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Abstract: The estimation of hourly electricity load consumption is highly important for planning
short-term supply—-demand equilibrium in sources and facilities. Studies of short-term load
forecasting in the literature are categorized into two groups: classical conventional and artificial
intelligence-based methods. Artificial intelligence-based models, especially when using fuzzy
logic techniques, have more accurate load estimations when datasets include high uncertainty.
However, as the knowledge base—which is defined by expert insights and decisions—gets larger,
the load forecasting performance decreases. This study handles the problem that is caused by
the growing knowledge base, and improves the load forecasting performance of fuzzy models
through nature-inspired methods. The proposed models have been optimized by using ant colony
optimization and genetic algorithm (GA) techniques. The training and testing processes of the
proposed systems were performed on historical hourly load consumption and temperature data
collected between 2011 and 2014. The results show that the proposed models can sufficiently
improve the performance of hourly short-term load forecasting. The mean absolute percentage error
(MAPE) of the monthly minimum in the forecasting model, in terms of the forecasting accuracy,
is 3.9% (February 2014). The results show that the proposed methods make it possible to work with
large-scale rule bases in a more flexible estimation environment.

Keywords: short-term load forecasting; fuzzy logic; genetic algorithm; artificial intelligence; ant
colony optimization

1. Introduction

Electricity load forecasting has always had a significant position in relation to efficiently planning
and managing the operations of power systems [1]. Especially, estimating short-term load consumption
characteristics is critical in the maintenance, power production, and interchange of both power
generation and distribution facilities [2]. From the view of economic and natural aspects, accurate load
forecasting provides a chance to operate and generate electricity at a lower cost, and thus better protect
the natural environment.

Most of the techniques that are used for electricity generation need to use non-storable resources;
thus, planning and estimating demand-side changes are very important. There are several types of
methods that have been applied to find the best forecasting model [3]. Recent studies have shown
that load consumption patterns are highly related to exogenous factors such as weather conditions,
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temperature changes, and consumption time (working days, religious and official holidays, weekends,
etc.). Load consumption is also affected by economic or political fluctuations [4].

There are many types of methods that deal with the above-mentioned difficulties. These approaches
are divided into two individual categories: statistically-based traditional conventional methods,
and artificial intelligence-based nature-inspired methods.

Traditional statistic-based methods are based on the existence of a relationship between electricity
load consumption characteristic and exogenous factors [5]. Regression-based methods such as
autoregressive (AR) models, autoregressive moving average (ARMA) models, and autoregressive
integrated moving average (ARIMA) models are usually applied to make short-term load forecasting.
Regression-based models are those affected by calendar effective datasets, and the obtained results are
not promising at all [6]. Linear models are easier to use compared with regression-based models, but
these models produce higher forecast errors. Nonlinear forecast models give a higher forecast accuracy
than the linear models [7].

Swarm intelligence based and bio-inspired programming methods are glittering and have recently
been seen much more in the literature. Especially swarm intelligence based techniques such as ant colony
optimization (ACO), artificial bee colony (ABC), particle swarm optimization (PSO), cuckoo search
optimization (CSO), and firefly optimization (FO) are seen as having many advantages compared with
traditional solution methods. There are many different types of algorithms that have been used for
solving engineering problems in the literature, but there is no individual algorithm that presents an
exact solution for all [8]. Most of the algorithms mentioned before were used in the forecasting of
short-term load consumption. Several researchers have proposed different various forecasting models.

Hernandez et al. (2013) proposed artificial neural network (ANN)-based short-term load
forecasting model. They used historical load consumption data and exogenous factors such as air
temperature, average wind speed, wind direction, relative humidity, and pressure. They proposed
two-stage ANN forecasting models. The first stage consisted of data preparation, and the second stage
consisted of hourly-based load consumption forecasting. The proposed two-stage forecasting model
was succeeded with a 1.62% forecasting error [9]. Hassan et al. (2016) proposed a type-2 fuzzy logic
forecasting model by utilizing an extreme learning machine for electricity load forecasting. They used
an extreme learning strategy to find optimal fuzzy parameters, which were randomly defined at
an initializing phase. They used nonlinear datasets from the Australian National Electricity Market
for the Victoria region and the Ontario Electricity Market. The obtained results of their model were
compared with some traditional models such as neural networks and adaptive neuro-fuzzy models [10].
Hernandez et al. (2014) proposed load forecasting models in a microgrid environment. They used
two different datasets (Data Set A, Data Set B) in their ANN models. Their research was aimed at the
comparison and observation of the effects of solar radiation on energy consumption in a microgrid
environment [11]. Chatuverdi et al. (2015) used a generalized neural network model for short-term
load forecasting to deal with the disadvantages of neural networks such as deciding network size,
type, architecture, and long learning time. The proposed model was used to forecast an electricity
consumption amount of 15 MVA, 33/11 KV station in Dayalbagh Institute. They used weekday
data and a trained forecasting model [12]. Li et al. (2015) proposed a hybrid load forecasting model.
They used wavelet transform (WT) to feature extraction and define load frequency characteristic.
They also used the extreme learning machine (ELM) algorithm and the modified artificial bee colony
algorithm (MABC) for the global searching of input weights of ELM. Their presented model was
trained and tested with ISO New England and North American load datasets [13]. Abdoos et al. (2015)
presented a hybrid short-term load forecasting model. They used WT and Gram-Schmidt techniques
for data preparing and feature extraction. They proposed support vector machine (SVM)-based models
for both weekends and weekdays [14]. Koubhi et al. (2014) proposed an artificial neural network model
with an intelligent chaotic feature selection technique. The proposed feature selection technique was
used to obtain the best-input dataset, and candidate data was prepared with the taken embedded
theorem. Fitness values of the input dataset’s were calculated using correlation analysis. They used
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MLP (multi-layer perceptron) in the load-forecasting module [15]. Selakov et al. (2014) presented a PSO
and SVM-based short-term hybrid load forecasting model. They used historical weather information
with a load consumption dataset. The obtained results showed that the proposed model had given
highly accurate results with highly changeable temperature periods [16]. Li et al. (2014) proposed a
hybrid load forecasting model. The laws of quantum physics were employed in their quantum neural
network models, and used with the genetic algorithm (GA) to optimize and find the best sub-optimal
network structure. The results of the research showed that the HQENN (Hybrid Quantum Elman
Neural Network) model has an acceptable high accuracy, and might be used for short-term load
forecasting [17]. Mamlook et al. (2009) proposed a fuzzy logic short-term load forecasting model
using historical weather temperature and a load dataset [18]. Srinivasan et al. (1994) used a hybrid
neuro-fuzzy model for short-term load forecasting. They used fuzzy logic to obtain input information
for the neural network forecasting model. Historical load and weather temperature data were used for
training and testing the load forecasting model [19].

In Turkey, there a large number of studies aim to have the closest results in short-term load
forecasting. Yukseltan et al. (2017) published an article about forecasting the electricity demand of
Turkey. They developed an hourly demand forecasting method on annual, weekly, and daily horizons
using a linear model. Their model was based on sinusoidal variations, without using any climatic
or econometric information. Their proposed method was applied to the Turkish Power market data
for the period 2012-2014, and the daily and weekly electricity demand horizons were predicted [20].
Cevik et al. (2015) presented fuzzy logic short-term load forecasting models. They used fuzzy, adaptive
neuro-fuzzy, and hybrid models with historical weather temperature data, seasonal changes, and
historical load consumption datasets [21]. Esener et al. (2013) proposed an artificial intelligence-based
load forecasting method that used signal processing and artificial neural networks. Their dataset
was independent of historical weather condition influences and changes [22]. Demiroren et al. (2006)
presented an artificial neural network load forecasting model to predict the hourly load consumption
amount of the Middle Anatolian region. They used historical weather temperature and a load
consumption dataset, and the obtained results were compared with regression-based statistical
models [23]. Topalli et al. (2006) proposed Elman’s recurrent neural network model, and compared
their results with other recurrent intelligent architecture models [24].

To date, a considerable body of research has been sought to understand load consumption
characteristics. Previous research has demonstrated that several types of exogenous factors such as
weather conditions (air temperature, humidity, enlightenment time, etc.) or economic changes and
fluctuations directly affect hourly-based electricity consumption. This paper contributes to recent
literature on:

e  Flexible forecasting environments and conditions with independently chosen training dataset
period seasonal changes,

e Intelligent optimal knowledge base methods for modeling load fuzzy forecasting systems.

e  Hybrid load forecasting approaches that use genetic algorithm and ant colony optimization
methods with fuzzy logic techniques.

