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Featured Application: Piezoresistive sensors, Torsional mirrors.

Abstract: The tensile strength of a silicon nanowire (SiNW) that had been integrated into a
silicon-on-insulator (SOI)-based microelectromechanical system (MEMS) device was measured
using electrostatic actuation and sensing. SiNWs of about 150 nm diameter and 5 µm length were
batch-fabricated into a 5-µm-thick SOI device layer. Since there was no interface between the SiNW
and the MEMS device and the alignment was perfect, the SiNW integration into an SOI-MEMS
was expected to be useful for developing highly sensitive biochemical sensors or highly reliable
torsional mirror devices. The SiNW was tensile tested using the electrostatic MEMS testing device.
The integration was achieved using a combination of anisotropic and an isotropic dry etching of
silicon, with an inductively coupled plasma reactive ion etching. A fabricated silicon beam of 800 nm
square was thinned by a sacrificial oxidation process. The tensile strength of the wire was 2.6–4.1 GPa,
which was comparable to that of microscale silicon MEMS structures. The reliability of such a thin
device was successfully verified for future applications of the device structures.
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1. Introduction

Micro-electro-mechanical systems (MEMS), which are devices with electrical circuits, mechanical
components, and electro-mechanical transducers, are now widely employed in various electrical
systems, including those in automobile, portable, amusement, environmental, or infrastructure
monitoring systems. The mechanical components in the conventional MEMS devices are only
micrometers in scale and are based on well-developed semiconductor microfabrication technologies.
Recently, for further miniaturization, higher performance, and more functionality, the integration
of nanoscale components into MEMS has been widely investigated. These are referred to as
nano-electro-mechanical systems (NEMS). The nano-carbons (graphene [1,2], carbon nanotubes [3,4],
and fullerene [5]), biomolecules (proteins [6], lipids [7,8], and nucleic acids [9,10]), and metal
nanoparticles [11,12] are examples of nanoscale components that have been integrated into MEMS or
microfluidic devices. They provide a new functionality, better sensitivity, and higher reliability.
However, there continues to be problems with the mechanical and electrical interfaces in their
integration with the microscale structures in MEMS devices.

Silicon nanowire (SiNW) is also a candidate as a nanoscale component for mechanical or
chemical sensing [13–19]. The piezoresistive strain gauge performs better when the dimensions
are reduced [16,17]. The higher surface-to-volume ratio provides a higher sensitivity to chemical

Appl. Sci. 2018, 8, 880; doi:10.3390/app8060880 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://www.mdpi.com/2076-3417/8/6/880?type=check_update&version=1
http://dx.doi.org/10.3390/app8060880
http://www.mdpi.com/journal/applsci


Appl. Sci. 2018, 8, 880 2 of 11

and biological sensing, which works as a molecular-sensitive field effect transistor [18,19]. One of
the merits of using silicon is its well-developed fabrication technology. We can easily fabricate a
nanowire on the substrate using nanoscale lithography and etching technology. However, creating a
freestanding nanowire on a device is still a challenge. The pick-and-place technique was employed for
the characterization of free-standing SiNWs fabricated using focused-ion-beam (FIB) processing [20,21],
however it is not compatible with large-scale fabrication. Local chemical vapor deposition (CVD)
growth has been used, but it requires an additional structure for heating and may not be compatible
with the device structures [18,22]. Multi-step deposition and etching with wafer bonding has also been
developed. The integration of MEMS and SiNW, using batch fabrication, has been achieved, however
the fabrication process is costly [19]. An integration process that uses a simple silicon-on-insulator
(SOI) wafer and standard process machines (deep reactive ion etching [DRIE]) is needed for low-cost
fabrication to be realized.

