricity
price, between 11:00 p.m. and 07:00 a.m., the microturbine did not work because the price of gas was
higher than the electricity price of the power grid. Simultaneously, electricity was bought from the
distribution network to satisfy the load demand, and to charge the battery. In the flat or peak period of
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the electricity price, between 07:00 a.m. and 11:00 p.m., the electricity load of the micro energy grid
was satisfied by the microturbine, the discharge of the battery, and PV and wind power because the
electricity price of the power grid was higher than the price of the gas. The surplus electricity was also
sold to the distribution network to obtain income. During the entire running period, the battery was
charged in the valley period, and discharged in the peak period, playing the role of peak load shifting
in the micro energy grid, and reducing the operating cost of the micro energy grid.
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Figure 12. Electrical load (a) and heating load (b) dispatching schemes of the micro energy grid for a
typical day in the winter when the distribution network comprising the micro energy grid was in the
optimal dispatching state.

In Figure 12b, the gas-fired boiler, heat-recovery boiler, battery storage, heating storage tank,
and air-source heat pump jointly bore the supply of the heat load. In the valley period of the electricity
price, between 11:00 p.m. and 07:00 a.m., the electricity price was low, and the air-source heat pump
worked at full power. If the heat-recovery boiler and air-source heat pump could not satisfy the heat
load, then the surplus heat-load demand was satisfied by the gas-fired boiler, and the heating storage
tank was charged. In the flat or peak period of the electricity price, between 07:00 a.m. and 11:00 p.m.,
the electricity price was high, and the heating load was satisfied by the heat-recovery boiler, and the
heat storage tank.
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The electrical load (a) and cooling load (b) dispatching schemes of the micro energy grid, for a
typical day in the summer when the distribution network comprising the micro energy grid was in
the optimal dispatching state, are shown in Figure 13. In Figure 13a, because the load in the summer
was less than the load in the winter, three microturbines were used in the summer, and the one
remaining microturbine was overhauled. Similar to Figure 12a, when PV and wind power could
generate electricity, PV and wind power were at full power at the predicted output power. In the
valley period of the electricity price, between 11:00 p.m. and 07:00 a.m., the electricity was bought
from the distribution network to satisfy the load demand, and to charge the battery. In the flat or
peak period of the electricity price, between 07:00 a.m. and 11:00 p.m., the electricity load of the micro
energy grid was satisfied by the microturbine, the discharge of the battery, and PV and wind power.
Then, the surplus electricity was sold to the distribution network to obtain income. The battery storage
played the role of peak load shifting in the micro energy grid.

In Figure 13b, the lithium-bromide absorption-type refrigerator, cooling storage tank,
and air-source heat pump jointly bore the supply of the cooling load. In the valley period of the
electricity price, between 11:00 p.m. and 07:00 a.m., the electricity price was low, and the air-source
heat pump satisfied the cooling-load demand, and charged the cooling storage tank. In the flat or
peak period of the electricity price, between 07:00 a.m. and 11:00 p.m., the electricity price was high,
and the cooling load was mainly satisfied by the lithium-bromide absorption-type refrigerator and
the cooling storage tank. If the lithium-bromide absorption-type refrigerator and the cooling storage
tank could not satisfy the cooling load, then the surplus cooling-load demand was satisfied by the
air-source heat pump.

5.2.5. Performance Comparison of the Improved GWO Algorithm with the GWO, GWO-EPD, IWO,
and PSO Algorithms

The optimal dispatching schemes of the distribution network comprising the micro energy grid,
on a typical day in the winter (a), and in the summer (b), are shown in Figure 14. The objective
function of the distribution-network level was normalized using the method presented in Section 3.1.3.
In Figure 14, the particle swarm optimization (PSO) algorithm converged early, and often provided a
local optimal solution. The optimal ability of the improved grey wolf optimization (GWO) algorithm
was stronger than those of the PSO algorithm, invasive weed optimization (IWO) algorithm, grey wolf
optimization/evolutionary population dynamics (GWO-EPD), and GWO algorithm. The fitness value
of the objective function was significantly reduced by using the improved GWO algorithm. In the
winter, the fitness value of the objective function with the improved GWO algorithm was reduced
by 19.4% relative to that with the PSO algorithm, by 10.0% relative to that with the IWO algorithm,
by 9.7% relative to that with the GWO algorithm, and by 7.9% relative to that with the GWO-EPD
algorithm. In the summer, the fitness value of the objective function with the improved GWO algorithm
was reduced by 2.7% relative to that with the PSO algorithm, by 1.8% relative to that with the IWO
algorithm, by 1.6% relative to that with the GWO algorithm, and by 1.4% relative to that with the
GWO-EPD algorithm.
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typical day in the summer when the distribution network comprising the micro energy grid was in 
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Figure 14. Comparison of the optimal dispatching schemes of the distribution network comprising 
the micro energy grid on a typical day in the winter (a), and in the summer (b). 

