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Abstract: Although the policy-gradient methods for reinforcement learning have shown significant
improvement in image captioning, how to achieve high performance during the reinforcement
optimizing process is still not a simple task. There are at least two difficulties: (1) The large size of
vocabulary leads to a large action space, which makes it difficult for the model to accurately predict
the current word. (2) The large variance of gradient estimation in reinforcement learning usually
causes severe instabilities in the training process. In this paper, we propose two innovations to
boost the performance of self-critical sequence training (SCST). First, we modify the standard long
short-term memory (LSTM)based decoder by introducing a gate function to reduce the search scope
of the vocabulary for any given image, which is termed the word gate decoder. Second, instead of
only considering current maximum actions greedily, we propose a stabilized gradient estimation
method whose gradient variance is controlled by the difference between the sampling reward from
the current model and the expectation of the historical reward. We conducted extensive experiments,
and results showed that our method could accelerate the training process and increase the prediction
accuracy. Our method was validated on MS COCO datasets and yielded state-of-the-art performance.

Keywords: image caption; image understanding; deep learning; computer vision

1. Introduction

Image captioning is the task of automatically describing an image with natural language.
As shown in Figure 1, image caption methods usually follow the encoder—decoder paradigm.
The process often includes two parts: a convolutional neural network (CNN) to encode an image
into semantic features, and a recurrent neural network (RNN) to decode the input features into a text
sequence word-by-word. At the training stage, the RNN is typically given the previous ground-truth
word and trained to predict the next word with the cross-entropy loss as target function, while at
test-time the model is expected to generate the entire sequence from scratch. This discrepancy between
training and testing which is regarded as an exposure bias causes error accumulation during generation
at test time. This will lead to suboptimality of the maximum likelihood training [1,2].
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Figure 1. Overview of the image caption model. It includes two parts: a convolutional neural network
(CNN) to encode an image into semantic features, and a recurrent neural network (RNN) to decode the
input features into a text sequence word-by-word. long-short term memory (LSTM) is a widely used
decoder, because original RNN has vanishing and exploding gradients problems.

Recently, some reinforcement learning (RL)-based methods [1,3,4] have been proposed to tackle
this problem. In these methods, the text generation is viewed as a stochastic procedure in which
the word generation is modeled as action selection and the task-specific score (e.g., CIDEr [5] score)
can be formulated as the reward directly. By using RL, the exposure bias problem can be addressed,
and the non-differentiable task-specific metric can be directly optimized. However, it suffers from
two significant issues. The first issue is that the image captioning has a high dimension of action
space (e.g., 10** token/word actions). It is challenging to learn an exact policy in such an action
space. Besides, the high dimensionality of the sample space leads to high variance of the Monte
Carlo estimates [6], which thus aggravates the instability of the RL training. Another issue is the high
variance of the gradient estimation, which may cause the training to be unstable. Existing methods
have attempted to reduce the variance via a learned baseline or a critic network [7] by training another
network, which increased the difficulty of optimization. In order to avoid training a new network,
self-critical sequence training (SCST) [4] was proposed. This model is based on the reward of the RL,
which is obtained at the test inference time. However, the learned baseline is not a tight approximation
of the expected reward signal. This also leads to high variance of the estimated gradient. In addition,
we have found that the greedy method in SCST usually results in a higher reward than the multinomial
sampling, and this is problematic since the baseline is too high for the agent to get positive feedback,
and the training may get blocked.

To tackle the above two issues, we propose a boosted learning framework based on SCST with the
following two innovations. First, we design a word-gated long short-term memory (LSTM) decoder to
generate the output caption after encoding an input image with a deep CNN, in which the word gate
function is used to predict the distribution of possible words regarding the input image. Specifically,
the word gate is trained directly under the supervision of the words that appear in the ground-truth
sentence. Our method draws inspiration from the observation that although the image captioning has
large vocabulary, the actual quantity of valid words for a given image is relatively small. For example,
given an image about the summer, the word “snow” is unlikely to be presented. From this viewpoint,
the word gate function can significantly reduce the valid action space of the RL method, and further
guide the output of the text generation model.

