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Abstract: In this paper, we present the first constant-time implementations of four-dimensional
Gallant–Lambert–Vanstone and Galbraith–Lin–Scott (GLV-GLS) scalar multiplication using curve
Ted127-glv4 on 8-bit AVR, 16-bit MSP430, and 32-bit ARM processors. In Asiacrypt 2012, Longa
and Sica introduced the four-dimensional GLV-GLS scalar multiplication, and they reported
the implementation results on Intel processors. However, they did not consider efficient
implementations on resource-constrained embedded devices. We have optimized the performance
of scalar multiplication using curve Ted127-glv4 on 8-bit AVR, 16-bit MSP430, and 32-bit ARM
processors. Our implementations compute a variable-base scalar multiplication in 6,856,026,
4,158,453, and 447,836 cycles on AVR, MSP430, and ARM Cortex-M4 processors, respectively.
Recently, FourQ-based scalar multiplication has provided the fastest implementation results on AVR,
MSP430, and ARM Cortex-M4 processors to date. Compared to FourQ-based scalar multiplication,
the proposed implementations require 4.49% more computational cost on AVR, but save 2.85% and
4.61% cycles on MSP430 and ARM, respectively. Our 16-bit and 32-bit implementation results set
new speed records for variable-base scalar multiplication.

Keywords: elliptic curves; scalar multiplication; constant-time implementation; twisted Edwards
curves; AVR; MSP430; ARM

1. Introduction

Wireless sensor networks (WSNs) are wireless networks consisting of a large number of
resource-constrained sensor nodes, where each node is equipped with a sensor to monitor physical
phenomena, such as temperature, light, and pressure. The main features of WSNs are resource
constraints, such as storage, computing power, and sensing distance. Recently, the energy consumption
of data centers has attracted attention because of the fast growth of data throughput. WSNs can
provide a solution for data collection and data processing in various applications including data center
monitoring. That is, WSNs can be utilized for data center monitoring to improve the efficiency of
energy consumption. Several solutions were proposed to solve this problem [1,2].

Since sensor nodes are usually deployed in remote areas and left unattended, they can be led to
network security issues, such as node capture, eavesdropping, and message tampering during data
communication. Additionally, many application areas of WSNs require data confidentiality, integrity,
authentication, and non-repudiation, meaning there is a need for an efficient cryptographic mechanism
to satisfy current security requirements. However, due to the constraint of WSNs, it is difficult to utilize
the conventional cryptographic algorithms. Therefore, efficient cryptographic algorithms considering
code size, computation time, and power consumption are required for the security of WSNs.
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In 1985, elliptic curve cryptography (ECC) was proposed independently of public key
cryptography (PKC) by Miller and Koblitz [3,4]. ECC is mainly used for digital signature and key
exchange based on the elliptic curve discrete logarithm problem (ECDLP), which is defined by elliptic
curve point operations in a finite field. ECC provides the same security level with a smaller key
size compared to existing PKC algorithms such as Rivest-Shamir-Adleman (RSA) cryptosystem [5].
For example, ECC over Fp with a 256-bit prime p provides an equivalent security level as RSA using
3072-bit key. Because RSA uses a small integer as the public key, RSA public key operations can be
efficiently computed. However, RSA private key operations are extremely slower than ECC, therefore
they have limited use in the applications of WSNs. Therefore, ECC can be efficiently utilized than RSA
for resource-constrained WSNs devices, such as smart cards and sensor nodes.

However, recently proposed manipulation and backdoors have raised the suspicion of weakness
in previous ECC standards. In particular, the National Institute of Standards and Technology
(NIST) P-224 curve is not secure against twist attacks, which are the combined attacks that use
the small-subgroup attacks and the invalid-curve attacks using the twist of curve [6]. The dual elliptic
curve deterministic random bit generator (Dual_EC_DRBG) is a pseudo-random number generator
(PRNG) standardized in NIST SP 800-90A. However, the revised version of NIST SP 800-90A standard
removes Dual_EC_DRBG because this algorithm contains a backdoor for the national security agency
(NSA) [7].

Therefore, the demand for next generation elliptic curves has increased. Specific examples of such
curves are Curve25519, Ed448-Goldilocks, and twisted Edwards curves [8–10]. The main features of
these curves are the selection of efficient parameters. The Curve25519 utilizes a prime of the form
p = 2255 − 19 and a fast Montgomery elliptic curve. The Ed448-Goldilocks curve utilizes a Solinas
trinomial prime of the form p = 2448 − 2224 − 1, which provides fast field arithmetic on both 32-bit
and 64-bit machines because 224 = 28 × 8 = 32 × 7 = 56 × 4. These parameters can accelerate
the performance of ECC-based protocols. The details of the twisted Edwards curves can be found in
Section 2.3.

Scalar multiplicationor point multiplication computes an operation kP using an elliptic curve
point P and a scalar k. This operation determines the performance of ECC. Therefore, many researchers
have proposed various methods to improve the efficiency of scalar multiplication. The speed-up
methods for scalar multiplication can be classified into three types: methods based on speeding up
the finite field exponentiation, such as comb techniques and windowing methods, scalar recoding
methods, and methods that are particular to elliptic curve scalar multiplication [11].

Speed-up methods using efficiently computable endomorphisms are one type of method that
are particular to elliptic curve scalar multiplication. The Gallant–Lambert–Vanstone (GLV) method
proposed by Gallant et al. is a method for accelerating scalar multiplication by using efficiently
computable endomorphisms [11]. If the cost of computing endomorphism is less than (bit-length of
curve order)/3 elliptic curve point doubling (ECDBL) operations, then this method has a computational
advantage. Their method reduces about half of the ECDBL operations and saves the costs of scalar
multiplication by roughly 33%. Additionally, recent studies have reported that scalar multiplication
methods using efficiently computable endomorphisms are significantly faster than generalized
methods. The Galbraith–Lin–Scott (GLS) curves proposed by Galbraith et al. constructed an efficiently
computable endomorphism for elliptic curves defined over Fp2 , where p is a prime number [12]. They
demonstrated that the GLV method can efficiently compute scalar multiplication on such curves. Longa
and Gebotys [13] presented an efficient implementation of two-dimensional GLS curves over Fp2 .

In 2012, Longa and Sica [14] proposed four-dimensional GLV-GLS curves over Fp2 , which
generalized the GLV method and GLS curves. Hu et al. [15] proposed a GLV-GLS curve over
Fp2 , which supports the four-dimensional scalar decomposition. They reported the implementation
results indicating that the four-dimensional GLV-GLS scalar multiplication reduces at most 22%
of computational cost than the two-dimensional GLV method. Bos et al. [16] proposed two- and
four-dimensional scalar decompositions over genus 2 curves defined over Fp2 . Bos et al. [17] introduced
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an eight-dimensional GLV-GLS method over genus 2 curves defined over Fp2 . Oliveira et al. [18]
presented the implementation results of a two-dimensional GLV method over binary GLS elliptic
curves defined over F2254 . Guillevic and Ionica [19] utilized the four-dimensional GLV method on
genus 1 curves defined over Fp2 and genus 2 curves defined over Fp. Smith [20] proposed a new family
of elliptic curves over Fp2 , called “Q-curves”. Costello and Longa [21] introduced a four-dimensional
Q curve defined over Fp2 , called “FourQ”. They reported the implementation results of FourQ on
various Intel and AMD processors.

After a FourQ-based approach has been proposed, many implementation results were reported
considering various environments, such as AVR, MSP430, ARM, and field-programmable gate array
(FPGA) devices [22–24]. An efficient FourQ-based implementation on 32-bit ARM processor with
the NEON single instruction multiple data (SIMD) instruction set was proposed by Longa [22].
Järvinen et al. [23] proposed a fast and compact FourQ-based implementation on FPGA device.
In CHES 2017, Liu et al. [24] presented highly optimized implementations using curve FourQ on 8-bit
AVR, 16-bit MSP430, and 32-bit ARM Cortex-M4 processors, respectively.

In the case of curve Ted127-glv4, Longa and Sica and Faz-Hernández et al. [14,25] reported
the implementation results on high-end processors, such as Intel Sandy Bridge, Intel Ivy Bridge,
and ARM Cortex-A processors. However, efficient implementations on resource-constrained
embedded devices have not been considered to date. Therefore, we focused on optimized
implementations of scalar multiplication using curve Ted127-glv4 on 8-bit ATxmega256A3, 16-bit
MSP430FR5969, and 32-bit ARM Cortex-M4 processors, respectively.