In this research, we have proposed a fabrication process for a free standing SiNW on a SOI
wafer, in which a SiNW of a few hundred micrometers in diameter is integrated into a device layer of
5 micrometers thickness. In the same device layer, the electrostatic transducers, which are responsible
for force actuation and displacement sensing, and for the mechanical components such as the mass
and springs, are integrated. The advantages of this process are as follows:

1. No interface between a MEMS device structure and a SiNW;
2. Perfect alignment; and
3. Free from a complicated and time-consuming assembly process.

For a technical demonstration and material properties characterization, a MEMS tensile testing device
for a SiNW of 100 nm thickness was fabricated and the tensile strength was measured in this research.

2. MEMS Tensile Testing Device with SiNW

A MEMS device for the tensile testing of SiNW was designed based on the device for a fullerene
thin film [5]. We set the target diameter at 100 nm, and the tensile force that was required for the
testing was estimated to be 30 µN, by assuming the tensile strength was 3 GPa. Upon performing a
tensile test, the parallel plate actuator on the top was actuated to apply a tensile load on the specimen.
The tensile force on the specimen was calculated by subtracting the restoring force of the supporting
beams from the electrostatic force that was generated by the parallel plate actuator. The force was much
higher than in our previous work, so we changed the electrostatic actuator from a comb drive type to
a parallel plate type, which generated a larger force. The capacitive displacement sensor was used
for the elongation measurement. The moving parts of both the actuator and sensor were supported
by four folded beams and three o-shaped beams, and they were connected to the moving end of the
SiNW. The schematic diagram and mask design of the device are shown in Figure 1 and the detailed
design is presented in the Supplementary Materials.
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Figure 1. Design of electrostatic tensile testing device. (a) Schematic diagram. Light blue parts indicate
the fixed regions; (b) mask design.
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3. Fabrication

The key point of the fabrication process was the integration of the SiNW fabrication steps into the
SOI-MEMS fabrication steps. As we employed an oxidation process to thin the SiNW in this research,
we should have deposited the metal pads after the thinning process. However, it was difficult to keep
the SiNW intact during the fabrication of the tensile testing structure. We started with the testing
device fabrication first, except for the pad formation, as well as a sacrificial release. After the nanowire
fabrication and thinning, aluminum pads were deposited using a stencil mask. The schematic diagram
of the fabrication process is given in Figure 2.
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Figure 2. Fabrication process flow. EB—electron beam; SiNW—silicon nanowire; PECVD—plasma
enhanced chemical vapor deposition; DRIE—deep reactive ion etching.

3.1. Device Structure

The process was started with a 4 inch SOI wafer, whose device layer was a 5 µm thick p-type,
heavily boron-doped silicon. The MEMS device structures were patterned with a photoresist
(OFPR-800LB, Tokyo-Ohka, Kawasaki, Japan) using a contact photolithography tool (PEM-800, Union
Optics, Tokyo, Japan). The device layer was etched using DRIE with the Bosch process (RIE-800iPB,
Samco, Kyoto, Japan). After the resist removal, an oxide layer of 600 nm was deposited using a plasma
enhanced chemical vapor deposition (PECVD) (MPX-CVD, SPP Technologies, Tokyo, Japan). The oxide
layer was used to protect the electrostatic tensile test device structure from oxidation, therefore, the
oxide was removed at the area where the SiNWs were fabricated. Then, the wafer was diced into 7 mm
square chips using a blade dicer (DAD322, Disco, Tokyo, Japan). After the fabrication of the SiNW
with the chips, a 600 nm thick aluminum film was deposited using an electron beam (EB) deposition.
The stencil mask was aligned to the chip with an accuracy of less than 100 µm, using a deposition zig.
Finally, the 2 µm thick buried oxide layer, as well as the passivation oxide layer, were etched using
vapor hydrofluoric acid (vapor HF), so as to release the MEMS structure.