5.2.6. Daily Cost Analysis of the Distribution Network Comprising the Micro Energy Grid Using the 
Improved GWO Algorithm, the GWO Algorithm, the GWO-EPD Algorithm, the IWO Algorithm, 
and the PSO Algorithm 

According to Table 6, when the improved grey wolf optimization (GWO) algorithm was 
adopted to optimize the operation of the distribution network comprising the micro energy grid, the 
cost of the distribution network, the cost of the micro energy grid, and the total cost of the system 
decreased considerably. In the winter, the cost of the distribution network, the cost of the micro 
energy grid, and the total cost of the system with the improved GWO  

). 

Figure 14. Comparison of the optimal dispatching schemes of the distribution network comprising the
micro energy grid on a typical day in the winter (a), and in the summer (b).

5.2.6. Daily Cost Analysis of the Distribution Network Comprising the Micro Energy Grid Using the
Improved GWO Algorithm, the GWO Algorithm, the GWO-EPD Algorithm, the IWO Algorithm, and
the PSO Algorithm

According to Table 6, when the improved grey wolf optimization (GWO) algorithm was adopted
to optimize the operation of the distribution network comprising the micro energy grid, the cost of
the distribution network, the cost of the micro energy grid, and the total cost of the system decreased
considerably. In the winter, the cost of the distribution network, the cost of the micro energy grid,
and the total cost of the system with the improved GWO algorithm were reduced by 62.7%, 44.1%,
43.4%, and 43.3%; 40.5%, 21.3%, 18.2%, and 13.8%; and 61.1%, 42.1%, 41.3%, and 40.9% relative to
those with the particle swarm optimization (PSO) algorithm, the invasive weed optimization (IWO)
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algorithm, the GWO algorithm, and the grey wolf optimization/evolutionary population dynamics
(GWO-EPD) algorithm, respectively. In the summer, the cost of the distribution network, the cost
of the micro energy grid, and the total cost of the system with the improved GWO algorithm were
reduced by 5.7%, 4.0%, 3.4%, and 3.0%; 4.6%, 4.0%, 3.8%, and 3.4%; and 5.6%, 3.8%, 3.4%, and 3.1%
relative to those with the PSO algorithm, the IWO algorithm, the GWO algorithm, and the GWO-EPD
algorithm, respectively.

Table 6. Daily cost of the distribution network comprising the micro energy grid using five
algorithms—the particle swarm optimization (PSO) algorithm, the invasive weed optimization (IWO)
algorithm, the grey wolf optimization (GWO) algorithm, the improved GWO algorithm, and the
GWO/evolutionary population dynamics (GWO-EPD) algorithm.

Algorithm
Cost of the Distribution Network (Does
Not Contain Micro Energy Grid)/RMB

Cost of the Micro
Energy Grid/RMB Total System Cost/RMB

Winter Summer Winter Summer Winter Summer

PSO algorithm 1,126,004,317 39,809,957 94,318,029 3,292,247 1,220,322,346 43,102,204

IWO algorithm 750,401,055 39,040,023 71,295,926 3,273,691 821,696,981 42,313,714

GWO algorithm 741,777,648 38,852,914 68,603,822 3,266,733 810,381,470 42,134,740

GWO-EPD algorithm 740,359,725 38,717,692 65,104,632 3,253,778 805,464,357 41,971,470

Improved GWO algorithm 419,218,459 37,523,714 56,072,998 3,141,208 475,291,457 40,664,922

5.2.7. Weight Sensitivity Analysis of the Objective Function of the Upper Distribution Network

In the upper distribution-network level, the weights B = (0.5393, 0.2974, 0.1633) of multi-objective
functions transformed into a single-objective function were obtained by expert experience in
Section 3.1.3. To verify the influence on the operation state of the distribution network comprising
the micro energy grid when the weight was changed, the sensitivity method was used to analyze the
relevant problem. The relevant principle was shown in Reference [44]. The relationship equations
between changes in weight, the weight sensitivity criteria, and the weight stable interval are shown in
Formula (28). The conclusion is shown in Table 7.