Secondly, for more stable gradient estimation, we give an improved version of SCST, called
adaptive self-critical sequence training (ASCST), which brings a more approximate expected reward,
and thus leads to easier optimization and better performance. The history reward information of
the sample and greedy methods can tell approximately how wide the gap between the expected
reward and the computed baseline is. By adaptively adjusting the greedily computed baseline with
the history reward information of the sample and greedy methods, we can shrink the gap between
the baseline and the expected reward, and thus significantly reduce the variance. We also introduce
a novel control parameter to rescale the baseline adaptively with history reward information. Since
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natural learning progress moves from easy to hard, we introduce another parameter that gradually
increases the baseline as the model converges. By adopting these two control parameters to the
baseline, the performance of the agent can gradually ramp up and the training is stabilized.

The contributions of this paper are presented as follows:

e  we introduce the word gate to dramatically reduce the valid action space of the text generation,
which brings the reduced variance and easier learning.

o  We present the adaptive SCST (ASCST), which incorporates two control parameters into the
estimated baseline. We show that this simple yet novel approach significantly lowers the
variance of the expected reward and gains improved stability and performance over the original
SCST method.

e  Experiments on MSCOCO dataset [8] show the outstanding performance of our method.

2. Related Work
2.1. Image Captioning

Inspired by the success of deep neural networks in neural machine translation, the encoder—
decoder framework has been proposed for image captioning [9]. Vinyals et al. [9] first proposed
an encoder—decoder framework which contained a CNN-based image encoder and an RNN-based
sentence decoder, and was trained to maximize the log-likelihood. Various other approaches have
been developed. Xu et al. [10] proposed a spatial mechanism to attend to different parts of the image
dynamically. Authors in [11,12] integrated high-level attributes into the encoder—decoder framework
by feeding the attribute features into RNNs. However, the attributes only concerned top-frequency
words, which only account for about 10% of all the words in the vocabulary.

2.2. Image Captioning with Reinforcement Learning

Recently a few studies [1,3,4] have been proposed which used techniques from RL to address
the exposure bias [1] and the non-differentiable task metric problems. However, compared to standard
RL applications, image captioning has a much larger action space. The large action space will cause
a high variance in gradient estimates in RL [6], which is proved to be the cause of unstable training.
Variance reduction can often be achieved with a learned baseline or critic. Ranzato et al. [1] were the
first to train the sequence model with policy gradient, and they used the RL algorithm [13] with a
baseline estimated by a linear regressor. Zhang et al. [14] used the actor—critic algorithm in which
a value network (critic) was trained to predict the value of each state. While the above works need
to train an additional baseline network or critic, the SCST approach [4] avoids this by utilizing an
improved RL with a reward obtained by the current model under test inference as the baseline.

However, the baseline estimated by the greedy decoding method has a large gap with the sample
decoding method. This will lead to high variance, and the baseline will not be able to provide
positive feedback.

3. Methodology

In this section, we first introduce our word gate decoder. Then, we give a brief explanation of the
high variance of gradient estimation in basic RL-based methods. Finally, we introduce our adaptive
self-critical training scheme.

3.1. Overview of the Proposed Model

As shown in Figure 2, our model contains two innovations: the word gate and the adaptive
SCST. The word gate is used to reduce the search scope of the RNN. Adaptive SCST is a boosted
RL method to help the model achieve better performance. The training method of the word gate
model is shown in Section 3.2. The word gate model combines with the output of the LSTM to obtain
better dictionary probabilities. The adaptive SCST needs two inferences: the sample inference and the
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argmax inference. The sample inference is at the top of the procedure of the overall model, as shown in
Figure 2. The argmax inference is at the bottom of the procedure. The argmax inference is the baseline
for the RL method to make the training become more stable. The proposed hyper-parameters help the
training procedure become more stable. At the same time, the proposed adaptive SCST can achieve
better performance.
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Figure 2. Overview of the word gate (WG) model and the adaptive self-critical sequence training
(ASCST) method. The adaptive SCST contains two components: the sample component and the argmax
component. The sample component is regarded as the policy network of the reinforcement learning
(RL) method. The inference component is the baseline method to make the training more stable.
This harmonized learning with the inference can lower the variance of the gradients and improve
the training procedure. FC is the full connected layer which projects the image vector to the word
dictionary probabilities. CIDEr is an image captioning evaluation method proposed in [5].