3.2. SiNW Fabrication

Firstly, the window openings on the 7 mm square oxide-covered chip were created at the areas
where the SiNWs were going to be fabricated. The photoresist was used for masking and a buffered
hydrofluoric acid solution with surfactant (LAL-1000, Stella Chemifa, Osaka, Japan) was used for the
etching. Then, 800 nm wide tensile specimens were patterned using EB lithography (ELS-F125HS,
Elionix, Hachioji, Japan). The SiNWs of 800 nm square in the cross section were then fabricated using
the two step etching of the Bosch process and isotropic etching (Figure 3).

The SiNWs were thinned using oxidation thinning. We also tried to fabricate 100 nm wide
and thick SiNWs using a 100 nm wide mask pattern and dry etching [23]. However, the thickness
control was difficult and the side surfaces were rough, which meant that the tensile strength was low.
Therefore, we employed a combination of dry etching and oxide thinning in this work. In the oxidation
thinning of the silicon nanowire, it was known that the oxidation process was suppressed by stress so
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as to limit the thinness of the wire [24]. However, in this research, this self-limiting process was not
used to obtain a thinner wire. The device chip was oxidized, using a furnace, (MILA-5000, Advance
Riko, Yokohama, Japan) at 1100 ◦C in dry oxygen, in which the self-limiting did not occur [25]. In order
to control the diameter of the SiNW, the oxidation process was repeated twice in some conditions. In
that case, the oxide layer was removed by a vapor HF etching between the oxidations.
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Figure 3. SiNW fabrication process. For further thinning, steps (e,f) are repeated twice.

4. Measurement Procedure

The fabricated chips were mounted on 28-pin dual-in-line packages (DIPs). Wire bonding using
aluminum wires was utilized for the electrical connections. The circuit diagram for tensile testing is
shown in Figure 4. A multi-axis capacitive accelerometer interface integrated circuit (IC) (AT-1006,
ACT-LSI, Atsugi, Japan) was used for capacitance detection at the differential capacitance of the
displacement sensor. The sensitivity of the IC was 150 V/pF at its maximum. The actuation voltage
was applied with consideration of the bias voltage for the capacitance detection. The moving part was
biased at 2.5 V by the capacitance amplifier.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  4 of 11 

Advance Riko, Yokohama, Japan) at 1100 °C in dry oxygen, in which the self-limiting did not occur 

[25]. In order to control the diameter of the SiNW, the oxidation process was repeated twice in some 

conditions. In that case, the oxide layer was removed by a vapor HF etching between the oxidations. 

 

Figure 3. SiNW fabrication process. For further thinning, steps (e,f) are repeated twice.  

4. Measurement Procedure 

The fabricated chips were mounted on 28-pin dual-in-line packages (DIPs). Wire bonding using 

aluminum wires was utilized for the electrical connections. The circuit diagram for tensile testing is 

shown in Figure 4. A multi-axis capacitive accelerometer interface integrated circuit (IC) (AT-1006, 

ACT-LSI, Atsugi, Japan) was used for capacitance detection at the differential capacitance of the 

displacement sensor. The sensitivity of the IC was 150 V/pF at its maximum. The actuation voltage 

was applied with consideration of the bias voltage for the capacitance detection. The moving part 

was biased at 2.5 V by the capacitance amplifier. 

 

Figure 4. Tensile test circuit setup. The common input of interface integrated circuit (IC) is biased at 

2.5 V, which is half of the power supply. The actuation voltage has an offset of 2.5 V. 

The tensile testing was conducted first. The voltage at the parallel plate actuator was slowly 

increased from 2.5 V until the output of the displacement sensor was jumped up and saturated. The 

saturation indicated a pull-in of the capacitances at the displacement sensor, which was caused by 

the sudden fracture of the specimens. After checking the specimen’s fracture, the obtained voltage–

displacement curves were converted to stress–strain curves with the following calibration steps. The 

calibration was undertaken for each specimen because of the fabrication variation that has been 

described below. 