Gmin = B + ∆Mmin

Gmax = B + ∆Mmax

J = ∆Mmax − ∆Mmin

, (28)

where B is the weight factor of the independent variable in the upper distribution-network level;
Gmin and Gmax are the minimum and maximum weight sensitivity criteria; ∆Mmin and ∆Mmax are the
minimum and maximum changes in weight; and J is the weight stable interval.

Table 7. Weight sensitivity analysis in the objective function of the upper distribution network.

Parameters
Weight of Total System Cost Weight of Network‘s

Active Power Loss
Standard Deviation of
the Voltage Deviation

Minimum Maximum Minimum Maximum Minimum Maximum

Changes in weight −0.1922 0.0463 −0.0928 0.3266 −0.0793 0.5894

Weight sensitivity criterion 0.3471 0.5856 0.2046 0.624 0.084 0.753

Weight stable interval 0.2385 0.4194 0.6687

According to the data of the weight stable interval in Table 7, the weight stable interval of total
system cost was less than the weight stable interval of the network’s active power loss, which was
less than the weight stable interval of the standard deviation of the voltage deviation. Relative to the
system, the weight sensitivity of total system cost was greater than the weight sensitivity of network’s
active power loss, which was greater than the weight sensitivity of the standard deviation of the
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voltage deviation. For the high-sensitivity weight, the objective function value was easily changed
by a subtle change in the independent variable of the corresponding objective function. To keep the
system running stably according to the current scheme, the weight selection range of total system cost
was 0.3471–0.5856, the weight selection range of the network’s active power loss was 0.2046–0.624,
and the weight selection range of the standard deviation of the voltage deviation was 0.084–0.753.

6. Conclusions

In this study, the operating structure of a distribution network comprising a micro energy grid
was constructed. Based on the structure, a bi-level optimal dispatching model was established.
The micro-energy-grid level used the minimum integrated operating cost of the micro energy grid
as the objective function, while the distribution-network level used the minima of three objectives,
including the integrated operating cost of the distribution network, the network’s active power loss,
and the standard deviation of the voltage deviation in the distribution network. The judgment-matrix
method was used to transform the multi-objective function of the distribution-network level into
a single-objective function. A grey wolf optimization (GWO) algorithm, based on the dynamic
adjustment of the proportional weight and convergence factor, was proposed to solve the economical
operating model of the distribution network comprising the micro energy grid in this study.
The superiority of the proposed algorithm was verified mathematically. The simulation results of the
example were as follows:

(1) The improved grey wolf optimization (GWO) algorithm was used to identify a rational,
global optimal solution of the objective function quickly and stably in the distribution network
comprising the micro energy grid. In the winter, the fitness value of the objective function with the
improved GWO algorithm was reduced by 19.4% relative to that with the particle swarm optimization
(PSO) algorithm, by 10.0% relative to that with the invasive weed optimization (IWO) algorithm,
by 9.7% relative to that with the GWO algorithm, and by 7.9% relative to that with the grey wolf
optimization/evolutionary population dynamics (GWO-EPD) algorithm. In the summer, the fitness
value of the objective function with the improved GWO algorithm was reduced by 2.7% relative to
that with the PSO algorithm, by 1.8% relative to that with the IWO algorithm, by 1.6% relative to that
with the GWO algorithm, and by 1.4% relative to that with the GWO-EPD algorithm.