In this study, we present hybrid genetic ant colony-based fuzzy inference load consumption
forecasting models, which are composed of fuzzy logic and nature-inspired optimization methods.
One of the most important difficulties when developing a fuzzy logic-based forecasting model is
the complexity of defining an optimal rule base when the numbers for the input and membership
functions are getting larger. Both prediction models presented in the study use natural-inspired
methods and provide a more flexible working environment for the researcher while modeling the
forecasting system. The researcher can easily increase or decrease the number of the input-output
dataset sizes and membership functions without considering the size of the knowledge base.

The paper is organized as follows: Section 2 presents the output and input variables of
the forecasting model, the morphological content of the training and testing datasets, and the
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detailed forecasting model and nature-inspired optimization methods that will be used. In Section 3,
the experimental results of the proposed forecasting models and comparisons between real
consumption values and optimized results will be presented. Finally, in Section 4, the obtained
results will be discussed, and planned works will be explained.

2. Materials and Methods

In this study, we present hybrid genetic ant colony-based fuzzy inference, which is composed
of fuzzy logic and nature-inspired optimization methods. The ant colony rule-based optimization
module was used for exploration (global search), and the preselected rule set was obtained. The genetic
algorithm rule-based optimization module was used for exploitation (local search), and the best rule
set that was found in this phase was used. The fuzzy inference module was used with both ant colony
and genetic modules to get crisp hourly load consumption amounts. The general block diagram of the
proposed load forecasting model is seen in Figure 1.

Knowledge-Base Optimization

Genetic Algorithm Ant Colony

Rule Base oF Rule Base
Optimization Optimization
Module Module
Hourly Load l
Consumption
Value (MWh) i
[ Fuzzy Inference
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Figure 1. Hybrid genetic fuzzy and ant colony fuzzy short-term load consumption forecasting model
block diagram.

The proposed models were trained and tested with historical weather temperature and hourly
load consumption data obtained from National Load Dispatch Centre for the period between 2011
and 2014.

2.1. Data Set

The electricity load consumption amount generally follows a routine. However, there are usually
improbable changes and fluctuation. There may be countless reasons to explain these changes. Mostly,
these are temperature changes, calendar effects such as formal or religious holidays, and economic
and political fluctuation and crisis. The hourly-based electricity load consumption changes in 2013 are
shown in Figure 2.

In 2013, the maximum load consumption was 38,116 MWh, the minimum load consumption was
14,800 MWh, and the average load consumption was 28,003.08 MWh. The consumption values show
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that there is wide range of consumption characteristics in Turkey. The consumption records show that
in the summer and winter seasons, consumption values are higher compared with spring and autumn.
The highest consumption was recorded on 29 August as 38,116 MWh between 1 pm and 2 pm.

The electricity load consumption values of Turkey between 2011 and 2013 are visualized as black
and white images in Figure 3. The darker parts of the graphic are pointing out the lower consumption;
nevertheless, the brighter parts are pointing out the higher consumption values. There are two areas
that are darker than the others in all of the graphics; these show the religious holiday periods in
Turkey. Most of the government facilities and the private sector don’t work these days; thus, electricity
consumption is dramatically less than usual.

The graphics show us more valuable information about Turkey. The 2013 graphic that is shown in
Figure 3—c is generally darker than the other graphics, because there was an economic crisis in Turkey
in 2013. This economic crisis started to show its effects from the end of 2012, and all of these effects are
seen in Figure 3a—c.

Power [MW]

'] 1000 2000 3000 4000 5000 G000 7000 8000 S000)

Hours

Figure 2. The hourly-based day-ahead actual electricity consumption graphic of 2013.

BREEAE DiRRRARAAR

Figure 3. (a) Normalized (0-255) 24 x 365 hourly-based grayscale image of 2011; (b) normalized (0-255)
24 x 365 hourly-based grayscale image of 2012; (c) normalized (0-255) 24 x 365 hourly-based grayscale
image of 2013.

2.2. Last Day (Ldc)—Last Week (Lwc) Consumption

Daily electricity load consumption usually has a clear path, and studies show that there is a strong
and direct relationship between load consumption and temperature changes [21]. The hourly-based
day ahead normalized load consumption values in 2013 are seen in Figure 4.
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The daily electricity consumption pattern doesn’t change in a wide range. The load curves
follow similar consumption characteristics for each day; the rises and falls are mostly similar.
This consumption pattern is a useful indicator, and most of the researchers used these parameters in
their studies.

300 T T T T
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100 -

a 5 10 15 20 25
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Figure 4. Normalized (0-255) daily-based hourly electricity load consumption graphic for 2013.

2.2.1. Calculated Load Consumption (L,;)

Daily consumption changes are remarkable indicators, but it is not enough to have a flawless
load forecasting. The least squares method is the mathematical equation form that determines and
visualizes the relationship in the dataset. Each data reveals the relationship between the known
independent and unknown dependent variables.

The least square method was developed in the late 1700s, and is used for estimating the unknown
parameters between data and the model using squared deviations [25]. The least square method is
one of the best analytical techniques for extracting valuable information from the dataset [26]. In this
paper, day-ahead weekly load changes are used as forecasting parameters. A trend analysis for the
day-ahead consumption changes has been calculated using the following mathematical equations:

Least Square Load Trend Equation : L = a + bx; (1)
Lity XiYi — nxy

Slope: b= ="———+ 2

p ;1:1 xiz _ Tlfz ( )

Load Intercept: a =y — bx (©)]

In Equation (1), L denotes the estimated hourly electricity load consumption, a denotes the load
factor, b denotes the load slope, and x; denotes the period of load that will be estimated.

The calculated load curve (Lcar) using the least square method is another important input
parameter of the load forecasting system. Load estimation for 1 January 2012, using the data between
25 and 31 December 2011, is seen in Table 1. Each row of the data is the measured electricity load
consumption value for the same hour period (12:00 a.m. to 1:00 a.m.).

The relationship of the weekly-based hourly dataset was analyzed using the least square method,
and the load trend line was determined. The target load consumption value was calculated with the
equations mentioned above. The hourly load consumption data and calculated values for between
25 December 2011 and 1 January 2012 are seen in Figure 5.
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Table 1. 25 December 2011-31 December 2011 load consumption data.

Date Time Period (Distance) = Load Consumption (MWh) x2 X2y
25 December 2011 1 26,175 1 26,175
26 December 2011 2 24,386 4 97,544
27 December 2011 3 26,412 9 237,708
28 December 2011 4 26,493 16 423,888
29 December 2011 5 26,345 25 658,625
30 December 2011 6 26,463 36 952,668
31 December 2011 7 26,083 49 1,278,067
1 January 2012 26,595
27.000
26.500 o 34263 : = 95
26.000 \ ME
E 25.500 \ ,’f
E \
I::‘ 25.000 4"\‘ /
g \\ /
24.500 v
& 205
24.000
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Figure 5. Calculated electricity load using the least square method and trend line for the period
between 25 December 2011 and 1 January 2012.

2.2.2. Temperature Data Set (Teg)

The literature research shows that there is a very strong relationship between weather condition
changes and the electricity consumption amount. Temperature changes directly affect electricity
consumption [21]. The correlation between air temperature and load consumption for the period
between 1 and 4 April 2013 is given in Figure 6.

\
(( /\\/\\.

1357 9111315171921232527293133353739414345474951 535557 5961636567

— Nprrmilized Temperature m—Normalized Load Con

Figure 6. Comparison of normalized (0-1) hourly-based temperature and load consumption data
between 14 April 2013.
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Usually, there is a linear correlation between temperature and load consumption. When temperature
increases, load consumption increases synchronously. Temperature changes are crucial factors for
forecasting but are not the only indicators to use.

2.3. Fuzzy Inference System

Fuzzy logic has been one of the most commonly used methods for solving engineering problems
recently. Fuzzy logic methods are especially used for the planning, control, and production scheduling
of power systems, and system stability management. The fuzzy logic methods and control techniques
are very effective and powerful optimization tools that have many advantages, such as robustness and
an ease of implementing [27].