1.7μm

5 μm

800nm 800nm

2 μm

(b) Bosch process (c) Isotropic etching(a) EB lithography

Si

EB resist

SiO2

(d) Resist removal (e) Thermal oxidation (f) Oxide removal

Parallel plate actuator

Displacement sensor

SiNW

Pulse
Generator

C/V amp

Biased at 2.5V 5V

AT-1006

Vact

Figure 4. Tensile test circuit setup. The common input of interface integrated circuit (IC) is biased at
2.5 V, which is half of the power supply. The actuation voltage has an offset of 2.5 V.

The tensile testing was conducted first. The voltage at the parallel plate actuator was slowly
increased from 2.5 V until the output of the displacement sensor was jumped up and saturated.
The saturation indicated a pull-in of the capacitances at the displacement sensor, which was caused
by the sudden fracture of the specimens. After checking the specimen’s fracture, the obtained
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voltage–displacement curves were converted to stress–strain curves with the following calibration
steps. The calibration was undertaken for each specimen because of the fabrication variation that has
been described below.

Firstly, the displacement sensor was calibrated. The device was actuated again to measure
the voltage-capacitance relationships. The displacement sensitivity was calculated and the
voltage–displacement relationship was calculated with the observed maximum displacement, using
a digital microscope. The force that was applied on the specimen was calculated from the finite
element analysis that considered the shrinkage of the dimensions, which was caused by the oxidation
thinning process. The change in dimensions (width) was measured directly with a scanning electron
microscope. Finally, the tapered part at both ends of the specimen was taken into account in the
measured displacement. The tensile force–displacement curve was thus obtained. The tensile stress
was calculated from the measured width and thickness by assuming that the cross section was
ellipsoidal. The tensile strain was calculated by dividing the elongation with the initial length of the
test part.

5. Results

5.1. SiNW Device Fabrication

A fabricated tensile testing device with a free standing SiNW is shown in Figure 5. The parallel
plate electrostatic comb actuator and capacitive displacement sensor were in 5 µm thick structures, and
the SiNW was a few hundred nanometers thick. They were all made in the same device layer of the
SOI wafer. Table 1 lists the device design, process conditions for oxidation thinning, and the fabricated
width of the four devices that were used for the tensile testing. The width of the SiNWs ranged from
100–200 nm. As a result of the variation in the EB lithography, the width varied significantly and no
clear relationship to the oxidation time was observed. Therefore, the dimensions of the specimens
were measured using field emission scanning electron microscope (FESEM) observation and all of the
specimens are shown in Figure 6. The dimensions of the test device structures were also reduced by
oxidation thinning. The width of the beams was measured and the change from the designed width
was 330–480 nm, depending on the oxidation time, as listed in Table 1.
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Figure 6. Tensile-tested specimens. (Upper row) before testing. (Lower row) after fracture.

Table 1. Properties of tested specimens. Details on two types of device design are described in
the Supplemental Material. Specimen width and linewidth reduction in test device structures were
measured after oxidation.

Specimen A B C D

Device design type 1 type 2 type 2 type 1
First oxidation time (min) 480 360 360 360

Second oxidation time (min) - 40 30 40
Specimen width (nm) 188 128 103 142

Linewidth reduction (nm) 387 330 353 361

5.2. Tensile Testing

Figure 7 shows the calculated displacement against the voltage on the electrostatic actuator.
The specimens were fractured at 22–38 V. The summary of the test results is shown in Table 2. The
specimens after testing are shown in Figure 6. The center part of the specimen was missing. The
fracture surface of Specimen A is shown in Figure 8.
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Figure 7. Measured displacement of all of the specimens A–D against applied actuation voltage on
the electrostatic actuator. Specimens were fractured at the highest voltage of the plots. Fitting lines
indicate quadratic function.

Table 2. Summary of the tensile testing results.