Our main contributions can be summarized as follows:

• We present efficient implementations at each level of the implementation hierarchy of
four-dimensional GLV-GLS scalar multiplication considering the features of 8-bit AVR, 16-bit
MSP430, and 32-bit ARM Cortex-M4 processors. To improve the performance of scalar
multiplication, we carefully selected the internal algorithms at each level of the implementation
hierarchy. These implementations also run in constant time to resist timing and cache-timing
attacks [26,27].

• We demonstrate that the efficiently computable endomorphisms can accelerate the performance
of four-dimensional GLV-GLS scalar multiplication. For this purpose, we analyze the operation
counts of two elliptic curves “Ted127-glv4” and “FourQ”, which support the four-dimensional
GLV-GLS scalar multiplication. The GLV-GLS curve Ted127-glv4 requires fewer number of field
arithmetic operations than FourQ-based implementation to compute a single variable-base scalar
multiplication. However, because FourQ uses a Mersenne prime p = 2127 − 1 and the curve
Ted127-glv4 uses a Mersenne-like prime p = 2127 − 5997, FourQ has a computational advantage
of faster field arithmetic operations. By using the computational advantage of endomorphisms,
we overcome the computational disadvantage of curve Ted127-glv4 at field arithmetic level.

• We present the first constant-time implementations of four-dimensional GLV-GLS scalar
multiplication using curve Ted127-glv4 on three target platforms, which have not been considered
in previous works. The proposed implementations on AVR, MSP430, and ARM processors require
6,856,026, 4,158,453, and 447,836 cycles to compute a single variable-base scalar multiplication,
respectively. Compared to FourQ-based implementations [24], which have provided the fastest
results to date, our results are 4.49% slower on AVR, but 2.85% and 4.61% faster on MSP430
and ARM, respectively. Our MSP430 and ARM implementations set new speed records for
variable-base scalar multiplication.

The remainder of this paper is organized as follows. Section 2 describes preliminaries regarding
ECC and its speed-up techniques, including the GLV and GLS methods. Section 3 presents a review
of four-dimensional GLV-GLS scalar multiplication and its implementation hierarchy. Section 4
describes the implementation details of field arithmetic and optimization methods for the target
platforms. Section 5 describes optimization methods for ECC in terms of point arithmetic and scalar
multiplication. Experimental results and a comparison of our work to previous ECC implementations
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on AVR, MSP430, and ARM processors are presented in Section 6. Finally, we conclude this paper in
Section 7.

2. Preliminaries

In Section 2.1, we describe the field representation and notations used for the remainder of this
paper. We briefly describe ECC using a short Weierstrass curve and its group law in Section 2.2.
We also describe twisted Edwards curves, which are the target of our implementation, in Section 2.3.
In Section 2.4, we describe the GLV-GLS method including the GLV method and GLS curves.

2.1. Field Representation and Notations

We assume that the target platform has a w-bit architecture. Let n = dlog2 pe be the bit-length of a
Mersenne-like prime p = 2n− c, where c is small. Let m = dn/we be its word-length. Then, an arbitrary
element a ∈ Fp is represented by an array (am−1, · · · , a2, a1, a0) of m w-bit words. The notations
M1, S1, I1, and A1 represent multiplication, squaring, inversion, and addition (subtraction) over Fp,
respectively. Similarly, the notations M2, S2, I2, and A2 represent multiplication, squaring, inversion,
and addition (subtraction) over Fp2 , respectively. The notation Ai represents multi-precision addition
without modular reduction and the notation Md represents multiplication with a curve parameter.

2.2. Elliptic Curve Cryptography

Let Fq be a finite field with odd characteristic. An elliptic curve E over Fq is defined by a short
Weierstrass equation of the following form:

E : y2 = x3 + ax + b,

where a, b ∈ Fq and 4a3 + 27b2 6= 0.
Because the most important operation in ECC is scalar multiplication kP, it must be implemented

efficiently. The basic method for computing kP is comprised of two elliptic curve operations: elliptic
curve point addition (ECADD) and the ECDBL operations. Let P = (x1, y1) and Q = (x2, y2) be
two points on an elliptic curve E. The ECADD and ECDBL operations can be computed in affine
coordinates as follows:

x3 = λ2 − x1 − x2, y3 = λ(x1 − x3)− y1,

λ =
y2 − y1

x2 − x1
if P 6= Q, and λ =

3x2
1 + a
2y1

if P = Q.

The ECADD and ECDBL operations are composed of finite field arithmetic operations, such
as field addition, subtraction, multiplication, squaring, and inversion. Therefore, to improve
the performance of scalar multiplication, the internal algorithms such as field and curve arithmetic
operations should be efficiently implemented.

2.3. Twisted Edwards Curves

The Edwards curves are a normal form of elliptic curves introduced by Edwards [28]. Bernstein
and Lange [29] introduced Edwards curves defined by x2 + y2 = c2(1 + dx2y2), where c, d ∈ Fq

with cd(1− dc4) 6= 0. In 2007, Bernstein et al. [10] introduced twisted Edwards curves, which are a
generalization of Edwards curves defined by

Ea,d : ax2 + y2 = 1 + dx2y2,

where a, d ∈ Fq with ad(a− d) 6= 0. The Edwards curves are a special case of twisted Edwards curves
with a = 1. The point (0, 1) is the identity element and the point (0,−1) has order two. The point (1, 0)
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and (−1, 0) have order four. The negative of a point P = (x1, y1) is −P = (−x1, y1). The ECADD
operation of two points P = (x1, y1) and Q = (x2, y2) on a twisted Edwards curve E is defined
as follows:

(x1, y1) + (x2, y2) =

(
x1y2 + y1x2

1 + dx1y1x2y2
,

y1y2 − ax1x2

1− dx1y1x2y2

)
.

Because the addition law is unified, it can be used for computing the ECDBL operation. Suppose
that two points P and Q have an odd order. Then, the denominators of the addition formula
1 + dx1y1x2y2 and 1− dx1y1x2y2 are nonzero. Therefore, the doubling formula can be obtained
as follows:

2(x1, y1) =

(
2x1y1

y2
1 + ax2

1
,

y2
1 − ax2

1
2− y2

1 − ax2
1

)
.

Two relationships can be obtained by considering the curve equation: ax2
1 + y2

1 = 1 + dx2
1y2

1
and ax2

2 + y2
2 = 1 + dx2

2y2
2. After straightforward elimination, the curve parameters a and d can be

represented by x1, x2, y1, and y2. Substitutions in the unified addition formula yield the addition
formula as follows:

(x1, y1) + (x2, y2) =

(
x1y1 + x2y2

y1y2 + ax1x2
,

x1y1 − x2y2

x1y2 − y1x2

)
.

These addition and doubling formulas are used in the dedicated addition and doubling formulas
described in Section 5. The features of these formulas are independent of the curve parameter d [30].

2.4. The GLV-GLS Method

We will now describe the GLV method to explain the GLV-GLS method. Let E be an elliptic curve
defined over a finite field Fq. An endomorphism φ of E over Fq is a rational map φ : E→ E such that
φ(O) = O and φ(P) = (g(P), h(P)) for all points P ∈ E, where g and h are rational functions and O is
a point at infinity. An endomorphism φ is a group homomorphism, defined as

φ(P1 + P2) = φ(P1) + φ(P2) for all P1, P2 ∈ E.

Suppose that #E(Fq) contains a subgroup of order r and let φ be an efficiently computable
endomorphism on E such that φ(P) = λP for some 1 ≤ λ ≤ r − 1. The GLV method computes
the integers k0 and k1 such that k = k0 + k1λ mod r for scalar multiplication kP. Because

kP =k0P + k1λP

=k0P + k1φ(P),

scalar multiplication kP can be computed by computing φ(P) and then using multiple scalar
multiplications [31]. This is because the multi-scalars k0 and k1 have approximately half the bit-length
of the scalar k. The efficiency of the GLV method depends on scalar decomposition and the efficiency
of computing endomorphism φ.

The main concept of the GLS curves is described as follows: Let E′/Fq2 be the quadratic twists
of E/Fq2 [12]. Let ψ be the quadratic twist map and π be the q-th Frobenius endomorphism. Then,
we can obtain the efficiently computable endomorphism φ = ψ ◦ π ◦ ψ−1, which satisfies the equation
X2 + 1 = 0 if p ≡ 5 (mod 8). However, GLS curves only work for elliptic curves over Fqm with m > 1.

As mentioned in the introduction, the GLV-GLS method is the generalized method of the GLV
method and GLS curves. Let φ and ψ be two efficiently computable endomorphisms over Fp2 and P
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be a point of prime order r. Then, the four-dimensional scalar multiplication kP for any scalar k ∈ [1, r]
can be computed as follows:

kP =k0P + k1φ(P) + k2ψ(P) + k3ψ(φ(P)),

where maxi(|ki|) < Cr1/4 for 0 ≤ i ≤ 3 and C is some explicit constant. The details of internal
algorithms of the four-dimensional scalar multiplication can be found in Sections 4 and 5.