The fuzzy logic concept was introduced first by Zadeh in 1965 [28]. The fuzzy approach may be
briefly described as a generalized form of classical set theory. In classical set theory, every argument
must be classified in an individual set or not, and any element cannot be represented by the intersection
of sets. Contrary to the classical approach, in fuzzy theory, the degree of membership of an element may
continuously exist. Continuous data may be expressed with membership functions [29]. The Mamdani
inference model is a well-known and used fuzzy model.

The basic fuzzy logic inference system has four main blocks, which are seen in Figure 7.
The knowledge base block involves the rule base and database, which are generally created by
an expert or an optimization method. The fuzzier block is used for the transformation of crisp
values into linguistic terms. Linguistic terms with membership values are processed with knowledge
information in the inference module, and the results are sent to the defuzzifier (purification) module to
obtain the crisp output.

Knowledge Base

[ Data Base ’ Rule Base ]
Input Output
(Crisp lell(‘ l'riﬁp Value)

Figure 7. Fuzzy inference system basic diagram.

Inference Engine

In the Mamdani fuzzy approach, the defuzzification phase is evaluated with rule sentences and
conditions such as those seen below:

Rule 1: if x; is A; and y is By ... thenzis C;
Rule 2: if xp is Ay and y is By ... then zis C,

Rule 3: if x3is Az and y3is B3 ... thenzis C;3

Rule k: if xy is Ay and yy is By ... then z is Cy.

where x and y are the first and second input variables, respectively, z is the output variable, and k is
the number of rules.
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There are a few important points that need to be defined very well, such as the membership
function size, type, and shape. Changes to these parameters critically affect the accuracy of the system.
These parameters need to be defined by an expert or through the use of optimization techniques [30].

2.4. Genetic Algorithm

The genetic algorithm is a nature-inspired method that is based on Darwin’s evolution theory.
The genetic approach became more popular through various studies and John Holland’s book “Adaptation
in Natural and Artificial Systems” in the early 1970s [31]. The literature shows that genetic algorithm
methods are useful and more successful than traditional methods in solving engineering problems.
Its advantages include gradient independency, a high discovery rate, and solution parallelism [32,33].

Genetic methods have some basic operators such as selection, crossover, mutation, and recombination.
Selection operation is an elitism technique. This operation is aimed at finding the best or more useful
individuals for having new and better offspring or children. There are a few selection methods used in
the genetic algorithm such as roulette-wheel selection, tournament selection, and truncation selection.
Crossover is a move-replace operation that is aimed at generating a new breed from existing or selected
parents’ selected (single or multipoint) parts. Mutation operation is changing operation and maintains
genetic diversity to the system. The mutation occurs during evolutionary operation, and works according
to a predefined probability variable. Generally, a randomly generated variable for each bit in a sequence
determines whether an individual bit will be changed or not. The main purpose of the mutation is to
improve the genetic diversity of the breed.

The working process of the genetic algorithm and population production process is given as a
sample in Figure 8. Two different randomly generated parents (the solution function) are seen at the
top. Each parent consists of 14 binary coded gene chromosomes. The crossover point is defined before
the operation, and divides the chromosome into different sized parts. These parts are used to have new
children (solutions). Each child carries the parents’ unique features and characteristics. The genetic
diversity of the breed is held by mutation operation. The randomly selected genes of each chromosome
are changed from 1 to 0 or 0 to 1, and the generation process ends. The exploration phase is performed
with the crossover operator. Sub-solutions are produced through the crossover operation, which gains
a high convergence capacity to the searching system. The mutation operator provides diversity,
and prevents the system from being stuck in a local optimum. The exploitation phase is performed
with the mutation operation, and has a larger searching space to look for a deserved solution.

-~

Randomly Randomly
& Generated Generated

parent 1 parent 2

arents

Mutation Mutation
New population

Figure 8. Single-point crossover of 14 gene-sized chromosome pairs and single point mutation [34].

GA-FL Load Forecasting Model

The proposed load forecasting model consists of a fuzzy inference module and a genetic
algorithm-based rule base optimization module. A block diagram of the proposed model is given in
Figure 9.
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The genetic algorithm approach was applied to generate the optimal rule base set of the fuzzy
load (FL) forecasting system. The rule bases were designed as five genes for all 625 chromosomes of
each of four parents. Every chromosome consisted of five binary-coded genes. Uniformly distributed
randomly created parent rule base sets and a genetic rule base optimization process is seen in Figure 10.

Rule base sets were produced and uniformly distributed in the rule base generator module at
the first step of the optimization algorithm. These sets were applied to the fuzzy forecasting system,
respectively. The generated rule base set was used in the fuzzy inference module with a randomly
selected dataset, respectively. The mean absolute percentage error (MAPE) was calculated, and the
error values were saved for each rule base set, as shown in Equation (4). The calculated MAPE values
were the fitness values of the rule base sets.

ALy — FL;

1 n
"z;(‘ ALy

X 100) 4)

ALy Actual Load
FL; Forecasted Load

After the performance evaluation of each rule base set, the best two individuals were selected,
and new candidate rule base sets were created. New rule bases were generated using crossing and
mutation methods in the order of these two individuals. The evolution process continues until the

iteration limit is reached.

Generate
Uniferm Distributed
Rule Base Sets
rb, ,rbz, rha’rh‘1

Test
Best Rule Base

i=1:
iteration
limit

Mutation Operation
(rb,rb,)

Generate New rb
(rbyrb,)

~
[Crossover Operation

Select Best rb
Pairs
(rbl‘rb))

j=1:
sample size

Fuzzy Forecasting
Model
(samplej)

Calculate Mape
(mape] , mape_;)

Figure 9. Flowchart of the genetic algorithm-based rule base optimization model [35].
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Figure 10. (a) Blank rule base set and representative structure of the rule set; (b) Randomly generated rule base set; (c) Fuzzy rule base optimization process using the
genetic algorithm method.
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2.5. Ant Colony Optimization

The ant colony optimization algorithm is a meta-heuristic search algorithm inspired by the
strategies that ant colonies use to reach food resources [36]. Gross and Deneubourg showed that some
ant species follow a ray-type path between food resource and nest in their experimental studies [37,38].

At the beginning of the research, the door is closed, and ants are waiting in the nest. There are
two possible routes in the system, and just one of these routes is shorter than the other one.
After opening the door, the ants follow a random route to the food source, and every individual
ant leaves a pheromone behind. The pheromone amount left from the pioneer ant is a clue for the
ants that are following to proceed more directly to the food source. After a while, researchers noticed
that most of the ants that follow take a shorter path. An experimental setup of the research is given in
Figure 11.

Food Food
source source

Food
source

———

C O D¢ >

— S

- -

Mest MNeast

(a) (b) (c)

Figure 11. Experimental setup for the observation of ant behavior. (a) Door is closed in the beginning
phase; (b) randomly distributed ants after the door was opened; (c) after a while, the distribution of
ants regarding the paths to the food resource [36].

Dorigo et al. improved the artificial ant colony and artificial pheromone concept in their research,
which was based on the experiments of Gross et al., and applied this technique to find a solution to the
traveling salesman problem [39].

Nature-inspired optimization algorithms are also used to find the best search space. There are
two main basic approaches in all of the methods: global search methods (exploration), and local search
(exploitation) approaches. The new solution is based on local information and an existing solution in
local search methods. The hill-climbing method is a marvelous example of the local search operation.
With this method, the climbing position is changed to the closest peak point at each step of the iteration.
This method gains a large convergence capacity to the search system, but there is also a risk of being
stuck in a local optimum. The succession rate of this method is highly related to choosing a good
starting position. In the global search method, the search space is analyzed from a global perspective.
The new solution is possibly found in a location far from the existing solution’s location. With this
method, the convergence rate falls and the searching time gets longer, but there is no risk of being
stuck in a local optimum.

The balanced implementation of the searching methods mentioned above is the most crucial factor
for determining the success of the algorithm. Greater exploitation may create a faster convergence rate,
but the findings may be deceptive, and might not indicate the best solution. Using more exploration
stretches out the searching time and slows the convergence rate. Balancing between these techniques
is also a hyper-optimization problem [8].