3.2. Word Gate

In the neural image caption (NIC) model [9], the caption sentence is generated by an RNN,
word-by-word. Given the target ground truth sequence {yo, y1, ..., ¥}, the RNN can be trained by
minimizing the cross-entropy loss, as described in the NIC model [9]. The cross-entropy loss is
formulated as:

T
lossgnn = — ) log(p(yelL yo, - y1-150)), 1
t=0

where 0 are the parameters of the RNN model, and I is an image vector. The probability
p(yelL yo, .., y¢—1,0) is from the output of the RNN with a softmax function as follows:

P(yt'IIyOI--'/ytfl;G) ~ Softmax<whhf) € RL/ (2)

where W, projects the hidden state /; to the prediction probability space and L is the size of
the vocabulary.

Usually, L is pretty large and learning a distribution over such a large vocabulary space is a difficult
task. However, when given a specific image, the candidate word set is usually small. For example,
if the image is taken inside a room, then words like sofa, chair, wall, floor, etc. are in high probability to
be the candidate words, while words such as train and river should not appear. Therefore, in order to
reduce the prediction space, we introduce a gate mechanism for the words in the vocabulary, termed as
the word gate (WG). In WG, the predicted distribution is gated by its gating score, which can be
formulated as:

p(yelL,yo, ..., yi—1;0) ~ 0 ® softmax(Wyhy), 3)
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whereo = {01, 02,...,01;0 < o0; < 1} is the word gate vector, to decide whether a word in the vocabulary
should be a predicted candidate word, and ® means the element-wise product. h; € R" is the output
of the LSTM at the last time. W), € RL*" is the weight. The so ftmax function is used to normalize the
whole prediction of the LSTM.

The input of the LSTM is an embed vector. The embed vector is a continuous vector space with a
much lower dimension which is converted from a space with one dimension per word or per image
conception. Learning the gating score vector o is directly based on images without the need to consider
syntax. As shown in Figure 3, a CNN is used to get the image feature I. Then, a fully connected layer is
added to map the K-dimensional image vector to an L-dimensional embed vector, where K is the size
which is same as that of the LSTM input and L is the size of the vocabulary. Then, we add a sigmoid
layer to get the probability of all the words. We use the binary cross-entropy loss to train the WG:

losswg = — [tilog(o;) + (1 —t;)log(1 —0;)], 4)

1

==
Nyl

where 0 € Rl is the word probability learned from the image. t € R is an indicator vector. If one
word occurs in the caption, the corresponding position in t will be set to 1. The image feature used for
the word gate is the same as the input of LSTM, and this could improve the learning performance of
the image embedding vector.This image feature, which represents the global information of the image,
is different from the spatial image matrix used in the attention, and its dimension is the same as that of
the word embedding feature. The image embedding layer is equivalent to being trained twice and this
layer can get better semantic information of the image.

| lossyg | | lossgnn |

Sigmoid |

FC

| LSTM I—)l LSTM |—)| LSTM |—> ------- LSTM

imagel | W, | | W, | Wiy

Figure 3. The structure of the word gate model. The word gate model is trained by the binary
cross-entropy loss. The LSTM model is trained by the cross-entropy loss. The output of the LSTM
computes with the output of the word gate to get better dictionary probabilities.

Finally, we use the sum of the two losses as our final loss, which is given as:

loss = plossgnn + (1 — p)losswg, (5)

where yi is the hyperparameter to decide the weight of these two losses. In this paper, we empirically
set u = 0.9.

During testing, the WG first predicts a gating vector for all the words in the vocabulary.
Then, the RNN generates the sentence word-by-word, predicting their distribution in each time
step. The probability distribution is gated by the gating vector, and the final probabilities are output
for each word.