3. Review of Four-Dimensional GLV-GLS Scalar Multiplication

The curve Ted127-glv4 was introduced by Longa and Sica [14]. It is based on twisted Edwards
curves and has efficiently computable endomorphisms, which facilitates the four-dimensional
GLV-GLS scalar multiplication. The parameters of curve Ted127-glv4 are as follows:

E/Fp2 : −x2 + y2 = 1 + dx2y2,

where d = 170141183460469231731687303715884099728+ 116829086847165810221872975542241037773i,
p = 2127 − 5997 and #E(Fp2) = 8r, where r is a 251-bit prime. Let Fp2 = Fp[i]/(i2 + 1)
and u = 1 + i be a quadratic non-residue in Fp2 . E is isomorphic to the Weierstrass curve
E′/Fp2 : y2 = x3 − 15/2u2x − 7u3. The curve Ted127-glv4 contains two efficiently computable
endomorphisms φ and ψ defined over Fp2 as follows:

φ(x, y) =
(
−

(ζ3
8 + 2ζ2

8 + ζ8)xy2 + (ζ3
8 − 2ζ2

8 + ζ8)x
2y

,
(ζ2

8 − 1)y2 + 2ζ3
8 − ζ2

8 + 1
(2ζ3

8 + ζ2
8 − 1)y2 − ζ2

8 + 1

)
,

ψ(x, y) =
(

ζ8xp,
1
yp

)
,

where ζ8 = u/
√

2 is a primitive eighth root of unity. It can be verified that φ2 + 2 = 0 and ψ2 + 1 = 0.
Let P be a point in E/Fp2 and k be a random scalar in the range [1, r]. Algorithm 1 outlines

variable-base scalar multiplication using curve Ted127-glv4 and four-dimensional decompositions.
Steps 1 and 2 in Algorithm 1 compute three endomorphisms φ(P), ψ(P), and ψ(φ(P)), and then
compute the eight points T[u] = P + u0φ(P) + u1ψ(P) + u2ψ(φ(P)), where u = (u2, u1, u0) in
0 ≤ u ≤ 7. Step 3 decomposes the input scalar k into multi-scalars (k0, k1, k2, k3) such that 0 ≤ ki ≤ 265,
where 0 ≤ i ≤ 3. For constant-time implementation, the multi-scalars (k0, k1, k2, k3) must guarantee
the same number of iterations of the main computation. Because all coordinates of scalar decomposition
are less than 265, we apply the scalar recoding algorithm to guarantee a fixed loop length for the main
computation at step 4 [25]. The result of the scalar recoding is represented by 66 lookup table
indices di and 66 masks mi, where 0 ≤ i ≤ 65. Steps 5 to 9 represent the main computation stage,
including point loading, the ECADD operation, and the ECDBL operation. The result of the main
computation is converted from an extensible coordinates to the affine coordinates in step 10. Therefore,
a variable-base scalar multiplication using curve Ted127-glv4 requires one φ(P) endomorphism, two
ψ(P) endomorphisms, and seven ECADD operations in the precomputation; 65 table lookups, 65 ECADD operations,
and 65 ECDBL operations in the main computation; and one inversion and two field multiplications overFp2 for
point normalization.

Figure 1 describes the implementation hierarchy of four-dimensional GLV-GLS scalar
multiplication and its internal algorithms. Because the implementation algorithms at each level
affect the performance of scalar multiplication, we carefully choose proper algorithms considering
the features of AVR, MSP430, and ARM processors. Additionally, field arithmetic over Fp2 and curve
arithmetic are comprised of field arithmetic over Fp, which is the computationally primary operations.
Therefore, field arithmetic over Fp is written at the assembly level.
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Algorithm 1: Scalar multiplication using curve Ted127-glv4 [21].
Require: Scalar k ∈ [1, r] and point P ∈ E/Fp2 .
Ensure: kP.

1: Compute φ(P), ψ(P), and ψ(φ(P)).
2: Compute T[u] = P + u0φ(P) + u1ψ(P) + u2ψ(φ(P)) where u = (u2, u1, u0) in 0 ≤ u ≤ 7.
3: Decompose the scalar k into the multi-scalars (k0, k1, k2, k3).
4: Recode the multi-scalars (k0, k1, k2, k3) to (d65, . . . , d0) and (m65, . . . , m0).

si = 1 if mi = −1 and si = −1 if mi = 0.
5: Q = s65 · T[d65].
6: for i = 64 to 0 do

7: Q← 2Q.
8: Q← Q + si · T[di].
9: end for

10: return Q.
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Field arithmetic over Fp :
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Extensible coordinates,
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Scalar recoding,
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Mul, Sqr : Karatsuba-based, product 
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sliding block doubling, 
Inv : Fermat's little theorem

High-
level

Low-
level

Figure 1. The implementation hierarchy of four-dimensional Gallant-Lambert-Vanstone and
Galbraith-Lin-Scott (GLV-GLS) scalar multiplication.

4. Implementation Details of Field Arithmetic

In this section, we describe the implementation details of field arithmetic on AVR, MSP430X,
and ARM Cortex-M4 processors using a Mersenne-like prime of the form p = 2127 − 5997. We describe
the field arithmetic algorithms that are commonly used in three target platforms in Sections 4.1–4.4.
In Sections 4.5–4.7, we describe our optimization strategy for field arithmetic on AVR, MSP430,
and ARM processors, respectively.

4.1. Field Addition and Subtraction over Fp

The curve Ted127-glv4 uses a Mersenne-like prime of the form p = 2127 − 5997. An efficient field
addition/subtraction method for this scenario was proposed by Bos et al. [16]. Let 0 ≤ a, b < p =

2127− 5997. Field addition over Fp can be computed by c = a+ b (mod p) = ((a+ 5997)+ b)− carry ·
2127 − (1− carry) · 5997, where carry = 0 if a + b + 5997 < 2127. Otherwise, carry = 1. The result is
bounded by p because, if a + b + 5997 < 2127, then a + b < 2127 − 5997, whereas if a + b + 5997 ≥ 2127,
then (a + b + 5997) (mod 2127) = a + b− p < p. Because a + 5997 < 2127, addition does not require
carry propagation. Note that subtraction with carry · 2127 can be efficiently implemented by clearing
the 128-th bit of (a + 5997) + b.

Similar to field addition, field subtraction over Fp can be computed by c = a− b (mod p) =

(a− b) + borrow · 2127 − borrow · 5997, where borrow = 0 if a ≥ b, otherwise, borrow = 1. Addition
with borrow · 2127 can be implemented by clearing the 128-th bit of a− b.
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4.2. Modular Reduction

To use primes of a special form may result in a faster reduction method [31]. The NIST
recommends five primes for the elliptic curve digital signature algorithm (ECDSA). These primes can
be represented as the sums or differences of powers of two and facilitate the fast reduction method.
The curve Ted127-glv4 uses a Mersenne-like prime of the form p = 2127 − 5997. Therefore, modular
reduction can be efficiently computed by using a NIST-like reduction method [16]. Let 0 ≤ a, b ≤
p = 2127 − 5997. We compute c = a · b = 2128ch + cl , where 0 ≤ ch, cl < 2128. The first reduction
step can be computed by c′ ≡ cl + 2 · 5997 · ch. Then, the second reduction step can be computed by
c′ ≡ 2127Rh + Rl ≡ Rl + 5997 · Rh (mod p), where Rl , 5997 · Rh < 2127.

4.3. Inversion over Fp

For the field inversion a−1 (mod p), we use the fact that a−1 = ap−2 (mod p) in Fermat’s little
theorem (in our case, ap−2 (mod p) = a2127−5999 (mod p)). This method can be implemented by
modular exponentiation using fixed addition chains and guarantees constant-time execution requiring
13M1 + 126S1 operations.

4.4. Field Arithmetic over Fp2

The incomplete reduction method proposed by Yanık et al. [32] is one of the optimization methods
in field arithmetic over Fp2 . Given two elements a, b ∈ [0, p − 1], the result of operations stays in
the range [0, 2m − 1], where p < 2m < 2p− 1 and m is a fixed integer (in our case, m = 128). Because
the modulus of curve Ted127-glv4 is a Mersenne-like prime of the form p = 2127− 5997, the incomplete
reduction method can be applied more advantageously.

Let a = a0 + a1i and b = b0 + b1i be two arbitrary elements in a finite field Fp2 . Field addition and
subtraction over Fp2 can be computed by a + b = (a0 + b0) + (a1 + b1)i and a− b = (a0 − b0) + (a1 −
b1)i, respectively. Field inversion over Fp2 can be computed by a−1 = (a0 − a1i)/(a2

0 + a2
1).