AC-FL Load Forecasting Model

The proposed load forecasting model consists of a fuzzy inference module and an ant colony-based
rule base optimization module. A block diagram of the proposed model is given in Figure 12.
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Figure 12. Block diagram of an ant colony—fuzzy load forecasting system.
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The proposed forecasting model has four input variables, and each input variable has five

different membership functions. Therefore, 625 different rules covering all of the possible situations
were defined in the fuzzy load forecasting model. The rule base set that was used in the fuzzy model
is seen in Table 2. These rules were then changed to the most appropriate rule base set for the system
using the ant colony optimization technique. While using ant colony optimization, each rule that was
used in the fuzzy inference engine is expressed as five bits of binary coded values. The binary coded
rule set seems like a genetic algorithm model, but the rule set of the ant colony is unique, and only a
single “1” value may be inside each rule. These positive values in each row (each rule) were used to

generate a path that the ants then follow in each step of the iteration. Each column in Table 2 denotes

the linguistic fuzzified terms of the output. A sample rule base set is seen in Table 2.

Table 2. Randomly generated ant colony rule path.

Rules VL L N H VH
Rule 1 0 1 0 0 0
Rule 2 0 0 1 0 0
Rule 3 1 0 0 0 0
Rule 4 0 0 0 1 0
Rule 5 0 0 1 0 0
Rule 6 0 0 0 0 1
Rule 7 1 0 0 0 0
Rule 8 0 0 1 0 0
Rule 9 0 1 0 0 0
Rule 625 0 1 0 0 0
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The agent operator ant follows a route that was generated and uniformly distributed in the first
step of the iteration, and the selection possibility of all of the positions was defined in the same weight.
A sample randomly created route at the first step of the iteration is given in Figure 13.

Rulel Rule2 Rule3 Rule4 Rule5 Rule6 Rule7 Rule8 Rule9 Rule 625

1 ] --— Bl -

M -
- m- /m-
/. ---—/-H
e mEE- -

Figure 13. Random ant route generation at the first step of the iteration.

g5

After the first step of the iteration, all of the samples were evaluated with the existing rule base
set, and the MAPE (obtained in the iy, iteration) was calculated. The MAPE value of the existing rule
base set was compared with the predefined tolerance value, and whether existing route would be
punished or rewarded was decided. If the MAPE value of the existing rule base was lower than the
best-recorded value of all, then the weights of the existing path increased, and the pheromones were
updated. Otherwise, the weights of existing path decreased, and the pheromones were also updated.
The updated weights and the new route are given in Figure 14.

Rulel Rule2 Rule3 Rule4 Rule5 Rule6 Rule7 Rule8 Rule? Rule 625

EEEEE T EEE- =
[, o [ -quR-L
& A \1.2 /‘ - 12 - / 12 - _ -
EEEEEETEE- -
N e - = v

Figure 14. Choosing new ant route and creation of a new rule base set.

Before the next step of the iteration started, a new route was created considering the new weights
and new possibilities. Iteration continued until the iteration limit was reached or the success rate was
lower than deserved.

3. Experimental Results and Discussions

In this paper, we developed two different artificial based load forecasting models. The fuzzy logic
model is the main part of the system. The genetic algorithm and ant colony-based techniques were
used to increase the performance of the fuzzy forecasting system.

Proposed GA-FL and AC-FL load forecasting models were trained with historical electricity load
consumption and air temperature data between 2011 and 2014, as explained in Section 2. The training
and testing datasets consist of four input variables (Lgc, Lwc, Leal, and Tegf) and one output variable
(Lforecasted)- Membership function type and values were identified by annual changes in the load
consumption and weather temperature. The average load consumption values of 2013 are given in
Figure 15.
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Figure 15. Day-ahead average load consumption values of 2013.

Load data was fuzzified through using five membership functions that considered the average
values of 2013; the fuzzified input and output data (Lgc, Lwe, Lear, and Lorecasted) are seen in Figure 16.

T T T T T T T T
VL

05

x10*

Figure 16. Fuzzified load input and output data.

In Figure 16, VL denotes the lowest load value, which means very low consumption, L denotes
a lower consumption than the normal level, N denotes normal consumption, H denotes a higher
consumption than the normal level, and VH denotes the highest load consumption value.

Temperature data was also fuzzified using five membership functions. Membership function
values were determined considering the thermal comfort values of TS EN ISO 7730, and the fuzzified
temperature data is seen in Figure 17 [40].

T T T T T ' T T
Vi L N H VH

05—

Figure 17. Fuzzified temperature input data.
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In Figure 17, VL denotes the lowest temperature value, which means a very low temperature,
L denotes a lower temperature than normal, N denotes a normal temperature, H denotes a higher
temperature than normal, and VH denotes the highest temperature value.

Temperature data was provided from Turkish State Meteorological Service’s database. In this
research, we observed a large scaled area in Turkey. Temperature data was collected from six different
locations in Turkey. We tried to choose the best locations directly representing Turkey’s electricity
consumption character. The hourly-based weather temperature data of the selected locations is given
in Table 3.

Table 3. Temperature data collected from the six selected stations for 1 December 2012.

Time Samsun Ankara Kirikkale izmir Adana istanbul Weighted
(HOUI‘) 2% 15% 2% 10% 4% 67% AVg.
00-01 5.8 —2.8 -3.7 43 5.3 47 341
01-02 5.9 —-34 —41 41 45 44 3.06
02-03 5.9 -3.7 —49 33 5.3 41 2.75
03-04 5.9 —4.6 —5.6 3.8 49 3.6 2.30
04-05 5.0 —52 —6.0 3.0 42 3.4 1.95
05-06 5.0 -59 —6.6 3.1 4.3 2.8 1.44
06-07 47 —6.0 -7.1 3.2 5.0 2.5 1.25
07-08 5.2 —3.2 —6.0 5.0 6.8 2.7 2.09
08-09 7.7 0.4 -32 8.0 9.3 4.6 4.40
09-10 10.6 23 0.0 9.3 14.0 7.5 7.07
10-11 11.1 5.7 2.6 10.6 16.8 10.0 9.56
11-12 114 8.0 49 114 17.7 10.5 10.41
12-13 114 9.1 6.9 11.8 18.5 9.7 10.15
13-14 11.2 9.9 8.2 12.7 18.3 9.8 10.44
14-15 10.5 8.9 8.7 13.1 17.9 9.6 10.18
15-16 8.5 7.3 74 12.6 16.3 9.0 9.36
16-17 6.7 49 5.3 94 145 84 8.12
17-18 6.0 3.9 438 7.5 10.6 8.1 7.40
18-19 5.7 24 3.6 6.9 8.7 7.8 6.81
19-20 5.6 1.0 24 74 7.2 7.2 6.16
20-21 4.6 0.6 —0.6 6.5 6.0 6.6 5.48
21-22 4.5 -0.3 -1.0 5.5 6.7 6.1 4.93
22-23 4.5 -14 -1.2 4.5 5.7 5.4 4.15
23-00 47 —22 —2.6 4.0 6.0 5.1 3.77

The average temperature value was calculated with hourly-based temperature data collected
from six different locations. The constants (% values in Table 3) that were used in the equation to
calculate the average value were defined according to the level of economic development of the cities
mentioned above, which was pointed out in the annually published report by the Ministry of Science,
Industry, and Technology [41]. After averaging the calculations, the temperature values for the last
seven days were used to calculate the temperature parameters as an input variable, while also using
the trend analysis methods mentioned above in Section 2.2.1.

Both forecasting models were trained and tested with a day-ahead 24 h dataset. The input dataset
consisted of the last day of consumption, the last week of consumption, and the consumption and
weather temperature trends of the last seven days, which were calculated using the least square
method mentioned in Section 2. As a sample, the input dataset used for the training of both proposed
models is given in Table 4.
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Table 4. Input dataset used for the training of the proposed forecasting models (8 February 2013).