The word gate is different from the image attributes used in [12]. Image attributes usually use
the top 1000 words to train the CNN model. The image attribute model replaces the normal CNN to
get the image vector which is the input to the LSTM. The word gate model does not need to train the
attribute model independently. The CNN of the word gate is the same as the one used in [9], and it
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can be trained jointly. Furthermore, we do not need to select the top 1000 words—we use the whole
vocabulary to learn the probabilities of all the words.

3.3. Adaptive Self-Critical Sequence Training

Similar to [1], we can cast image captioning as an RL problem, in which the “agent” (the L5TM)
interacts with the external “environment” (i.e., words and image features). At each episode of the
training process, the agent takes a sequence of “actions” (the predictions of the next word, w;) according
to a policy pyp (the parameters of the network, 6), and observes a “reward” R (e.g., the CIDEr score)
at the end of the sequence. The goal of training is to find a policy (the parameters) of the agent that
maximizes the following expected reward:

J(0) = Ews~pe [R(w®)], (6)

where w® = (wj, ..., w}) is a sentence sampled from pg and wj is the words sampled at time step ¢.
Using the REINFORCE algorithm [13], the gradient can be computed as:

Vo] (0) = Ew,ps [R(w®) Vg log pg(w®)]. @)

In practice, the expectation can be approximated with a single Monte Carlo sample from the
following distribution of actions:

Vo] () =~ —R(w’)Vglog pg(w®), w® ~ py. 8)

However, the Monte Carlo estimation method is not stable, especially when the policy changes in
the runtime, which usually causes high variance in the estimated gradient. A common solution is to
reduce the following variance by shifting the reward with a “baseline” B:

Vo] (6) =~ (R(w®) — B)Vglog pe(w®), w® ~ py. )

where B can be any function that is independent with the action w®. The optimal baseline that yields
the lowest variance estimator on V] (6) is the following expected reward:

B* = Eyyeup, [R(w*)]. (10)

Finally, using the REINFORCE algorithm with a baseline B, the gradient of o; (the input to the
softmax) is given as [1]:

21(6) _
E)ot
For the full derivation of the gradients, please refer to [13,15] and Chapter 13 in [16].
Self-critical sequence training [4] gives a typical implementation of the RL-based method.
Its core idea is to estimate the baseline with the reward obtained from the current policy model
in testing reference:

(R(w®) = B)(po(wi|hi) — Ts)- (11)

Vo] (0) = (R(w®) — R(@))Velogpe(w®), (12)

where R(w®) is the reward obtained by the Monte Carlo sampling, and R(®) is the reward obtained
by the current model at the inference stage. If R(w®) is higher than R(®), the probability of these
samples will be increased. If R(w?®) is lower than R(@), this probability will be suppressed. Since the
SCST baseline is based on the test-time estimate under the current model, it improves the performance
of the model under the inference algorithm used at test time. This ensures the training/test time
consistency and makes it possible to optimize with evaluation metrics directly. Self-critical sequence
training minimizes the impact of baseline with the test-time inference algorithm on training time,
which requires only one additional forward pass. It makes it so the model is optimized quickly,
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converges easily, and has a lower variance. Self-critical sequence training can be more effectively
trained on mini-batches of samples with stochastic gradient descent (SGD).

The beam search method is a heuristic search algorithm that explores a graph by expanding the
most promising node in a limited set. This method is widely used in the natural language generation
model. SCST uses greedy decoding to select the current action w; for the baseline estimation in time
step t:

Wy = arg max p(we|hy). (13)

This is used as the foundation of the beam search method, and the original training method with
cross-entropy loss optimizes the probability of the max.

However, this method only considers the single-word probability, while the Monte Carlo sampling
considers the probabilities of all words in the vocabulary. This inequivalence is harmful, since the aim
of R(w is to give a baseline for R(w?), but its value is computed in a very different way. Furthermore,
we found that this greedy strategy causes SCST to be unstable in the training progress. As shown
in Figure 4b, in SCST, the greedy reward (R(®) has higher variance than the Monte Carlo sampling
reward (R(w*)), and their gap is also very unstable. As a result, the CIDEr score in Figure 4a of SCST
is lower than that of adaptive SCST.