Specimen A B C D

Displacement sensitivity (V/µm) 11.4 10.5 11.7 13.3
Voltage fractured (V) 35 23 38 22

Estimated stiffness of tapered part (N/m) 9452 4870 6375 6959
Stiffness of specimen (N/m) 742.4 268.5 590.5 285.8

Measured width (nm) 190 130 106 134
Measured thickness (nm) 152 61 206 60
Young’s modulus (GPa) 163.6 215.6 162.4 226.5
Tensile strength (GPa) 2.6 3.5 4.1 3.7
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Figure 8. Fracture surface of Specimen A.

The calibration test determined the displacement sensitivity as 10.5–13.3 V/µm, depending on
the actual dimensions of the testing device. Using the calculated stiffness of the tapered part of the
specimen, the force–displacement and stress–strain curves are plotted in Figure 9. The tensile strength
ranged from 2.6–4.1 GPa for four samples. All samples showed a brittle fracture and the center part
was missing on each of the fractures due to catastrophic fracture at high tensile strengths.
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Figure 9. (a) Force–displacement plots and (b) tensile stress–strain plots. Lines indicates linear fittings.
Note that fitting is done on a linear range (up to 80 nm displacement) for Specimen C.

6. Discussion

The dimensions of the testing device were reduced by about 350 nm. One of the reasons for
this was the oxidation thinning process. From the Deal–Groove model [26], the oxide thickness had
increased by 91 nm and 120 nm when the silicon that was covered with 800 nm oxide was oxidized
for 6 h and 8 h, in a dry oxidation process at 1100 ◦C, which consumed 42 nm and 56 nm of silicon,
respectively. The consumption of silicon during the second oxidation was not known, since the
remaining oxide thickness after stripping the oxide on the SiNWs was not controlled or measured.
Assuming that the remaining oxide thickness was 400 nm, considering the over-etching time in the
stripping, the consumption of the silicon layer was only a few nanometers. The rest of the difference
would have been caused by the lithography process.

The smaller width of the structure caused a larger gap between the parallel plates, which reduced
the electrostatic force and capacitance change. The electrostatic force reduced by 25% from the designed
value, which made the actuation voltage higher on testing. The displacement sensitivity was about
12 V/µm, which was smaller by 35%, because the initial gap was wider. The measured noise level
of the voltage output of the circuit was 10.3 mVrms, which corresponded to a displacement of 0.9 nm.
This was about 1% of the total displacement and it was sufficient for the experiments.
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The force–displacement curves of the test results showed good linearity up to an 80 nm
displacement. Then, nonlinearity was observed at larger displacements, which was likely as a result
of the nonlinearity of the electrostatic transducer. The electrostatic force of the parallel plate actuator
was proportional to the square of the voltage and inversely proportional to the square of the gap.
We have took into account this effect in the design, but we did not consider the effect of lateral bending
of the thin and long electrodes. The whole device structure was further analyzed using the finite
element analysis (CoventorWare, Coventor, Cary, NC, USA). There was bending of the electrode beams,
however, the capacitance change against the displacement showed a small nonlinearity, which did
not explain the voltage–displacement observed nonlinearity in the force–displacement relationship.
On the other hand, the voltage–displacement curve in Figure 10a indicates that the displacement did
not follow the square of the voltage at a displacement of more than 80 nm. At this displacement range,
we found that the device started to tilt around the tensile axis (Figure 10b) and that the force was
reduced as a result of the reduction of the overlapped area of the parallel plate electrostatic actuators.
Insufficient support at both sides of the device caused the tilt. Therefore, the force might have been
overestimated at the large displacement region. However, it was difficult to calculate the amount of
the overestimation in our measurement results, as the actual tilting angle might have been different
from the simulated results, because the rotation was unstable and might have changed.
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Figure 10. (a) Simulated displacement of the device with specimen C against the applied voltage. The
line plot is a fitting curve to the quadrature function. (b) Simulated deformation at 38 V. Displacement
is exaggerated by five times. The contour plot indicates z-axis (vertical) displacement.