Last Day Last Week Consumption Weighted Average
Hours Consumption Consumption Trend Trend Temperature
(MWh) (MWh) (MWh) (°C)
00-01 28.700 28.459 28.872 2.72
01-02 26.856 26.740 27.065 2.31
02-03 25.823 25.451 26.146 1.99
03-04 25.273 24.769 25.555 1.96
04-05 25.072 24.546 25.423 1.70
05-06 25.465 24.706 25.969 1.54
06-07 26.038 24.804 26.678 1.30
07-08 26.865 25.141 28.009 1.88
08-09 31.587 28.708 33.508 3.91
09-10 34.511 31.389 36.684 5.74
10-11 35.395 32.464 37.483 7.69
11-12 35.637 32.955 37.427 9.22
12-13 32.974 32.184 34.902 9.78
13-14 33.726 32.256 35.447 10.68
14-15 33.727 31.980 35.717 10.13
15-16 33.229 31.221 35.163 9.35
16-17 33.304 31.215 35.376 8.43
17-18 34.505 32.192 36.547 7.20
18-19 34.255 32.131 35.874 6.12
19-20 32.965 31.130 34.265 5.45
20-21 32.057 30.292 33.400 4.68
21-22 31.486 29.739 32.603 4.00
22-23 31.698 30.205 32.790 3.69
23-00 30.494 28.959 31.645 3.43
Max. 35.637 32.955 37.483 10.68
Min. 25.072 24.546 25.423 1.30
Std. Devw. 361.576 298.789 425.341 3.13

In summary, the input dataset consists of load consumption information and weather temperature
information. Load consumption data consists of the last day of consumption, the last week of
consumption for the same hour, and the consumption trend, which is calculated using the trend
analysis equation mentioned in Section 2.2.1.

Weather temperature information is obtained in a two-stage process. First, the weighted average
air temperature is calculated using temperature data collected from six various locations in Turkey.
Then, the air temperature trend is calculated using the trend analysis equation mentioned in
Section 2.2.1. Lastly, the whole forecasting and optimization process uses the 24-h dataset.

3.1. GA-FL Simulation Results

The proposed GA-FL model was trained with a randomly chosen training set and tested data
for a specific period, such as a monthly or weekly dataset. The results showed that the GA-FL model
gives satisfying results for the specific part of the testing data, but couldn’t have full coverage. In other
words, the final rule base set that was created with the optimization model didn’t fit for properly
testing the entire dataset.

In order to reach the best rule base set, four different rule base sets consisting of 625 random rules
were defined as a binary system to the optimization system in the initial phase. The performance
value of each rule base was measured separately for the same training set for each step of the iteration.
The results of this measurement are shown in Table 5.
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Table 5. MAPE (%) values for each GA-FL rule base set. GA: genetic algorithm, FL: fuzzy logic.

. MAPE (%)
Iteration
b1 b2 b3 rb4d
1 0.189 0.066 0.155 0.194
2 0.164 0.066 0.155 0.062
3 0.070 0.066 0.082 0.062
96 0.041 0.078 0.039 0.083
97 0.041 0.042 0.039 0.054
98 0.041 0.077 0.039 0.070
99 0.041 0.042 0.039 0.053
100 0.041 0.043 0.039 0.059

After each step of the iteration, selection, crossover and mutation operations that were designed in
compliance with genetic algorithm methods were used, and a new rule base population was produced.
The performance values of each rule base set and the optimization process are given in Figure 18.
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Figure 18. MAPE values of GA-FL rule base sets during the optimization process.

The proposed GA-FL load forecasting model was trained with a monthly weekday dataset
between 2011 and 2013, and tested with a monthly weekday dataset of 2014. Each rule base that was
obtained at the last iteration of the optimization process was tested with the training dataset, and some
of the forecasting results of the proposed forecasting model for the training and testing processes are
shown in Figures 19 and 20.

The proposed GA-FL model consisted of four individuals, and the mutation constant was 1%.
The script was executed for more than 20 different runs with 100 iterations in order to have statistically
meaningful results.

Each genetic rule base set after the optimization process was tested and compared with the actual
data in Figure 19 for the same consumption period. The optimal rule base set was then tested with
actual data, and the results are seen in Figure 20.
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Figure 19. Training results of the GA-FL forecasting model for 1-5 February 2013.
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Figure 20. Testing results of the GA-FL forecasting model for 7-12 February 2014.

3.2. AC-FL Simulation Results

The proposed AC-FL model was trained with the data from 2012, and tested with the data from
2013 for the same monthly period. The simulation results showed a downward trend for the MAPE
value of the optimization system since the first step. The system learned with both negative and
positive information. When the MAPE value was worse, it showed that the existing choices on the
ant path route were not proper for the fuzzy model, that this route was punished by giving fewer
weight values, and that it consequently decreased the selection possibility of the path in the next step.
When the MAPE value was better, it showed that the existing choices on the ant path route were more
proper for the fuzzy model; thus, this route was rewarded with higher weight values, and it increased
the selection possibility of the path in the next step.



Appl. Sci. 2018, 8, 864 22 of 30

After a while, in the late phase of the iteration process, as shown in Figure 21, differences in the
MAPE values decreased dramatically. This situation showed that the route was optimized, the agent
ants almost followed the same path, and similar rule sets were applied to the system in each step of
the iteration process. The route optimization process and MAPE values of the ant rule base sets are
seen in Figure 21.
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Figure 21. Rule base path learning process during optimization.

The proposed AC-FL model was trained with 1000 virtual agent ants. In each step of the
iteration, when an agent ant followed a route, which meant a new knowledge base of the fuzzy
model, the weight matrix was updated. This route was also constantly updated with other pheromone
amounts, which were calculated using the tolerance value that was defined at the beginning of the
iteration process in the script. The pheromone constant in each iteration was calculated according to
the performance of the virtual agent ant.

The training and testing values of the proposed AC-FL model are given in Figures 22 and 23.
The proposed model was trained with the monthly-based dataset for the same weekday periods in
2013 and 2014.
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Figure 22. Training results of the ant colony (AC) best rule base set, which was generated considering
the maximum weighted rule base for 1-5 February 2013.

The ant colony optimization process is aimed at finding the best rule base set that will be used for
testing with the target data. At the end of the optimization process, two different rule base sets were
improved at the same time. One of these rule base sets gave the best training error value, which was
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saved and labeled as the best iteration. The other rule base set was obtained indirectly by measuring the
maximum weights of each rule of the rule set’s weight table. A comparison of these rule sets is given in
Figure 22. Comparative information on the rule sets helps choose the rule set that will be used for testing.

Hours

Figure 23. Testing results of the AC best rule base set for 7-12 February 2014.

The compared results of the proposed models for the same testing dataset are given in Table 6.
Both models were trained and tested with the same monthly dataset. The training dataset included
weekdays in February 2013, and the testing dataset included weekdays in February 2014.

Table 6. Testing results of proposed GA-FL and AC-FL models for the same testing dataset for
8-9 February 2014.

Actual GA-FL AC-FL GA-FL AC-FL  Actual GA-FL AC-FL GA-FL AC-FL

Hours nfw)y (MW) (MW) APE(%) APE(%) (MW) (MW) (MW) APE (%) APE (%)
00-01 27.270 26.445 27.123 3.03 0.54 27.207 27.007 27.433 0.74 0.83
01-02 25.614 25.221 26.506 1.53 3.48 25.639 24983 26.428 2.56 3.08
02-03 24.771 26.165 22.816 5.63 7.89 24.600 25.590 24.857 4.02 1.04
03-04 24.291 26.052 21.703 7.25 10.65 24.188 25.912 22.249 7.13 8.02
04-05 24.063 25.473 22.655 5.86 5.85 24.108 25.795 22.156 7.00 8.10
05-06 24.649 25.446 22910 3.23 7.06 24.747 24.436 25.932 1.26 4.79
06-07 25.397 25.768 26.446 1.46 4.13 25.342 25.985 26.878 2.54 6.06
07-08 26.624 24.461 25.042 8.12 5.94 26.490 24.727 24.609 6.66 7.10
08-09 30.455 31.896 31.897 4.73 4.73 30.510 32.195 32.207 5.52 5.56
09-10 32.764 32.124 32.124 1.95 1.95 32.410 32.488 32.489 0.24 0.24
10-11 33.187 32.363 32.363 2.48 2.48 33.052 32.540 32.552 1.55 1.51
11-12 33.234 32.392 32.395 2.53 2.52 32.840 32.486 32.531 1.08 0.94
12-13 31.204 31.903 31.903 2.24 2.24 30.995 31.734 31.881 2.38 2.86
13-14 31.661 31.959 31.959 0.94 0.94 31.467 31.930 32.108 1.47 2.04
14-15 31.598 31.769 31.765 0.54 0.53 31.715 31.691 31.962 0.07 0.78
15-16 31.239 31.722 31.721 1.55 1.54 31.231 31.811 31.954 1.86 2.32
16-17 31.196 31.977 31.977 2.50 2.50 31.556 32.097 32.146 1.71 1.87
17-18 32.476 32.360 32.360 0.36 0.36 32.860 32.518 32.524 1.04 1.02
18-19 32.968 32.514 32.514 1.38 1.38 32.987 32.614 32.615 1.13 1.13
19-20 31.954 32.377 32.377 1.32 1.32 31.945 32.508 32.508 1.76 1.76
20-21 31.308 32.201 32.201 2.85 2.85 31.296 32.362 32.362 3.41 3.41
21-22 30.316 31.995 32.000 5.54 5.56 30.373 32.068 32.103 5.58 5.70
22-23 30.832 32.073 32.074 4.03 4.03 30.800 32.234 32.235 4.66 4.66
23-00 29.276 31.609 31.895 7.97 8.95 29.751 30.438 31.951 2.31 7.39