We utilize Karatsuba multiplication to compute field multiplication over Fp2 . The Karatsuba
multiplication uses the fact that a · b = (a0 + a1i)(b0 + b1i) = (a0b0 − a1b1) + {(a0 + a1)(b0 + b1)−
a0b0 − a1b1}i, which can be computed by 3M1 + 3A1 + 2Ai operations. It requires 1A1 + 2Ai
more operations but saves 1M1 operations compared to general multiplication methods, which
require 4M1 + 2A1 operations. Because field multiplication requires more computational cost than
the multi-precision addition and field addition, the Karatsuba multiplication has a computational
advantage. Algorithm 2 describes field multiplication over Fp2 using the Karatsuba multiplication and
the incomplete reduction method.

Algorithm 3 describes field squaring over Fp2 using the incomplete reduction method. Note that
a2 = (a2

0 − a2
1) + 2a0a1i = (a0 + a1)(a0 − a1) + 2a0a1i. The first representation can be computed

by 1M1 + 2S1 + 1A1 + 1Ai operations, and the remaining representation can be computed by
2M1 + 1A1 + 2Ai operations. Because 1M1 operation can be implemented faster than 2S2 operations,
we use 2M1 + 1A1 + 2Ai operations to compute field squaring over Fp2 . The results of steps 3 and 4 in
Algorithm 2 and steps 1 and 3 in Algorithm 3 were represented by the incompletely reduced form.
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Algorithm 2: Field multiplication over Fp2 [25].

Require: a = a0 + a1i, b = b0 + b1i ∈ Fp2 , p = 2127 − 5997.
Ensure: c = a · b = c0 + c1i ∈ Fp2 .

1: t1 ← a0 × b0 (mod p) {M1}
2: t2 ← a1 × b1 (mod p) {M1}
3: t3 ← a0 + a1 {Ai}
4: c1 ← b0 + b1 {Ai}
5: c1 ← c1 × t3 (mod p) {M1}
6: c1 ← c1 − t1 (mod p) {A1}
7: c1 ← c1 − t2 (mod p) {A1}
8: c0 ← t1 − t2 (mod p) {A1}
9: return c.

Algorithm 3: Field squaring over Fp2 [25].

Require: a = a0 + a1i ∈ Fp2 , p = 2127 − 5997.
Ensure: c = a2 = c0 + c1i ∈ Fp2 .

1: t1 ← a0 + a1 {Ai}
2: t2 ← a0 − a1 (mod p) {A1}
3: t3 ← a0 + a0 {Ai}
4: c0 ← t1 × t2 (mod p) {M1}
5: c1 ← t3 × a1 (mod p) {M1}
6: return c.

4.5. Optimization Strategy on 8-Bit AVR

The AVR processor is a family of 8-bit microcontrollers that is widely used in MICA2/MICAz
sensor motes. The AVR processors are equipped with an 8-bit integer multiplier and register file
with 32×8-bit general registers that are numbered from R0 to R31. Registers R26 : R27, R28 : R29,
and R30 : R31 pairs are used as 16-bit indirect address registers called X, Y, and Z. The automatic
increment and decrement addressing modes are supported on all X, Y, and Z registers, and Y and
Z support fixed positive displacement. R0 and R1 registers store the 16-bit results of 8 × 8-bit
multiplication. The AVR processors provide a typical 8-bit reduced instruction set computer (RISC)
instruction set. The most important instructions for ECC are 8× 8-bit multiplication (MUL) and memory
access (LD, ST) instructions, which require two cycles. Instructions between two registers, such as
addition (ADD, ADC) or subtraction (SUB, SBC), require only one cycle. Therefore, the basic optimization
strategy on 8-bit AVR is reducing the number of memory access instructions.

To simulate our implementations, we targeted the ATxmega256A3 processor [33]. This processor
can be clocked up to 32 MHz and provides 256 KB of programmable flash memory, 16 KB of SRAM,
and 4 KB of EEPROM.

Recently, Hutter and Schwabe [34] proposed a highly optimized Karatsuba multiplication for
the 8-bit AVR processor. There are two variants of the Karatsuba multiplication method: the additive
Karatsuba and subtractive Karatsuba methods. Algorithm 4 outlines the subtractive Karatsuba
multiplication. We consider n × n-bit multiplication, where n is even and k = n/2 (in our case,
n = 128 and k = 64). The additive Karatsuba method can be computed similarly to Algorithm 4.
However, the additive Karatsuba method may produce the carry bits in the addition of two numbers
(al + ah) and (bl + bh). The additional multiplication using the carry bits incurs a significant
overhead for integer multiplication. The subtractive Karatsuba method does not produce carry bits in
the computation of M, but computes two absolute values |al − ah| and |bl − bh|. This overhead is not
only smaller than the overhead required for the additive Karatsuba method, but can also be executed
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in constant-time. Therefore, we chose and implemented the subtractive Karatsuba multiplication for
the 8-bit AVR implementation.

Algorithm 4: Subtractive Karatsuba multiplication [34].

Require: a = 2kah + al , b = 2kbh + bl ∈ Fp for k-bit integers al , ah, bl , and bh.
Ensure: c = a · b.

1: Compute L = al · bl
2: Compute H = ah · bh
3: Compute M = |al − ah| · |bl − bh|
4: Set t = 0, if M = (al − ah) · (bl − bh), t = 1 otherwise
5: Compute M̂ = (−1)t M = (al − ah) · (bl − bh)
6: c = A · B = L + 2k(L + H − M̂) + 2n H
7: return c.

For integer squaring, we chose the sliding block doubling (SBD) method [35], which is more
efficient than the subtractive Karatsuba method in the case of 128-bit operands on 8-bit AVR.
To improve the performance of field arithmetic, we combined integer multiplication and squaring with
modular reduction.

4.6. Optimization Strategy on 16-Bit MSP430X

The MSP430X processor was designed as an ultra-low power microcontroller based on the 16-bit
RISC CPU. The MSP430X CPU has 16 20-bit registers that are numbered from R0 to R15. Registers R0
to R3 are special-purpose registers that are used as the program counter, stack pointer, status register,
and constant generator, respectively. Registers R4 to R15 are general-purpose registers that are used to
store data values, address pointers, and index values.

The MSP430X instruction set does not include multiply and multiply-and-accumulate (MAC)
instructions. Instead, the MSP430 family is equipped with a memory-mapped hardware multiplier.
The hardware multiplier provides four different multiply operations (unsigned multiplication,
signed multiplication, unsigned multiplication and accumulation, and signed multiplication and
accumulation) for the first operand, called MPY, MPYS, MAC, and MACS. The second operand register is
common to all multiplier modes, called OP2. Namely, the first operand determines the operation type
of the multiplier, but does not start the operation. Writing the second operand to the OP2 register starts
the selected multiplication with two values. The multiplication result is written in three result registers
RESLO, RESHI, and SUMEXT. RESLO stores the lower 16-bit of the result, RESHI stores the upper 16-bit of
the result, and SUMEXT stores the carry bit or sign of the result.

The MSP430X processor provides seven addressing modes for the source operand and four
addressing modes for the destination operand. The total computation time depends on the instruction
format and the addressing modes for the operand. Instructions between two CPU registers only
require one cycle. However, memory access instruction (MOV) requires two to six cycles depending
on addressing modes of operands. To improve the performance of field arithmetic, reducing
the number of memory access instructions and efficiently utilizing MAC operations are the basic
optimization strategies.

In our implementations, we targeted the MSP430FR5969 processor [36]. This processor is equipped
with 64 KB of program flash memory and 2 KB of RAM and can be clocked up to 16 MHz.

For integer multiplication on 16-bit MSP430X processor, we chose and implemented the product
scanning multiplication. Algorithm 5 outlines the product scanning method for multi-precision
multiplication. The first loop in Algorithm 5 computes the lower half of the multiplication result c,
and the second loop computes the upper half of the result c. It accumulates partial multiplications of
the inner loop aj × bi−j and these operations can be efficiently computed using the MAC operations of
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the hardware multiplier. Specifically, two 16-bit operands are multiplied and the results are added to
the intermediate value s, which is held in RESLO, RESHI, and SUMEXT.

In FourQ [24], integer squaring was implemented using the SBD method [35]. We utilize
the product scanning method for 128-bit integer squaring on 16-bit MSP430X. It can be easily
implemented by modifying the product scanning multiplication. Additionally, this method results
in better performance than the SBD method in FourQ. The implementation results can be found in
Section 6.2.