=-SCST -—#—-Adaptive-SCST
11

1.095
1.09

1.085

CIDEr

1.075
1.07
1.065

0 250 500 750 1000 1250 1500 1750 2000 2250 2500
iteration

(a) CIDEr score of SCST vs. adaptive SCST.

==—Greedy-Reward =®=Sample-Reward
1.6

14

CIDEr

0.8

0.6
0 250 500 750 1000 1250 1500 1750 2000 2250 2500
iteration

(b) Sample reward vs. greedy reward of SCST.

Figure 4. The above two figures show the unstable training problem of SCST. The x-axis is the number
of iterations, and the y-axis is the CIDEr score. Image (a) shows the plot of CIDEr score over iterations
of SCST and our adaptive SCST, and image (b) shows the rewards (sample reward and greedy reward)
of each iteration of SCST. All models were trained with the MSCOCO dataset [8].

In order to stabilize the estimation of baseline, we introduce a factor a for R(®) as follows:
Vo](0) = (R(w®) — aR(w))Velogpe(w®). (14)

We argue that there exist at least two criteria for the factor a: on one hand, it should be able
to normalize R(@) so that R(®) will not shift severely; on the other hand, it must stabilize the gap
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between R(@) and R(w?®) to ensure that the gradient will not change rapidly. To this end, we formulate
the factor « in such a way that it not only takes account of the history of R(), but also considers the
average level of R(w*). So, the factor « is formulated as:

E(R(@)’ 1
where E(R(+)) denotes the expectation of the reward. In this formulation, E(R(®)) is used to normalize
the current greedy baseline R(®) with its expectation, and E(R(w")) ensures the baseline has a similar
level with the expectation value of R(w®). It is not realistic to compute E(R(w®)) and E(R(®)).
Instead, we use the mean value of R(-) in previous v iterations (once the optimization for a mini-batch
is defined as an iteration) as a estimation for the expectations.

Although the history factor « can normalize the greedy baseline and stabilize the gap between
R(w) and R(w?®), it may lead the absolute value of the gap to an incorrect level (e.g., the loss may keep
a negative value). Thus, we further introduce another factor  to adjust the tradeoff of R(@) and R(w®).
The final equation is shown as follows:

Vol(0) = (R(w) - pEE
i=t—h+ 1

(@))Vglogpe(w®), (16)

where R;(+) is the R(-) in the ith iteration. Here we assume that t is the current iteration and /, which is
called “history factor”, determines how many previous rewards are used to estimate the difference.
Different from the history factor, f is a hyper-parameter which was empirically set to be 0.9.

Our experiments show that the adaptive SCST method became more stable and reliable than the
SCST method. It could reduce the variance of the gradient estimate, and we got better performance
based on the adaptive SCST model.

4. Experiments
4.1. Dataset

We used the MSCOCO dataset [8], which is now the largest dataset of the image caption
task to evaluate the performance of the proposed models. The official MSCOCO dataset includes
82,783 training images, 40,504 validation images, and 40,775 testing images. The image captioning
model was evaluated on the offline testing dataset and the online server. For offline evaluation,
we used the same dataset splits as in [17], which in recent papers have usually been used as offline
evaluation. The training set in the offline dataset contains 113,287 images, and every image has five
captions. We used a dataset of 5000 images for the validation and report results on a testing dataset of
5000 images.

We used words which appeared more than five times in all captions. In the end, we obtained
a vocabulary with 9487 words. Words which occurred less than five times were replaced with the
unknown token < UNK >. We counted the length of all captions and found that the lengths of 97.7%
captions were less than 16. We truncated the words to maintain the maximal length of the caption
at 16.