MAPE 3.29 3.73 MAPE 2.82 3.42

The main reason for presenting the results from weekday periods in this paper is that weekday
load consumption characteristics are more challenging than weekends. Therefore, the weekday results
of the proposed models were presented. Also, the month of February is a kind of transition period of
the year; it contains the features of four seasons, and thus was chosen as the case scenario period.
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3.3. Comparative Results

The performance of the proposed forecasting models is compared with the multiple linear
regression (MLR) model. The multiple linear regression (MLR) method is a well-known statistical
based estimation method that is commonly used as a benchmark model for comparing forecasting
models. Multiple linear regression analysis is a kind of simple linear regression analysis. MLR is
used to define the correlation between two or more independent variables and a single continuous
dependent variable. MLR is also used to identify whether a confounding influence exists. It ensures a
way of adjusting for potentially confounding variables that have been included in the model.

Both the MLR and proposed forecasting models are trained and tested with same dataset.
The statistical parameters and results of the proposed MLR model are given in Tables 7 and 8.

Table 7. Regression summary and statistics.

Regression Statistics

Multiple R 0.990516

R Square 0.981121

Adjusted R Square 0.980977

Standard Error 569.2768
Observations 528

Table 8. Regression table (ANOVA).

Summarize df SS MS F Significance F
Regression 4 8.81 x 10° 2.2 x 10° 6794.925 0
Residual 523 1.69 x 108 32,4076
Total 527 8.98 x 10°

MLR model has four independent variables: the last day of consumption (Lpc), the last week
of consumption (Lwc), the weekly load trend (Lcar), and the weekly air temperature trend (Tgrp).
The proposed linear model is given in Equation 5. The proposed MLR model was trained with a training
dataset, and after analysis, the coefficients of weights (w( to w4) were determined. The analysis results
and coefficients that were used in forecasting hourly-based consumption are summarized in Table 9.

Table 9. Regression equation table.

Weights Coefficients St;?iarrd t Stat p-Value L;’;‘;? L;PSI;ST L;);ZZ r Ug};}zzr
Intercept (wg) —499.735 188.3426  —2.65333 0.008213 —869.736 —129.734 —869.736 —129.734
wi —0.02747 0.015863  —1.73172 0.083913 —0.05863  0.003693 —0.05863  0.003693

Wy 0.920282 0.013497 68.18238 22x 107262 0.893766  0.946797  0.893766  0.946797

w3 0.139906 0.018693 7.484493  3.07 x 10713 0.103184  0.176629  0.103184  0.176629
Wy —35.0648 6.56439 —5.34166 138 x 1077  —47.9606 —22.1689 —47.9606 —22.1689

The linear forecasting model (LM) is:
Lacwi + Lwewz + Lestws + Tegrws + wo ®)

A performance evaluation of each forecasting model has been conducted using the same dataset
for training and testing. MAPE values have been calculated and used to determine the monthly
forecasting performance of each model. Each model was trained using data obtained during the
same period. Trained forecasting models were tested using data obtained during the same period.
Training and testing phases were performed using the same monthly data sets for different years.
The obtained results of the proposed models for the same period, 29-30 January 2013, are presented in
Tables 10 and 11.
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Table 10. Comparison of testing results of the proposed GA-FL, AC-FL, and MLR forecasting models for 29 January 2013.

25 of 30

Hours Lbc Lwc Lear Terr COHSE:L don  MLR AMPEI;O GA-Fuzzy GAAPI;E“%ZY AC-Fuzzy Agl,l;“;ozy
00-01 24,234 26,540 24,776 375 26,788 26,594 0.725 27,642 3.188 26,249 2.012
01-02 22,646 24,890 23,130 3.03 24,960 24,914 0.185 24,136 3.301 24,835 0.502
02-03 21,777 24,041 22,064 2.88 23,912 24,013 0.420 23,592 1.340 23,703 0.875
03-04 21,308 23,465 21,466 2.80 23,167 23,414 1.068 22,649 2.235 22,503 2.864
04-05 21,183 23,434 21,206 3.00 23,135 23,346 0912 22,494 2.771 22,362 3341
05-06 21,592 23,600 21,449 3.16 23,284 23,516 0.996 23,305 0.090 23,315 0.134
06-07 22,218 24,543 21,518 333 23,907 24,370 1.938 23,788 0.496 23,751 0.651
07-08 23,278 25,648 21,649 342 24,816 25,373 2.245 25,316 2.014 25,887 4317
08-09 28,115 29,155 24,877 3.14 29,074 28,929 0.498 30,602 5.256 30,252 4.050
09-10 31,601 31,497 27,791 3.26 31,967 31,392 1.798 31,614 1.104 31,879 0.276
10-11 32,762 31,904 29,287 338 32,741 31,940 2.447 32,495 0.752 31,562 3.600
11-12 33,590 32,167 30,324 3.97 33,490 32,284 3.603 33,416 0.220 31,780 5.106
12-13 32,564 30,763 29,778 3.95 32,445 30,944 4.627 33,246 2.470 31,572 2.691
13-14 32,768 31,086 29,914 433 32,727 31,241 4539 33,343 1.882 31,645 3.306
14-15 33,036 31,347 29,872 412 32,944 31,476 4457 33,319 1.138 31,639 3.960
15-16 32,578 31,032 29,461 3.95 32,574 31,147 4381 32,848 0.842 31,485 3344
16-17 32,900 31,447 29,819 346 33,135 31,587 4672 33,284 0.451 33,632 1.499
17-18 33,311 32,461 30,485 350 33,762 32,601 3439 33,423 1.004 33,822 0.179
18-19 32,333 31,658 30,122 349 32,574 31,838 2.259 33,401 2.539 31,730 2.590
19-20 31,143 30,637 29,243 3.29 31,328 30,815 1.637 32,380 3.357 31,507 0571
20-21 30,211 30,082 28,356 3.02 30,443 30,216 0.747 31,132 2.262 31,442 3.282
21-22 29,331 29,172 27,806 2.95 29,702 29,328 1.260 29,518 0.619 28,874 2.787
22-23 29,741 29,576 28,218 2.55 30,093 29,760 1.107 29,724 1.227 30,298 0.683
23-00 28,609 28,395 27,249 222 28,924 28,580 1.188 28,118 2.785 29,544 2.144
MAPE 213 1.81 2.28
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Table 11. Comparison of testing results of proposed GA-FL, AC-FL and multiple linear regression (MLR) forecasting models for 30 January 2013.