Algorithm 5: Product scanning multiplication.
Require: a = (am−1, · · · , a0), b = (bm−1, · · · , b0) ∈ Fp.
Ensure: c = a · b = (c2m−1, · · · c0).

1: s← 0
2: for i from 0 to m− 1 do

3: for j from 0 to i do

4: s← s + aj · bi−j
5: end for
6: ci ← s (mod 2w)
7: s← s/2w

8: end for
9: for i from m to 2m− 2 do

10: for j from i−m + 1 to m− 1 do

11: s← s + aj · bi−j
12: end for
13: ci ← s (mod 2w)
14: s← s/2w

15: end for
16: c2m−1 ← s (mod 2w)
17: return c = (c2m−1, · · · , c0).

4.7. Optimization Strategy on 32-Bit ARM

The ARM Cortex-M is a family of 32-bit RISC ARM processors for microcontrollers. The Cortex-M4
processor is a high-performance Cortex-M processor with digital signal processing (DSP), SIMD,
and MAC instructions. It based on the ARMv7-M architecture and equipped with 16 32-bit general
registers that are numbered from R0 to R15. Registers R13 to R15 are special-purpose registers
that are used for the stack pointer (SP), link register (LR), and program counter (PC), respectively.
The Cortex-M4 instruction set provides multiply and MAC instructions, such as UMULL, UMLAL,
and UMAAL. The UMULL instruction multiplies two unsigned 32-bit operands to obtain a 64-bit result.
The UMLAL and UMAAL instructions multiply two unsigned 32-bit operands and accumulate a single
64-bit value and two 32-bit values.

In our implementations, we used the STM32F407-DISC1 board, which contains a 32-bit ARM
Cortex-M4 STM32F407VGT6 microcontroller [37]. This microcontroller is equipped with 1 MB of flash
memory, 192 KB of SRAM, and 64 KB of core-coupled memory (CCM) data RAM and can be clocked
up to 168 MHz.

For integer multiplication and squaring, we implemented the operand scanning method by using
efficient MAC operations. Additionally, these MAC operations facilitate an efficient implementation of
modular reduction. The first reduction computes c′ ≡ cl + 2 · 5997 · ch, where 0 ≤ ch, cl < 2128.
For example, the intermediate values ch are loaded in R9 to R12 and cl are loaded in R5 to R8.
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The constant 11994 = 2 · 5997 is loaded in R3 and 0 is loaded in R4. The computation c′ ≡ cl + 2 · 5997 · ch
is performed as follows:

MOV R3, #11994,

MOV R4, #0,

UMLAL R5, R4, R3, R9,

UMAAL R4, R6, R3, R10,

UMAAL R6, R7, R3, R11,

UMAAL R7, R8, R3, R12.

The results of the first reduction c′ are held in (R5, R4, R6, R7, R8). The second reduction can be
computed using simple multiplication (MUL) and addition (ADD, ADC) instructions.

For the further improvement of field arithmetic, we implemented field arithmetic over Fp2 at
the assembly level [24,38]. In the case of field multiplication over Fp2 , we utilized the operand scanning
multiplication with a lazy reduction method. This operation computes a · b = (a0 + a1i)(b0 + b1i) =
(a0b0 − a1b1) + (a0b1 + a1b0)i, where a = a0 + a1i, b = b0 + b1i ∈ Fp2 . The operand scanning method
results in better performance than the Karatsuba multiplication in our case. The field squaring over
Fp2 is implemented using a2 = (a0 + a1)(a0 − a1) + 2a0a1i at the assembly level.

5. Implementation Details of Curve Arithmetic

In this section, we describe the scalar decomposition and curve arithmetic that are commonly
used on three target platforms. Section 5.1 describes the scalar decomposition and recoding methods
for multi-scalars. The details of point arithmetic, coordinate system, and endomorphisms are described
in Sections 5.2 and 5.3.

5.1. Scalar Decomposition

In this subsection, we describe the scalar decomposition method for a random integer k ∈ [1, r]
and corresponding multi-scalars (k0, k1, k2, k3) ∈ Z4 such that k ≡ k0 + k1φ + k2ψ + k3ψφ as
max(ki) < Cr1/4 for 0 ≤ i ≤ 3 and some explicit constant C > 0. We assume that φ ≡ λ (mod r) and
ψ ≡ µ (mod r). Let F be a four-dimensional GLV-GLS reduction map defined by

F : Z4 → Z/n,

(k0, k1, k2, k3) 7→ k0 + k1λ + k2µ + k3λµ (mod r).

Let B = (b0, b1, b2, b3) be a 4× 4 matrix consisting of four linearly independent vectors with
maxi |bi| ≤ Cr1/4. Then, for any k ∈ [1, r− 1], the decomposition method computes (α0, α1, α2, α3) ∈ Q4

and computes the multi-scalars

(k0, k1, k2, k3) = (k, 0, 0, 0)−
3

∑
i=0
dαic · bi,

where d c represents a rounding operation. There are two typical methods for decomposing a scalar:
the Babai rounding method [39] and division in a ring Z[φ] method, where φ is an efficiently
computable endomorphism [40]. In [14], lattice reduction algorithms based on Cornacchia’s algorithms
were proposed for finding a uniform basis. The first step is finding Cornacchia’s GCD in Z and
the second step is using the Cornacchia’s algorithm in Z[i]. We utilize these two algorithms to
find four linearly independent vectors b0, b1, b2, b3 ∈ kerF, where the rectangle norms < 51.5

√
2r1/4.

The coordinates of these vectors utilize the scalar decomposition. Additionally, the relationships of
four vectors can reduce the number of fixed constants. Two vectors b0 = (b0[0], b0[1], b0[2], b0[3]) and
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b1 = (b1[0], b1[1], b1[2], b1[3]) can represent the remaining vectors b2 = (−b0[2],−b0[3], b0[0], b0[1]) and
b3 = (−b1[2],−b1[3], b1[0], b1[1]).

Let Bi be the 4× 4 matrix formed by replacing bi in B with the vector (1, 0, 0, 0). We then define four
precomputed constants hi = det(Bi), where 0 ≤ i ≤ 3. The four-dimensional decomposition computes
αi = d k·hi

r c using four integer multiplication, four integer divisions, and four rounding operations. Bos et
al. [17] introduced an efficient rounding method for eliminating integer divisions. This method chooses
an integer m such that r < 2m, and precomputes the fixed constants li = d hi

r · 2mc. Then, αi can be
computed by d k·li

2m c, where the division by 2m can be computed by a shift operation. The four-dimensional
decomposition of a random scalar k using curve Ted127-glv4 can be computed as follows:

k0 = k− α0 · b0[0]− α1 · b1[0] + α2 · b0[2] + α3 · b1[2],

k1 =− α0 · b0[1]− α1 · b1[1] + α2 · b0[3] + α3 · b1[3],

k2 =− α0 · b0[2]− α1 · b1[2]− α2 · b0[0]− α3 · b1[0],

k3 =− α0 · b0[3]− α1 · b1[3]− α2 · b0[1]− α3 · b1[1].

However, Ref. [21] reported that this method yields the correct answer and d k·hi
r c − 1. They also

reported that a large size of m decreases the probability of a round-off error.
Because the multi-scalars (k0, k1, k2, k3) lie between −263 and 263, all coordinates are both positive

and negative. Signed multi-scalars require additional cost to compute scalar multiplication. Costello
and Longa [21] demonstrated the offset vectors such that all coordinates of the multi-scalars were
always positive to simplify scalar recoding. However, this odd-only scalar recoding method requires
that the first element k0 of the muli-scalars is always odd. For constant-time execution and odd-only
recoding, they found two offset vectors c1 and c2 such that (k0, k1, k2, k3) + c1 and (k0, k1, k2, k3) + c2

are valid decompositions of the scalar k and one of the two multi-scalars had a first element that
was odd. To utilize these methods for curve Ted127-glv4, we carefully chose two offset vectors
c1 = 2b0 + b1 − 3b2 − 4b3 and c2 = 3b0 + 2b1 − 3b2 − 2b3. The multi-scalars (k0, k1, k2, k3) + c1 and
(k0, k1, k2, k3) + c2 are valid decompositions of the scalar k. Finally, all four coordinates of the two
decompositions are positive and less than 265, and k0 in one of them is odd.

Because all coordinates of multi-scalars are less than 265, scalar decomposition and recoding
require more computational cost compared to FourQ-based implementation, which has coordinates
of multi-scalars less than 264. However, this additional cost is an extremely small portion of
the scalar multiplication.