4.2. Implementation Details

We used the feature map of the final convolution layer in the Resnext_101_64x4d [18] model to be
regarded as our image feature. This model was pre-trained on the ImageNet dataset [19]. For the LSTM
network, we set the hidden unit dimension to be 512 and the mini-batch to be 16. In order to avoid the
gradient explosion problem, we used the gradient cutting strategy proposed in [20]. If the gradient was
higher than 0.1, we set the gradient to be 0.1. In order to prevent the LSTM network from over-fitting,
we added the dropout layer at the output of LSTM. We used the Adam method [21] to update the
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CNN and LSTM parameters. For the language model part, the initial learning rate was 4 x 10~%.
For the convolution neural network, the initial learning rate was 5 x 10~3. The momentum and the
weight decay were 0.8 and 0.999, respectively. We utilized the PyTorch deep learning framework
to implement our algorithm. In testing, we used the beam search algorithm for better description
generation. In practice, we used a beam size of 2.

In order to further verify the effect of the algorithm, we conducted a comparative experiment
with the soft attention model. We selected our best model based on the CIDEr score as the initialization
for the adaptive SCST training. We ran the adaptive SCST training by using Adam with a learning rate
of 5% 107°.

We added the word gate method to the soft attention model, and the soft attention model was our
baseline to evaluate the performance of our word gate method.

4.3. Results

We used CIDEr [5], BLEU [22], METEOR [23], and ROUGE_L metrics to evaluate the quality of
the generated sentences.

In practice, we found that the reward obtained from the sample and the reward obtained from the
greedy method were very different. This made the training loss become large, as shown in Figure 2.
For comparison, we used both SCST and ASCST to fine-tune the same WG model. In Figure 2,
the scores were evaluated every 50 iterations under the MSCOCO testing dataset. They were both
trained with the same initial model, whose CIDEr was 1.092. From Figure 2, we can find that the
ASCST model had better performance than the original SCST method. At the beginning of the RL,
the SCST method obtained a lower result than the initial model, but ASCST was not affected by the
difference of the two rewards, and it could improve the CIDEr score continuously.

In Table 1, we report the performance of the soft attention (Resnext_101_64x4d) baseline
model [10], then we add the proposed word gate model (WG) to the baseline model without RL.
Finally, we add SCST and ASCST to the soft attention + WG model for the comparison between the
SCST method and the ASCST method. The above models were all validated on the test portion of the
Karpathy splits, and they were all single models without ensemble method. From Table 1, we can
find that the soft attention with WG model yielded a better performance than the soft attention model
alone. Furthermore, to compare the SCST and the ASCST, we fine-tuned the same soft attention +
WG model with the SCST method and ASCST method. Then, we obtained the soft attention + WG +
SCST model and the soft attention + WG + ASCST model. From the results, we could find that the
soft attention + WG + ASCST model had better performance than the soft attention + WG + SCST
model reported in [4] on BLEU, ROUGE-L, and CIDEr metrics. This result shows that the proposed
WG method could help the model to obtain better performance. Moreover, the ASCST could not only
make the IRL training more stable, but could also improve the model’s performance. Compared with
other state-of-the-art methods, our model also achieved competitive results.

We then used our best model to get the test results with the official test split, and submitted
our results to the official MSCOCO evaluation server. In Table 2, the state-of-the-art results on the
leaderboard are also depicted. We outperformed the baseline method on all evaluation metrics.

To further evaluate the ASCST method and get the appropriate hyper-parameters settings,
we tried several comparison experiments where only / or B in Equation (16) were different.
In Figures 5 and 6, we present the model with different & and j settings. In Figure 5, we can find that
the alpha_5000_beta_08 model had the best CIDEr score among these models ( alpha_5000 means the
WG model trained with the ASCST method with / set to be 5000 iterations). From Figure 6, we can see
that the performance of our model was significantly influenced by the . Figure 6 shows the influence
of the hyper-parameter h. alpha_h_beta_08 refers to the WG model trained with the ASCST method
with  set to 0.8, and the / represent different hyper-parameters for the history factor. We found that
with longer history reward information, better performance was obtained. In practice, 5 set to be 0.8
and / set to be more than 2500 iterations could help our model to yield better performance.
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Table 1. Single-model image captioning performance without RL on the MSCOCO Karpathy test split.
BLEU-n is a geometric average of precision over 1-to n-grams.NIC: neural image caption.