26 of 30

Hours Lbc Lwc Lear Terr COHSE:L don  MLR AMPEI;O GA-Fuzzy GAAPI;E“%ZY AC-Fuzzy Agl,l;“;ozy
00-01 26.788 25.966 25.577 225 26.710 26.160 2.060 27.598 3.325 26.274 1.631
01-02 24.960 24.766 23.699 1.81 25.054 24.858 0.781 25.778 2.891 26.274 4.871
02-03 23912 23.748 22.679 1.92 24.061 23.804 1.069 23578 2.007 24.107 0.190
03-04 23.167 23.302 21.929 1.81 23512 23313 0.847 23271 1.024 23.702 0.806
04-05 23.135 23.230 21.773 1.96 23.338 23.220 0.504 23199 0.594 24372 4431
05-06 23.284 23.566 21.929 2.23 23.657 23.538 0.503 23.339 1.342 23.177 2.027
06-07 23.907 24.310 2217 2.14 24.131 24.249 0.488 23.119 4194 24.878 3.095
07-08 24.816 25.410 22.597 2.51 25.019 25.276 1.028 27.613 10.369 25.160 0.562
08-09 29.074 29.028 26.336 222 29.397 29.022 1.275 28.758 2174 28.298 3.737
09-10 31.967 31.525 29.394 2.40 32.355 31.662 2.142 32.727 1.150 31.516 2.593
10-11 32.741 32.125 30.607 245 33.381 32.361 3.056 33431 0.149 32.852 1.586
11-12 33.490 32.563 31.632 2.36 34.045 32.890 3392 33.431 1.803 33.960 0.249
12-13 32.445 31.221 31.063 3.05 32.980 31.580 4245 33.429 1.361 32.927 0.160
13-14 32.727 31.437 31.209 3.07 33.335 31.791 4632 33427 0.276 31.934 4204
14-15 32.944 31.536 31.343 3.02 33.574 31.897 4.99 33.429 0.432 31.936 4.879
15-16 32.574 31.363 30.900 2.78 33.312 31.694 4.858 33431 0.356 31.904 4227
16-17 33.135 31.974 31.302 2.30 33.605 32.314 3.842 33.428 0.526 31.962 4.889
17-18 33.762 32.736 31.932 2.36 34.075 33.084 2.909 33.430 1.892 33.961 0.335
18-19 32.574 31.685 31.213 2.20 32.917 32.054 2.621 33.428 1.551 31.952 2.932
19-20 31.328 30.593 30.191 1.95 31.603 30.949 2.068 33.392 5.660 31.698 0.300
20-21 30.443 29.647 29.353 1.75 30.879 29.993 2.869 30.965 0.277 30.335 1.762
21-22 29.702 29.005 28.634 1.66 30.061 29.325 2.449 29.006 3.510 30.167 0.352
22-23 30.093 29.600 29.023 1.15 30.326 29.934 1.292 29.897 1414 30.390 0212
23-00 28.924 28.423 27.996 0.77 29.447 28.753 2.357 28.170 4335 29.687 0.813
MAPE 2.28 2.04 2.33
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Firstly, as seen in Tables 10 and 11, the proposed mature-inspired technique-based forecasting
model has smaller MAPE values compared with the statistical-based model MLR model. As seen in
Figure 24, artificial intelligence-based models have better adaptation and yield more promising results
than the statistical-based model in a nonlinear consumption zone. As with many statistical models,
the MLR model provides more successful results, as expected in the linear zone.
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Figure 24. Comparative results for 29-30 January 2013.

4. Conclusions

Short-term electricity load forecasting has become one of the most popular research topic in recent
years, and many inspiring types of research are seen in literature. Load forecasting has a leading role
in the planning and management of power plants and production facilities. Research studies in the
literature show that the load consumption pattern is highly related to air exogenous factors such as the
weather condition, consumption time, day type (working, holiday etc.), seasonal effects, and economic
or political changes. Therefore, several types of solution methods are required; here, these methods
have also been improved in order to get better estimations.

In the literature, there are many studies on load forecasting that use fuzzy logic and artificial
intelligence optimization algorithms and methods. Here, these fuzzy models have been improved
with expert insight and adaptations. Therefore, the ability and knowledge depth of the experts has
directly affected the succession rate of the system. When the input variable and membership function
sizes get larger, the knowledge base, rule base size, and number of rules also enlarge. So, the fuzzy
model needs to be optimized, whether classical or artificial intelligence methods are used.

In this paper, hybrid genetic—fuzzy and ant colony—fuzzy short-term load forecasting models were
proposed. Artificial intelligence (Al)-based optimization methods were used to deal with the struggles
in rule base definition that were mentioned above. The result show that intelligent optimization
methods give promising results in load forecasting. The succession rate of the proposed system
was measured by using MAPE, and the results showing that the proposed method has a 3.389%
forecasting rate.

As a result, we developed fuzzy logic-based load forecasting models for estimating hourly-based
electricity consumption. The literature research and observations showed that the definition of the
knowledge base is a major factor in having a successful forecasting rate. Moreover, when the size of
input variables and /or membership functions size grows, the knowledge base becomes dramatically
more complex. We developed GA-FL and AC-FL hybrid models using nature-inspired optimization
methods to deal with knowledge complexity. The obtained results showed that the proposed
models are more successful than the standard fuzzy logic approach that is typically seen in the
literature, and proved that Nature-Inspired (NI) based methods help when working in a more flexible
estimation environment.
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As a limitation of the proposed methods, in some cases, such as while working with a
low-temperature period of time, some of the rules that are highly related to high-temperature periods
may not be active in the optimization process. These inactive rules may cause an unnecessary increase
in the optimization errors, and decrease optimization performance. In future studies, it is possible to
develop new optimization techniques and algorithms for eliminating inactive rules.

In future works, we will use other nature-inspired optimization algorithms for optimizing fuzzy
forecasting models. We will develop new hybrid forecasting models using fuzzy type-2, and these
models will be optimized with meta-heuristic optimization methods. Proposed new forecasting models
will be trained and tested with large, scaled datasets.

Author Contributions: The manuscript was written by V.A. under the supervision of N.B. and M.L. The modeling,
simulation and analysis process was executed by V.A. and M.L. Technical support was provided by H.P. and N.B.,
E.C. helped in the review.

Acknowledgments: This research was supported by Scientific Research Projects Coordination Unit (B.A.PK.B.) of
Kirikkale University (Project No: 2016/127, 2017).

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Gross, G.; Galiana, ED. Short-term load forecasting. Proc. IEEE 1987, 75, 1558-1573. [CrossRef]

Li, W.; Han, Z.-H. Short-term power load forecasting using improved ant colony clustering. In Proceedings
of the First International Workshop on Knowledge Discovery and Data Mining (WKDD), Adelaide, SA,
Australia, 23-24 January 2008; pp. 221-224.

3.  Baliyan, A.; Gaurav, K.; Mishra, S.K. A review of short term load forecasting using artificial neural network
models. Procedia Comput. Sci. 2015, 48, 121-125. [CrossRef]

4. Khwaja, A.; Naeem, M.; Anpalagan, A.; Venetsanopoulos, A.; Venkatesh, B. Improved short-term load
forecasting using bagged neural networks. Electr. Power Syst. Res. 2015, 125, 109-115. [CrossRef]

5.  Liang, R.-H.; Cheng, C.-C. Short-term load forecasting by a neuro-fuzzy based approach. Int. J. Electr. Power
Energy Syst. 2002, 24, 103-111. [CrossRef]

6.  Senjyu, T.; Takara, H.; Uezato, K.; Funabashi, T. One-hour-ahead load forecasting using neural network.
IEEE Trans. Power Syst. 2002, 17, 113-118. [CrossRef]

7. Raza, M.Q.; Khosravi, A. A review on artificial intelligence based load demand forecasting techniques for
smart grid and buildings. Renew. Sustain. Energy Rev. 2015, 50, 1352-1372. [CrossRef]

8. Yang, X.-S. Nature-Inspired Optimization Algorithms; Elsevier: New York, NY, USA, 2014.

9. Hernandez, L.; Baladrén, C.; Aguiar, ].M.; Calavia, L.; Carro, B.; Sanchez-Esguevillas, A.; Sanjuan, J.;
Gonzélez, A.; Lloret, J. Improved short-term load forecasting based on two-stage predictions with artificial
neural networks in a microgrid environment. Energies 2013, 6, 4489-4507. [CrossRef]

10. Hassan, S.; Khosravi, A.; Jaafar, J.; Khanesar, M.A. A systematic design of interval type-2 fuzzy logic system
using extreme learning machine for electricity load demand forecasting. Int. J. Electr. Power Energy Syst.
2016, 82, 1-10. [CrossRef]

11. Hernandez, L.; Baladrén, C.; Aguiar, ] M.; Calavia, L.; Carro, B.; Sanchez-Esguevillas, A.; Pérez, E;
Fernandez, A.; Lloret, J. Artificial neural network for short-term load forecasting in distribution systems.
Energies 2014, 7, 1576-1598. [CrossRef]

12.  Chaturvedi, D.; Sinha, A.; Malik, O. Short term load forecast using fuzzy logic and wavelet transform
integrated generalized neural network. Int. J. Electr. Power Energy Syst. 2015, 67, 230-237. [CrossRef]

13. Li, S.; Wang, P; Goel, L. Short-term load forecasting by wavelet transform and evolutionary extreme learning
machine. Electr. Power Syst. Res. 2015, 122, 96-103. [CrossRef]