5.2. Point Arithmetic

To enhance the performance of scalar multiplication, the selections of efficient point arithmetic
and coordinate system are one of the most crucial subjects. The extended Edwards coordinates of
the form (X : Y : Z : T) were proposed by Hisil et al., where T = XY/Z [30]. The extended
Edwards coordinates are an extended version of the homogeneous coordinates of the form (X : Y : Z).
The identity element is represented by (0 : 1 : 1 : 0) and the negative element of (X : Y : Z : T) is
represented by (−X : Y : Z : −T).

Hisil et al. [30] proposed dedicated addition and doubling formulas that are independent of
the curve parameter d. Given (X1 : Y1 : Z1 : T1) and (X2 : Y2 : Z2 : T2) of distinct points with Z1 6= 0
and Z2 6= 0, the ECADD operation (X3 : Y3 : Z3 : T3) = (X1 : Y1 : Z1 : T1) + (X2 : Y2 : Z2 : T2) can be
computed as follows:

X3 = (X1Y2 −Y1X2)(T1Z2 + Z1T2),

Y3 = (Y1Y2 + aX1X2)(T1Z2 − Z1T2),

Z3 = (T1Z2 − Z1T2)(T1Z2 − Z1T2),

T3 = (Y1Y2 + aX1X2)(X1Y2 −Y1X2).
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Similarly, given (X1 : Y1 : Z1 : T1) with Z1 6= 0, the ECDBL operation (X3 : Y3 : Z3 : T3) = 2(X1 :
Y1 : Z1 : T1) can be computed as follows:

X3 = 2X1Y1(2Z2
1 −Y2

1 − aX2
1),

Y3 = (Y2
1 + aX2

1)(Y
2
1 − aX2

1),

Z3 = 2X1Y1(Y2
1 − aX2

1),

T3 = (Y2
1 + aX2

1)(2Z2
1 −Y2

1 − aX2
1).

Hamburg [41] proposed extensible coordinates of the form (X : Y : Z : Ta : Tb), where
T = Ta · Tb. The final step of the ECADD and ECDBL operations using extended Edwards coordinates
computes T = Ta · Tb. However, the extensible coordinates store the coordinates T as Ta and Tb,
and compute T when required for point arithmetic. For the further improvement of the ECADD
operation, the precomputed point Q is represented in the form (X + Y, Y − X, 2Z, 2T) [25]. This
method eliminates two multiplication by 2 operations and two field additions over Fp compared to
the extended Edwards coordinates. In the case of the ECDBL operation, we utilize the transformation
2XY = (X +Y)2−X2−Y2 to reduce the number of multiplications. It can be computed by converting
one field multiplication and one field addition over Fp2 to one field squaring, two field subtractions
over Fp2 . Algorithms 6 and 7 describe the extensible coordinates of the ECADD and ECDBL operations
over Fp2 with a curve parameter a = −1, which require 8M2 + 6A2 and 3M2 + 4S2 + 6A2 operations,
respectively.

Algorithm 6: Twisted Edwards point addition over Fp2 .

Require: P = (X1, Y1, Z1, Ta, Tb) where T1 = Ta · Tb and Q = (X2 + Y2, Y2 − X2, 2Z2, 2T2).
Ensure: P + Q = (X3, Y3, Z3, Ta, Tb) where T3 = Ta · Tb.

1: t2 ← Ta × Tb {M2}
2: t2 ← t2 × 2Z2 {M2}
3: t1 ← 2T2 × Z1 {M2}
4: Ta ← t2 − t1 {A2}
5: Tb ← t2 + t1 {A2}
6: t2 ← X1 + Y1 {A2}
7: t2 ← (Y2 − X2)× t2 {M2}
8: t1 ← Y1 − X1 {A2}
9: t2 ← (X2 + Y2)× t1 {M2}

10: Z3 ← t1 − t2 {A2}
11: t1 ← t1 + t2 {A2}
12: X3 ← Tb × Z3 {M2}
13: Z3 ← t1 × Z3 {M2}
14: Y3 ← ta × t1 {M2}
15: return P + Q = (X3, Y3, Z3, Ta, Tb) where T = Ta · Tb.

To demonstrate the efficiency of the twisted Edwards curves, we compare it to the cost of a
short Weierstrass elliptic curve. The ECADD and ECDBL operations of a short Weierstrass curve
of the form y2 = x3 + ax + b over Fp2 using Jacobian coordinates require 11M2 + 5S2 + 9A2 and
1M2 + 8S2 + 10A2 + 1Md operations. The ECADD operation of the twisted Edwards curve using
extensible coordinates saves 3M2 + 5S2 + 3A2 operations. The ECDBL operation requires 2M2

additional operations but saves 4S2 + 5A2 + 1Md operations. Therefore, the twisted Edwards curves
using extensible coordinates have a computational advantage compared to short Weierstrass curves
using Jacobian coordinates.
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Algorithm 7: Twisted Edwards point doubling over Fp2 .

Require: P = (X1, Y1, Z1).
Ensure: 2P = (X3, Y3, Z3, Ta, Tb) where T3 = Ta · Tb.

1: t1 ← X2
1 {S2}

2: t2 ← Y2
1 {S2}

3: Tb ← t1 + t2 {A2}
4: Ta ← X1 + X1 {A2}
5: Ta ← T2

a {S2}
6: t1 ← t2 − T1 {A2}
7: t2 ← Z2

1 {S2}
8: Ta ← Ta − Tb {A2}
9: t2 ← t2 + t2 {A2}

10: t2 ← t2 − t1 {A2}
11: Y3 ← tb × t1 {M2}
12: X3 ← Ta × t2 {M2}
13: Z3 ← t1 × t2 {M2}
14: return 2P = (X3, Y3, Z3, Ta, Tb) where T3 = Ta · Tb.

5.3. Endomorphisms

In [25], the formulas for the endomorphisms φ and ψ are described. To reduce the number of
representation conversions, we represent the results of endomorphism operations using extensible
coordinates. Let P = (X1, Y1, Z1) be a point in curve Ted127-glv4 represented by homogeneous
projective coordinates. Then, φ(P) = (X2, Y2, Z2, Ta, Tb), where T = Ta · Tb can be computed as follows:

X2 = −X1(αY2
1 + θZ2

1)(σY2
1 − βZ2

1),

Y2 = 2Y1Z2
1(βY2

1 + γZ2
1),

Z2 = 2Y1Z2
1(σY2

1 − βZ2
1),

Ta = −X1(αY2
1 + θZ2

1),

Tb − (βY2
1 + γZ2

1),

where α = ζ3
8 + 2ζ2

8 + ζ8, θ = ζ3
8 − 2ζ2

8 + ζ8, σ = 2ζ3
8 + ζ2

8 − 1, γ = 2ζ3
8 − ζ2

8 + 1 and β = ζ2
8 − 1. We

also utilize the fixed values for curve Ted127-glv4 as follows:

ζ8 = 1 + Ai, σ = (A− 1) + (A + 1)i, θ = A + Bi,

α = A + 2i, γ = (A + 1) + (A− 1)i, β = B + 1 + i,

where A = 143485135153817520976780139629062568752 and B = 1701411834604692317316873037158840
99729. The endomorphism φ can be computed by using 11M2 + 2S2 + 5A2 or 7M2 + 1S2 + 5A2

operations in the case Z1 = 1.
Similarly, ψ(P) = (X2, Y2, Z2, Ta, Tb), where T2 = Ta · Tb can be computed as follows:

X2 = ζ8Xp
1 Yp

1 , Y2 = (Zp
1 )

2, Z2 = Yp
1 Zp

1 ,
Ta = ζ8Xp

1 , Tb = Zp
1 .

The endomorphism ψ can be computed using 3M2 + 1S2 + 1.5A2 or 2M2 + 1A2 operations in
the case Z1 = 1. Because the endomorphism ψ requires fewer operations than the endomorphism φ,
ψ(φ(P)) can be computed on the order of φ(P) with Z1 = 1 and ψ(φ(P)).
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6. Performance Analysis and Implementation Results

In this section, we analyze the operation counts and implementation results of variable-base
scalar multiplication using curve Ted127-glv4 on AVR (Microchip Technology Inc., Chandler, AZ,
USA), MSP430 (Texas Instruments, Dallas, TX, USA), and ARM (ARM holdings plc, Cambridge, UK)
processors. We performed simulations and evaluations using the IAR Embedded Workbench for AVR
6.80.7 (IAR systems, Uppsala, Sweden), IAR Embedded Workbench for MSP430 7.10.2 (IAR systems,
Uppsala, Sweden), and STM32F4-DISC1 board (STMicroelectronics, Geneva, Switzerland) with the IAR
Embedded Workbench for ARM 8.11.1 (IAR systems, Uppsala, Sweden). All implementations were set
to the medium optimization level.