Methods CIDEr-D Bleu-1 Bleu-2 Bleu-3 Bleu-4 ROUGEL METEOR

NICv2 [9] 0.998 - - - 0.321 - 0.257
Hard-Attention [10] - 0.718 0.504 0.357 0.25 - -
Soft-Attention [10] - 0.707 0.492 0.344 0.243 - -
e2e-gLSTM [24] 0.951 0.712 0.54 0.401 0.292 - -
Sentence-condition [25] 0.959 0.72 0.546 0.404 0.298 - -

Att2in [4] 1.013 - - - 0.313 0.543 0.260

Att2in + SCST [4] 1.114 - - - 0.333 0.553 0.263

NIC (Resnext_101_64x4d) 1.009 0.724 0.556 0.418 0.314 0.537 0.259

Soft-Attention (Resnext_101_64x4d) 1.046 0.737 0.571 0.433 0.326 0.550 0.263

Soft-Attention + SCST 1.148 0.771 0.610 0.465 0.349 0.561 0.266

Soft-Attention + ASCST 1.170 0.777 0.616 0.471 0.354 0.564 0.269

Soft-Attention + WG 1.092 0.757 0.595 0.456 0.347 0.558 0.272

Soft-Attention + WG + SCST 1.187 0.779 0.620 0.470 0.349 0.569 0.274

Soft-Attention + WG + ASCST 1.212 0.785 0.630 0.486 0.368 0.571 0.277

Table 2. Automatic evaluation on the online official MSCOCO [8] test split.

Methods CIDEr METEOR ROUGE-L Bleu-1 Bleu-2 Bleu-3 Bleu-4
MSM@MSRA [12] 0.984 0.256 0.542 0.739 0.575 0.436 0.330
Review Net [26] 0.965 0.256 0.533 0.720 0.550 0414 0.313
ATT [27] 0.943 0.250 0.535 0.731 0.565 0.424 0.316
Google [9] 0.943 0.254 0.530 0.713 0.542 0.407 0.309
SCST [4] 1.147 0.270 0.563 0.781 0.619 0.470 0.352
WG-ASCST 1.179 0.275 0.572 0.786 0.630 0.485 0.368
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Figure 5. The CIDEr scores of the WG-ASCST model with different 8. The x-axis is the number
of iterations, and the y-axis is the CIDEr score. All the models in this figure have the same alpha.
alpha_5000_beta_01 means the  of the ASCST model is 0.1.
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Figure 6. The CIDEr scores of the WG-ASCST model with different & history rewards. The x-axis is
the number of iterations, and the y-axis is the CIDEr score.

4.4. Quantitative Analysis

As shown in Figure 7, we selected some samples from the local test set for reference, and we can
see that the model could generate readable text content and maintain rich semantic information about
the image. For example, in the first image of Figure 7, we can see the generated text “a group of people
playing tennis on a tennis court”. The generated caption successfully describes people and tennis in
the image. In the second image of Figure 7, we can see our model could recognize people and skis in
the image, and furthermore it could determine that people were standing in the snow.

a group of people
playing tennis on a
tennis court

a man riding skis
down a snow
covered slope

a black cat sitting on
the floorin a room

a group of people
standing in the snow
with skis of it

E—

a cat sitting on top of a
wooden bench

a surfboard in the
water

a crowd of people
holding umbrellas in the
street

Figure 7. Example of generated captions.

a desk with a laptop
computer sitting on top

a man riding a wave on

a man riding a wave on
a surfboard in the ocean

a giraffe standing in
front of trees

an elephant walking in
the water with a man

a group of people sitting
around a table with
wine bottles
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5. Conclusions

We present two innovations under the RL mechanism to boost the image captioning performance.
First, a word gate function is introduced into the LSTM-based decoder model to reduce the search
scope of the vocabulary for the sequence generation. Second, during the gradient updating along
with the self-critic learning framework, two additional control parameters are defined to rescale the
baseline with history reward information, in order to lower the variance of the expected reward. Finally,
extensive experimental results show that the two innovations jointly obtained a boosted captioning
performance and increased the stability of model training. Furthermore, we obtained impressive
performance on the MSCOCO benchmark compared with some state-of-the-art approaches. We intend
to study the application of the proposed method in the field of digital virtual asset security in future
research.
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