14. Abdoos, A.; Hemmati, M.; Abdoos, A.A. Short term load forecasting using a hybrid intelligent method.
Knowl.-Based Syst. 2015, 76, 139-147. [CrossRef]

15.  Kouhi, S.; Keynia, F; Ravadanegh, S.N. A new short-term load forecast method based on neuro-evolutionary
algorithm and chaotic feature selection. Int. J. Electr. Power Energy Syst. 2014, 62, 862-867. [CrossRef]


http://dx.doi.org/10.1109/PROC.1987.13927
http://dx.doi.org/10.1016/j.procs.2015.04.160
http://dx.doi.org/10.1016/j.epsr.2015.03.027
http://dx.doi.org/10.1016/S0142-0615(01)00021-7
http://dx.doi.org/10.1109/59.982201
http://dx.doi.org/10.1016/j.rser.2015.04.065
http://dx.doi.org/10.3390/en6094489
http://dx.doi.org/10.1016/j.ijepes.2016.03.001
http://dx.doi.org/10.3390/en7031576
http://dx.doi.org/10.1016/j.ijepes.2014.11.027
http://dx.doi.org/10.1016/j.epsr.2015.01.002
http://dx.doi.org/10.1016/j.knosys.2014.12.008
http://dx.doi.org/10.1016/j.ijepes.2014.05.036

Appl. Sci. 2018, 8, 864 29 of 30

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

31.

32.
33.

34.

35.

36.

37.

38.

39.

Selakov, A.; Cvijetinovi¢, D.; Milovi¢, L.; Mellon, S.; Bekut, D. Hybrid PSO-SVM method for short-term load
forecasting during periods with significant temperature variations in city of Burbank. Appl. Soft Comput.
2014, 16, 80-88. [CrossRef]

Li, P; Li, Y;; Xiong, Q.; Chai, Y.; Zhang, Y. Application of a hybrid quantized Elman neural network in
short-term load forecasting. Int. J. Electr. Power Energy Syst. 2014, 55, 749-759. [CrossRef]

Mamlook, R.; Badran, O.; Abdulhadi, E. A fuzzy inference model for short-term load forecasting.
Energy Policy 2009, 37, 1239-1248. [CrossRef]

Srinivasan, D.; Liew, A.; Chang, C. Forecasting daily load curves using a hybrid fuzzy-neural approach.
IEE Proc.-Gener. Transm. Distrib. 1994, 141, 561-567. [CrossRef]

Yukseltan, E.; Yucekaya, A.; Bilge, A.H. Forecasting electricity demand for Turkey: Modeling periodic
variations and demand segregation. Appl. Energy 2017, 193, 287-296. [CrossRef]

Cevik, H.H.; Cunkas, M. Short-term load forecasting using fuzzy logic and ANFIS. Neural Comput. Appl.
2015, 26, 1355-1367. [CrossRef]

Esener, 1.I; Yiiksel, T.; Kurban, M. Short-term load forecasting without meteorological data using Al-based
structures. Turk. J. Electr. Eng. Comput. Sci. 2015, 23, 370-380. [CrossRef]

Demiroren, A.; Ceylan, G. Middle anatolian region short-term load forecasting using artificial neural
networks. Electr. Power Compon. Syst. 2006, 34, 707-724. [CrossRef]

Topalli, A K.; Erkmen, I.; Topalli, L. Intelligent short-term load forecasting in Turkey. Int. ]. Electr. Power
Energy Syst. 2006, 28, 437-447. [CrossRef]

Wolberg, J. Data Analysis Using the Method of Least Squares: Extracting the Most Information from Experiments;
Springer Science & Business Media: Berlin, Germany, 2006.

Harter, H.L.; Kotz, S.; Johnson, N.L. “Least Squares” in Encyclopedia of Statistical Sciences; Wiley Online Library:
Hoboken, NJ, USA, 1981.

Pandian, S.C.; Duraiswamy, K.; Rajan, C.C.A.; Kanagaraj, N. Fuzzy approach for short term load forecasting.
Electr. Power Syst. Res. 2006, 76, 541-548. [CrossRef]

Zadeh, L.A. Information and control. Fuzzy Sets 1965, 8, 338-353.

Kumar, J.K.; Rajkumar, P. Fuzzy and decision tree approach for forecasting analysis in power load. Int. |.
Tech. Res. Appl. 2015, 3, 222-225.

Nourafkan, A.; Kadkhodaie-Ilkhchi, A. Shear wave velocity estimation from conventional well log data
by using a hybrid ant colony—fuzzy inference system: A case study from Cheshmeh—Khosh oilfield. J. Pet.
Sci. Eng. 2015, 127, 459-468. [CrossRef]

Holland, ].H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Application to Biology,
Control, and Artificial Intelligence; University of Michigan Press: Ann Arbor, MI, USA, 1975.

Yang, X.-S. Nature-Inspired Metaheuristic Algorithms; Luniver Press: Frome, United Kingdom, 2010.

Yang, X.-S. Engineering Optimization: An Introduction with Metaheuristic Applications; John Wiley & Sons:
Hoboken, NJ, USA, 2010.

Quagliarella, D.; Vicini, A. Coupling genetic algorithms and gradient based optimization techniques.
Genet. Algorithms Evol. Strateg. Eng. Comput. Sci. Recent Adv. Ind. Appl. 1997, 289-309.

Liy, M.; Ates, V.; Barisci, N.; Cam, E. Genetic Algorithm Based Fuzzy Logic System for Short Term Load
Forecasting. In Proceedings of the 5th International Conference on Advanced Technology & Sciences
(ICAT’17), Istanbul, Turkey, 9-12 May 2017; pp. 688-692.

Dorigo, M.; Di Caro, G.; Gambardella, L.M. Ant algorithms for discrete optimization. Artif. Life 1999,
5,137-172. [CrossRef] [PubMed]

Goss, S.; Aron, S.; Deneubourg, J.-L.; Pasteels, J.M. Self-organized shortcuts in the Argentine ant.
Naturwissenschaften 1989, 76, 579-581. [CrossRef]

Deneubourg, J.-L.; Aron, S.; Goss, S.; Pasteels, ].M. The self-organizing exploratory pattern of the argentine
ant. J. Insect Behav. 1990, 3, 159-168. [CrossRef]

Goss, S.; Beckers, R.; Deneubourg, J.-L.; Aron, S.; Pasteels, ].M. How trail laying and trail following can solve
foraging problems for ant colonies. In Behavioural Mechanisms of Food Selection; Springer: Berlin/Heidelberg,
Germany, 1990; pp. 661-678.


http://dx.doi.org/10.1016/j.asoc.2013.12.001
http://dx.doi.org/10.1016/j.ijepes.2013.10.020
http://dx.doi.org/10.1016/j.enpol.2008.10.051
http://dx.doi.org/10.1049/ip-gtd:19941288
http://dx.doi.org/10.1016/j.apenergy.2017.02.054
http://dx.doi.org/10.1007/s00521-014-1809-4
http://dx.doi.org/10.3906/elk-1209-28
http://dx.doi.org/10.1080/15325000500419284
http://dx.doi.org/10.1016/j.ijepes.2006.02.004
http://dx.doi.org/10.1016/j.epsr.2005.09.018
http://dx.doi.org/10.1016/j.petrol.2015.02.001
http://dx.doi.org/10.1162/106454699568728
http://www.ncbi.nlm.nih.gov/pubmed/10633574
http://dx.doi.org/10.1007/BF00462870
http://dx.doi.org/10.1007/BF01417909

Appl. Sci. 2018, 8, 864 30 0f 30

40. Yildirim, A.; Altinsoy, H. Thermal Comfort Programme with Respect to TS EN ISO 7730 AND TS EN
ISO 27243 Standarts. Calisma Diinyast Dergisi (Labour World) (In Turkish) 2015, 3, 7-17.

41. Ministry of Science Industry and Technology. 81 Provinces Industry Status Report of Turkey; Ministry of Science
Industry and Technology: Ankara, Turkey, 2013.

® © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).



http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Data Set 
	Last Day (Ldc)—Last Week (Lwc) Consumption 
	Calculated Load Consumption (Lcal) 
	Temperature Data Set (Teff) 

	Fuzzy Inference System 
	Genetic Algorithm 
	Ant Colony Optimization 

	Experimental Results and Discussions 
	GA–FL Simulation Results 
	AC–FL Simulation Results 
	Comparative Results 

	Conclusions 
	References