6.1. Operation Counts

Tables 1 and 2 describe the operation counts of field arithmetic over Fp2 and their conversion into
field arithmetic over Fp for curve Ted127-glv4 and FourQ using Algorithm 1. Because both curves
support the four-dimensional decomposition, the operation counts for Algorithm 1 can be compared
step by step.

Table 1. The operation counts of curve Ted127-glv4 using field arithmetic over Fp2 and operation
counts for conversion into field arithmetic over Fp.

Operation
Ted127-glv4

I2 M2 S2 A2 M1 S1 A1 Ai

Compute
endomorphisms - 13 2 11.5 43 - 66 30

Precompute
lookup table - 63 - 70 189 - 329 140

Scalar
decomposition - - - - - - - -

Scalar
recoding - - - - - - - -

Main
computation - 715 260 848 2665 - 4101 1950

Normalization 1 2 - - 21 128 8 4

Total Cost 1 793 262 929.5 2918 128 4504 2124

Table 2. The operation counts of curve FourQ using field arithmetic over Fp2 and operation counts for
conversion into field arithmetic over Fp.

Operation
FourQ [21]

I2 M2 S2 A2 M1 S1 A1 Ai

Compute
endomorphisms - 73 27 59.5 273 - 365 200

Precompute
lookup table - 63 - 56 189 - 301 126

Scalar
decomposition - - - - - - - -

Scalar
recoding - - - - - - - -

Main
computation - 704 256 835 2,624 - 4038 1,920

Normalization 1 2 - - 18 128 8 4

Total Cost 1 842 283 950.5 3,104 128 4712 2,250
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Step 1 of Algorithm 1 computes three endomorphisms φ(P), ψ(P), and φ(ψ(P)), and requires
73M2 + 27S2 + 59.5A operations for FourQ and 13M2 + 2S2 + 11.5A2 operations for curve Ted127-glv4.
Step 2 requires seven ECADD operations, which require 49M2 + 28A2 operations for FourQ and
56M2 + 42A2 operations for curve Ted127-glv4. However, these outputs are all converted for faster
ECADD computations, which require 14M2 + 28A2 operations for FourQ and 7M2 + 28A2 operations
for curve Ted127-glv4. Steps 3 and 4 require only bit and integer operations for all positive scalar
decomposition and fixed-length recoding operations. Step 5 requires 1A2 operations for one point
negation and one table lookup, and a conversion to extensible coordinates (X, Y, Z, Ta, Tb) for the initial
point Q, which require 2A2 operations. Steps 6 to 9 require 64 ECDBL operations, 64 ECADD
operations, 64 point negations, and 64 table lookups for FourQ, and 65 ECDBL operations, 65 ECADD
operations, 65 point negations, and 65 table lookups for curve Ted127-glv4. The operation counts of
these steps are 704M2 + 256S2 + 835A2 for FourQ and 715M2 + 260S2 + 845A2 for curve Ted127-glv4.
Step 10 requires 1I2 + 2M2 operations for the normalization of the result point Q.

Variable-base scalar multiplication using the four-dimensional decomposition requires 1I2 +

842M2 + 283S2 + 950.5A2 operations for FourQ and 1I2 + 793M2 + 262S2 + 929.5A2 operations for
curve Ted127-glv4. The curve Ted127-glv4 requires 49M2 + 21S2 + 21A2 fewer operations than FourQ
because the endomorphisms in curve Ted127-glv4 are efficiently computable. However, the operation
counts of field inversion over Fp for FourQ and curve Ted127-glv4 are I1 = 10M1 + 126S1 and
I1 = 13M1 + 126S1, respectively. Therefore, we convert the operation counts of the field arithmetic
over Fp2 to the field arithmetic over Fp. Field arithmetic over Fp2 can be represented by field arithmetic
over Fp as follows:

I2 = 1I1 + 2M1 + 2S1 + 2A1, M2 = 3M1 + 3A1 + 2Ai,

S2 = 2M1 + 1A1 + 2Ai, A2 = 2A1.

The operation counts 1I2 + 842M2 + 283S2 + 950.5A2 can be represented by 3104M1 + 128S1 +

4712A1 + 2250Ai for FourQ and 1I2 + 793M2 + 262S2 + 929.5A2 can be represented by 2918M1 +

128S1 + 4504A1 + 2124Ai for curve Ted127-glv4. The scalar multiplication using curve Ted127-glv4
saves 186M1 + 208A1 + 126Ai operations compared to FourQ-based scalar multiplication. Therefore,
we can deduce that the four-dimensional scalar multiplication using curve Ted127-glv4 can be faster
than FourQ-based implementation when field arithmetic is efficiently implemented.

6.2. Implementation Results of Field Arithmetic

Table 3 lists how many cycles are used for field arithmetic over Fp and Fp2 on AVR, MSP430,
and ARM processors, including function call overhead. The field inversions Fp and Fp2 are the average
cycles performed 104 times and remaining the field arithmetic is the average cycles performed 107 times.
To evaluate the implementation of field arithmetic for curve Ted127-glv4, we compare the number
of cycles for its implementation with FourQ, which provides the fastest implementation results to
date [24].

We will now compare the number of cycles for field arithmetic on 8-bit AVR processor. The field
arithmetic over Fp for curve Ted127-glv4 on 8-bit AVR requires 198, 196, 1221, 1796, and 176,901
cycles to compute addition, subtraction, squaring, multiplication, and inversion over Fp, respectively.
Similarly, the field arithmetic for FourQ on AVR requires 155, 159, 1026, 1598, and 150,535 cycles to
compute field addition, subtraction, squaring, multiplication, and inversion over Fp, respectively.
The curve Ted127-glv4 requires 43, 37, 195, 198, and 26,366 more cycles than FourQ for these operations,
respectively. The field arithmetic over Fp2 for curve Ted127-glv4 requires 452, 448, 4093, 6277,
and 183,345 cycles to compute field addition, subtraction, squaring, multiplication, and inversion over
Fp2 , respectively. These same operations for FourQ require 384, 385, 3622, 5758, and 156,171 cycles,
respectively. The curve Ted127-glv4 requires 68, 63, 471, 519, and 27,174 more cycles than FourQ for
these operations, respectively.
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Table 3. Cycle counts for field arithmetic on 8-bit AVR, 16-bit MSP430, and 32-bit ARM processors,
including function call overhead.

Operation
8-Bit AVR 16-Bit MSP430 32-Bit ARM

Ted127-glv4
(This Work) FourQ [24] Ted127-glv4

(This Work) FourQ [24] Ted127-glv4
(This Work) FourQ [24]

Fp

Add 198 155 120 102 55 n/a
Sub 196 159 126 101 55 n/a
Sqr 1221 1026 837 927 88 n/a
Mul 1796 1598 1087 1027 99 n/a
Inv 176,901 150,535 119,629 131,819 12,135 n/a

Fp2

Add 452 384 266 233 82 84
Sub 448 385 278 231 82 86
Sqr 4093 3622 2476 2391 195 215
Mul 6277 5758 3806 3624 341 358
Inv 183,345 156,171 123,740 135,315 12,612 21,056

In the case of the 16-bit MSP430X processor, field arithmetic over Fp for curve Ted127-glv4
requires 120, 126, 837, 1087, and 119,629 cycles to compute field addition, subtraction, squaring,
multiplication, and inversion over Fp. The same operations for FourQ requires 102, 101, 927, 1027,
and 131,819 cycles, respectively. The curve Ted127-glv4 requires 18, 25, and 60 more cycles than FourQ
to compute addition, subtraction, and multiplication, respectively. However, it saves 90 and 12,190
cycles than FourQ to compute squaring and inversion over Fp, respectively. The field arithmetic over
Fp2 for curve Ted127-glv4 requires 266, 278, 2476, 3806, and 123,740 cycles to compute field addition,
subtraction, squaring, multiplication, and inversion over Fp2 , respectively. These operations for FourQ
require 233, 231, 2391, 3624, and 135,315 cycles, respectively. The curve Ted127-glv4 requires 33, 47,
85, and 182 more cycles than FourQ to compute addition, subtraction, squaring, and multiplication,
respectively. It saves 11,575 cycles than FourQ to compute inversion over Fp2 .

In the 32-bit ARM Cortex-M4 processor, field arithmetic for curve Ted127-glv4 requires 55, 55, 88,
99, and 12,135 cycles to compute field addition, subtraction, squaring, multiplication, and inversion
over Fp, respectively. However, Ref. [24] does not report the implementation results of field arithmetic
over Fp. The field arithmetic over Fp2 for curve Ted127-glv4 requires 82, 82, 196, 341, and 12,612 cycles
to compute field addition, subtraction, squaring, multiplication, and inversion over Fp2 , respectively.
These operations for FourQ require 84, 86, 215, 358, and 21,056 cycles, respectively. The curve
Ted127-glv4 saves 2, 4, 20, 17, and 8444 cycles than FourQ to compute addition, subtraction, squaring,
multiplication, and inversion over Fp2 , respectively.