Large deviations were seen in the slopes of the stress–strain curves, the main reason for which
was the thick non-uniformity of the SiNWs. As we can see in some of the specimens in Figure 6
and in the enlarged view of specimen A in Figure 11, the bottom of the SiNW had a large degree
of waviness and the calculated Young’s modulus showed a large deviation. The thickness of the
specimens was measured at the fracture surface and was the smallest in this specimen, which caused
the overestimation of stiffness. From the SEM image in Figure 6, the thickness variations ranged from
10 to 100%. For example, specimen A showed a uniform thickness and the measured Young’s modulus
agreed well with the theoretical value. On the other hand, specimen D showed a large variation in
thickness, which resulted in the larger value of the Young’s modulus. The reason for the waviness was
the uneven width of the EB resist pattern and the non-uniform opening width for the SiNW etching
process. Both of which had caused the thickness variation of the sidewall passivation layer during
the DRIE process, which resulted in a low controllability of the thickness dimensions. As mentioned
above, the thickness uniformity of the EB resist should have been improved by optimizing the coating
process, and the width of the openings near the specimen should have been revised.
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Figure 11. Enlarged view of specimen A before tensile testing.

The tensile strength was comparable to the microscale specimens [27], which we did not expect to
find. As a result of the surface oxidation process, the surface of the silicon would have been smoothed
of any roughness that was caused by patterning, such as the jagged edge of the EB resist and the
scallops that were generated in the Bosch process. The top surface was smooth (as seen in Figure 6),
whereas the side and bottom surfaces had a degree of roughness (as seen in Figure 12). The size of the
pit in these surfaces was about 10 nm, and it might have acted as the fracture origin [28]. The roughness
of the SF6 etching on the side and bottom surfaces was not removed by oxidation or oxide precipitation
during the oxidation thinning process. We needed to improve the process in order to obtain a higher
strength and better structural reliability for future applications.
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Figure 12. (a) Oblique and (b) bottom side views of a part of a specimen after tensile testing.

Through the fabrication and operation of the electrostatic MEMS tensile testing device with
integrated SiNW, we confirmed that the proposed fabrication process integrated a SiNW into the
micrometer scale Si MEMS structures, using a top down fabrication process. This process would
be useful for further miniaturization of sensors and actuators, such as those that are required for
piezoresistive sensors and torsional mirror devices.

7. Conclusions

The tensile testing of SiNWs batch-integrated into micrometer scale Si MEMS structures was
conducted using an electrostatic tensile testing device. SiNWs of about 100 nm in diameter and
5 µm in length were successfully fabricated into the 5 µm thick device layer of an SOI wafer, using a
combination of the Bosch process and isotropic undercut etching. In addition, a sacrificial oxidation
thinning process was used to control the diameter and remove the damage during the plasma etching
processes. The tensile strength was successfully measured as 2.6–4.1 GPa, which was comparable to
that of the microscale specimens and was adequate for the device applications, however, it needed to be
improved by reducing the roughness that was caused by the oxidation process and the non-uniformity
of the thickness.

Supplementary Materials: The details of the device design are available online at http://www.mdpi.com/
2076-3417/8/6/880/s1. Figure S1: Schematic of tensile testing device; Figure S2: Unit design of parallel
plate electrostatic actuator; Figure S3: Calculation of parallel drive actuator; Figure S4: Unit design capacitive
displacement sensor; Figure S5: Differential capacitance change of displacement sensor; Figure S6: Electrostatic
differential force generated by displacement senor; Figure S7: Type A spring; Figure S8: Type B spring; Table S1:
Design target values and specifications; Table S2: Design value of parallel drive actuator; Table S3: Design value of

http://www.mdpi.com/2076-3417/8/6/880/s1
http://www.mdpi.com/2076-3417/8/6/880/s1


Appl. Sci. 2018, 8, 880 10 of 11

displacement sensor; Table S4: Parameters of designed spring (Type A); Table S5: Parameters of designed spring
(Type B); Table S6: Spring constants.
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