(2) When the improved grey wolf optimization algorithm was adopted to optimize the operation
of the distribution network comprising the micro energy grid, the cost of the distribution network,
the cost of the micro energy grid, and the total cost of the system decreased considerably. In the
winter, the cost of the distribution network, the cost of the micro energy grid, and the total cost of
the system with the improved grey wolf optimization (GWO) algorithm were reduced by 62.7%,
40.5%, and 61.1%, respectively, relative to those with the particle swarm optimization (PSO) algorithm,
by 44.1%, 21.3%, and 42.1%, respectively, relative to those with the invasive weed optimization (IWO)
algorithm, by 43.4%, 18.2%, and 41.3%, respectively, relative to those with the GWO algorithm, and by
43.3%, 13.8%, and 40.9%, respectively, relative to those with the grey wolf optimization/evolutionary
population dynamics (GWO-EPD) algorithm. In the summer, the cost of the distribution network,
the cost of the micro energy grid, and the total cost of the system with the improved GWO algorithm
were reduced by 5.7%, 4.6%, and 5.6%, respectively, relative to those with the PSO algorithm, by 4.0%,
4.0%, and 3.8%, respectively, relative to those with the IWO algorithm, by 3.4%, 3.8%, and 3.4%,
respectively, relative to those with the GWO algorithm, and by 3.0%, 3.4%, and 3.1%, respectively,
relative to those with the GWO-EPD algorithm.

(3) The adjustment pressure of the unit in the distribution network was effectively relieved after
the micro energy grid was connected to the distribution network. The micro energy grid played the
role of peak load shifting in the distribution network. The network’s active power loss was significantly
reduced using the proposed method. The network’s active power loss decreased by an average of
13.22% in the winter, and 32.4% in the summer. The voltage fluctuations also decreased considerably,
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and the stability of the system voltage was improved. The average deviation decreased by 6.4% in the
winter, and 2.7% in the summer.

Considering that the micro-energy-grid cluster, composed of several micro energy grids,
is connected to the distribution network, the internal power coordination and optimal control of the
micro-energy-grid cluster, the power coordination control between the micro-energy-grid cluster and
the distribution network, and the economical operation mode of the distribution network comprising
the micro-energy-grid cluster represent the future research directions.
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Nomenclature

Variables
Cgp cost of waste-to-energy power
Pgp(t) electrical power of waste-to-energy power
Pload(t) electrical load of the distribution network
Pexgrid(t) exchanged electrical power between the micro energy grid and distribution network
→
A convergence factors

PASHP(t) electrical power of the air-source heat pump in exchanging cooling or heating power
PWT(t) electrical power of wind power
PCASHP(t) exchanged cooling power of the air-source heat pump
PAC(t) cooling power of the lithium-bromide absorption-type refrigerator
Pcstor(t) charging or discharging cooling power of the cooling storage tank
PPV(t) electrical power of PV
PHASHP(t) exchanged heating power of the air-source heat pump
PEB(t) heating power of the heat-recovery boiler
Z1(t) price of purchasing electricity for the micro energy grid
Ui(t) voltage of node i
→
a convergence factors
∆Ui(t) voltage deviation of the distribution network
UR rated value of the nodal voltage
Ploss(t) active power loss of the distribution network
→
K swing factors

PMT(t) electrical power of the microturbine
Cx(t) equipment maintenance cost of micro-source x
Cfuelx fuel cost of micro-source x
Ex initial fixed investment cost of micro-source x
Pestor(t) charging or discharging electrical power of the battery storage
Px(t) electrical power of micro-source x
PGB(t) heating power of the gas-fired boiler
Phstor(t) charging or discharging heating power of the heating storage tank
Z2(t) price of selling electricity for the micro energy grid
Abbreviations
PSO particle swarm optimization
IWO invasive weed optimization
GWO grey wolf optimization
GWO-EPD grey wolf optimization/evolutionary population dynamics
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Appendix

Table A1. Impedance of the lines.

Branch
Node R (p.u.) X (p.u.)

From To

1 0 1 0.491 0.295
2 1 2 0.104 0.137
3 2 3 0.104 0.135
4 3 4 0.126 0.167
5 4 5 0.033 0.042
6 5 6 0.223 0.294
7 6 7 0.198 0.261
8 7 8 0.124 0.163
9 8 9 0.229 0.221

10 9 10 0.231 0.226
11 10 11 0.307 0.215
12 11 12 0.195 0.059
13 1 13 0.491 0.295
14 2 14 0.135 0.058
15 3 15 0.271 0.116
16 4 16 0.272 0.113
17 5 17 0.269 0.223
18 6 18 0.198 0.085
19 18 19 0.198 0.085
20 18 20 0.792 0.341
21 7 21 0.099 0.043
22 21 22 0.098 0.042
23 22 23 0.096 0.049
24 23 24 0.961 0.391
25 8 25 0.333 0.152
26 25 26 0.267 0.125
27 25 27 0.083 0.037
28 10 28 0.352 0.217
29 28 29 0.301 0.152
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