One can see that the field arithmetic over Fp in FourQ on AVR and MSP430 is typically faster
than curve Ted127-glv4. This difference occurs because the primes of both curves are different,
with a Mersenne prime of the form p = 2127 − 1 in FourQ and a Mersenne-like prime of the form
p = 2127 − 5997 in curve Ted127-glv4. Let p = 2127 − δ, where δ is small. The modular reduction step
can be computed by c = ch · 2128 + cl ≡ cl + 2 · δ · ch (mod p). In this process, FourQ can be efficiently
computed using simple shift operations because δ = 1, but the curve Ted127-glv4 requires more
instructions because it uses multiplication by δ = 5997 = 0x176d. In the 8-bit AVR implementation,
0x176d can be represented by two 8-bit words as 0x17 and 0x6d. Therefore, the operation cl + 2 · δ · ch
(mod p) requires more 8 × 8-bit multiplications and accumulations. Unlike the AVR implementation,
0x176d can be represented by one word in the MSP430 and ARM CPUs. Additionally, these
CPUs provide efficient MAC instructions. Therefore, the modular reduction on MSP430 and ARM
implementations require fewer additional instructions than the AVR implementation.

In the case of the MSP430, field squaring over Fp in curve Ted127-glv4 is faster than in FourQ.
The field squaring over Fp in curve Ted127-glv4 requires 837 cycles, whereas FourQ requires 927 cycles.
Our implementation saves 9.71% of the cycles for field squaring over Fp compared to the SBD method,
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despite the modular reduction overhead. Additionally, the principal operation of inversion is field
squaring over Fp, our implementation saves 9.32% and 8.55% of the cycles for inversion over Fp and
Fp2 . For field squaring over Fp2 , field squaring over Fp is not required because it can be computed by
2M1 + 1A1 + 2Ai operations. Therefore, field squaring over Fp2 for Ted127-glv4 requires more cycles
than FourQ.

6.3. Implementation Results of Scalar Multiplication

Table 4 summarizes the implementation results of variable-base scalar multiplication compared
to the previous implementations on the 8-bit AVR, 16-bit MSP430, and 32-bit ARM processors.
We measured the average cycles for our variable-base scalar multiplication by running it 103 times
with random scalars k. For comparison, Table 4 includes the previous implementations that guarantee
constant-time execution. These were implemented using various elliptic curves, such as NIST
P-256 [42,43], Curve25519 [44–46], µKummer [47], and FourQ [24]. These curves are designed such
that the bit-length of the curve order is slightly smaller than 256-bit for efficient implementation.
NIST P-256 has a 256-bit curve order, but Curve25519, µKummer, FourQ, and curve Ted127-glv4
have 252-bit, 250-bit, 246-bit, and 251-bit curve orders, respectively. Therefore, these curves provide
approximately 128-bit security levels.

Table 4. Cycle counts and memory usage of variable-base scalar multiplication on 8-bit AVR, 16-bit
MSP430, 32-bit ARM processors.

Platform Implementations Bit-Length of
Curve Order

Cost
(Cycles)

Code Size
(Bytes)

Stack Usage
(Bytes)

AVR

NIST P-256 [43] 256 34,930,000 16,112 590 a

Curve25519 [48] 252 22,791,579 n/a 677
Curve25519 [45] 252 13,900,397 17,710 494
µKummer [47] 250 9,513,536 9490 99
FourQ [24] 246 6,561,500 n/a n/a
Ted127-glv4 (This work) 251 6,856,026 13,891 2539

MSP430

NIST P-256 [42] 256 23,973,000 n/a n/a
NIST P-256 [43] 256 22,170,000 8378 418 a

Curve25519 [44] 252 9,139,739 11,778 513
Curve25519 [45] 252 7,933,296 13,112 384
FourQ [24] 246 4,280,400 n/a n/a
Ted127-glv4 (This work) 251 4,158,453 9098 2568

ARM
Cortex-M4

Curve25519 [46] 252 1,423,667 3750 740
FourQ [24] 246 469,500 n/a n/a
Ted127-glv4 (This work) 251 447,836 7532 2792

a includes RAM and stack.

We will now summarize the implementation results of previous works on embedded devices
that provide approximately 128-bit security levels. Wenger and Werner [42] and Wenger et al. [43]
implemented the scalar multiplication using the NIST P-256 curve on various 16-bit microcontrollers
and 8-bit, 16-bit, and 32-bit microcontrollers. Hutter and Schwabe [48] implemented the NaCl library
on 8-bit AVR processor, which provides a Curve25519 scalar multiplication. Hinterwälder et al. [44]
implemented a Diffie–Hellman key exchange on MSP430X processor using 16-bit and 32-bit hardware
multipliers. In 2015, Düll et al. [45] implemented a Curve25519 scalar multiplication of on 8-bit, 16-bit,
and 32-bit microcontrollers. Renes et al. [47] implemented a Montgomery ladder scalar multiplication
on the Kummer surface of a genus 2 hyperelliptic curve on 8-bit AVR and 32-bit ARM Cortex-M0
processors. Faz-Hernández et al. [25] proposed an efficient implementation of the four-dimensional
GLV-GLS scalar multiplication using curve Ted127-glv4 on Intel and ARM processors.
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The implementation results of variable-base scalar multiplication set new speed records on
the 16-bit MSP430 and 32-bit ARM Cortex-M4 processors. Scalar multiplication using curve
Ted127-glv4 on AVR, MSP430, and ARM requires 6,856,026, 4,158,453, and 447,836 cycles, respectively.
Compared to the previous fastest implementation, namely FourQ [24], which require 6,561,500,
4,280,400, and 469,500 cycles on AVR, MSP430, and ARM, respectively, our implementation
requires 4.49% more cycles on AVR, but saves 2.85% and 4.61% cycles on MSP430X and ARM
processors, respectively. Compared to µKummer [47], which requires 9,513,536 cycles on AVR,
our implementation saves 27.93% cycles. It also saves 50.68% and 47.58% cycles than Düll et al.’s
Curve25519 implementation [45], which requires 13,900,397 and 7,933,296 cycles on AVR and MSP430,
respectively. It saves 69.92% cycles compared to the NaCl library [48], which requires 22,791,579 cycles
on AVR. It saves 54.50% cycles than Hinterwälder et al.’s Curve25519 implementation [44], which
requires 9,139,739 cycles on MSP430. Additionally, it saves 68.54% cycles compared to the method
in [46], which requires 1,423,667 cycles on the ARM Cortex-M4 processor.

The memory of embedded processors is very constrained, meaning the memory usage of various
implementations is important. In the case of the 8-bit AVR, µKummer [47] requires the lowest memory
usage in the recently proposed results, which requires 9490 bytes of code size and 99 bytes of stack
memories. Wenger et al.’s and Düll et al.’s implementations [43,45] require the lowest code size and
stack memories on MSP430, which require 8378 bytes of code size and 384 bytes of stack memories.
In the 32-bit ARM, Ref. [46] require 3750 bytes of code size and 740 bytes of stack memories. FourQ [24]
reported the memory usage of ECDH and signature operations, but did not report the memory usage
of single scalar multiplication. Our implementations for curve Ted127-glv4 requires 13,891, 9098,
and 7532 bytes of code size and 2539, 2568, and 2792 bytes of stack memories on AVR, MSP430, and
ARM Cortex-M4, respectively. FourQ and curve Ted127-glv4, which utilize the four-dimensional
decompositions, precompute eight points, meaning they require more stack memory than other
implementations. However, the performance of four-dimensional scalar multiplication is significantly
faster than other implementations.

7. Conclusions

In this paper, we presented the first constant-time implementations of four-dimensional GLV-GLS
scalar multiplication using curve Ted127-glv4 on 8-bit ATxmega256A3, 16-bit MSP430FR5969,
and 32-bit ARM Cortex-M4 processors. We also optimized the performance of internal algorithms in
scalar multiplication on three target processors. Our implementations for single scalar multiplication
on AVR require 4.49% more cycles than FourQ-based implementation, but save 2.85% and 4.61% cycles
on MSP430 and ARM Cortex-M4, respectively. Our analysis and implementation results demonstrate
that efficiently computable endomorphisms can accelerate scalar multiplication, even when using
prime numbers that provide inefficient field arithmetic. Our implementations highlight that the
four-dimensional GLV-GLS scalar multiplication using curve Ted127-glv4 is one of the suitable elliptic
curves for constructing ECC-based applications for resource-constrained embedded devices.
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