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Abstract: To further improve the filtering accuracy in nonlinear estimation systems, a nonlinear
filter, called the orthogonal simplex Chebyshev-Laguerre cubature Kalman filter (OSCL-CKF),
is proposed. The filter is built within the cubature Kalman filter framework, which transforms
the multidimensional, Gaussian weighted integral into a spherical-radial coordinate system. In the
spherical integral, an orthogonal method is introduced to the third-degree spherical simplex rule,
and then the nonlocal sampling effects can be reduced by tuning the high order interference terms.
In the radial integral, the quadrature points and corresponding weights are determined according to
the Chebyshev-Laguerre (CL) equation, which enables the nonlinear filter to improve the precision
by the order of the CL polynomial. Numerical results show that the proposed filter outperforms the
conventional algorithms.

Keywords: nonlinear system; cubature Kalman filter; state estimation; Chebyshev-Laguerre
polynomial

1. Introduction

Nonlinear estimation systems generally exist in civilian and military fields, such as target tracking
systems, navigation systems, and communication systems. Nonlinear filtering algorithms have been
widely used in these nonlinear estimation systems. For example, a multistatic radar based on nonlinear
filter localizes a moving target within a small surveillance area [1]; a nonlinear-filter-based autonomous
vehicle navigation system provides good positioning performance for vehicles [2]; the improved
control systems based on nonlinear filter are adopted in wireless communication systems [3–6]. As the
above examples show, nonlinear filtering algorithms play an important role in addressing nonlinear
estimation problems.

In the Bayesian framework, the nonlinear filtering problem is essentially a computational problem
of multidimensional integrals, which is typically intractable and hence the numerical approaches
are considered [7]. In theory, the particle filter [8–11] based on the Monte-Carlo approximation
for the multidimensional integrals can provide sufficient precision. However, the filter is usually
impractical, owing to the enormous computational complexity from it suffers. The marginalized
particle filters reduce the computational complexity to a certain degree, but it cannot deal with the
problem whose process model and measurement model are both nonlinear. On the contrary, the
filters under the Gaussian assumption of posterior probability density can be executed simply and
quickly. The extended Kalman filter (EKF) [12,13], for instance, employs linearization via first-order
Taylor series expansion, but it often results in unstable performance, and differentiability of the
considered nonlinear functions is also required. In recent years, the deterministically sampled filters
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have drawn much attention, such as the central difference Kalman filter (CDKF) [14], the unscented
Kalman filter (UKF) [15–17], and the cubature Kalman filter (CKF) [18]. Among these filters, the UKF
uses a set of sigma-points and unscented transformation to capture posterior statistics of the state.
The CKF performs with higher accuracy than the EKF and shows better numerical stability and lower
computational demands than the UKF with a non-zero scaling parameter in high dimensions [18].

It should be noted that when the system model includes highly nonlinear functions, the unknown
high order terms may drastically reduce the accuracy of the covariance estimate [19]. Additionally,
the performance of the CKF may be unsatisfactory in high nonlinear conditions, and the way in which
to make use of the measurements efficiently should also be taken into account. Jia [20] proposed
the fifth and higher-degree CKF to further improve the accuracy, but the number of sample points
increases rapidly with the increase of the algebraic degree or the state dimension. Compared with the
high-degree CKF, the high-degree simplex cubature Kalman filter (SCKF) [21] uses fewer sample points
and shows higher accuracy. Unfortunately, the number of sample points still increases quadratically
with the increase of the state dimension.

The contribution of this paper is to derive a new class of nonlinear filter with arbitrary order
of the Chebyshev-Laguerre (CL) polynomial. In order to regulate the effect of the high order terms,
the stochastic orthogonal method [22] is introduced to the third-degree spherical simplex rule, which
improves the accuracy of the CKF with only two more sample points. Moreover, the solution to the CL
polynomial equation of arbitrary order is discussed [23]. The quadrature points and weights in the
radial integral can be subsequently obtained according to the nature of the CL polynomial, and hence
the accuracy can be controlled by the order of CL polynomial. The filter is called the orthogonal
simplex Chebyshev-Laguerre cubature Kalman filter (OSCL-CKF). Compared with the standard CKF,
the proposed filter is more flexible because the accuracy can be further improved with the increase of
CL polynomial order. Also, computational cost increases linearly with CL polynomial order, which is
superior to other high-degree versions of the CKF. The proposed filter can potentially be used in many
applications such as air traffic control, remote sensing, ballistic missile guidance, and computer vision
with good filtering accuracy.

The rest of this paper is organized as follows. Section 2 describes the system model and Bayesian
nonlinear filter framework. The orthogonal simplex Chebyshev-Laguerre cubature rule is presented
in Section 3. Section 4 yields the performance comparison of the proposed algorithm with the
conventional algorithms. Conclusions are drawn in Section 5.

2. System Model and Bayesian Filter

2.1. System Model

The nonlinear discrete estimation system model can be expressed as follows:{
xk = f (xk−1) + vk−1
zk = h(xk) + ek

, (1)

where xk ∈ Rnx is the state vector at time index k with nx dimensions, and zk ∈ Rnz is the measurement
vector with nz dimensions. The values of nx and nz are dependent on specific applications. f (·) and
h(·) are the nonlinear function, here k = 1, 2, · · · . The process noise vk−1 and the measurement noise
ek are generally assumed to be independent and identically distributed zero mean Gaussian noise with
the covariance matrices Qk−1 and Rk, respectively.
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2.2. Bayesian Gaussian Recursive Filter

The Bayesian recursive solution to the problem above can be divided into a prediction step and a
measurement update step. At the prediction step, the mean and associated covariance of the Gaussian
predictive density can be obtained as follows:

x̂k|k−1 =
∫
Rnx

f (xk−1)N
(

xk−1; x̂k−1|k−1, Pk−1|k−1

)
dxk−1, (2)

Pk|k−1 =
∫
Rnx f (xk−1) f T(xk−1)N

(
xk−1; x̂k−1|k−1, Pk−1|k−1

)
dxk−1

−x̂k|k−1x̂T
k|k−1 + Qk−1

, (3)

At the measurement update step, Dk−1 is denoted as the history of input measurement. Then,
the predicted measurement density can be represented as follows:

p(zk|Dk−1) = N
(

zk; ẑk|k−1, Pzz,k|k−1

)
, (4)

ẑk|k−1 is the predicted measurement, which is predicted based on time index k − 1 and the
measurement model. ẑk|k−1 and its associated innovation covariance Pzz,k|k−1 are given by the
following:

ẑk|k−1 =
∫
Rnx

h(xk)N
(

xk; x̂k|k−1, Pk|k−1

)
dxk, (5)

Pzz,k|k−1 =
∫
Rnx

h(xk)hT(xk)N
(

xk; x̂k|k−1, Pk|k−1

)
dxk − ẑk|k−1ẑT

k|k−1 + Rk, (6)

and the cross-covariance is as follows:

Pxz,k|k−1 =
∫
Rnx

xkhT(xk)N
(

xk; x̂k|k−1, Pk|k−1

)
dxk − x̂k|k−1ẑT

k|k−1. (7)

Once the new measurement is received, the filter computes the posterior density, yielding
the following:

p(xk|Dk) = N
(

xk; x̂k|k, Pk|k

)
, (8)

where
x̂k|k = x̂k|k−1 + Kk(zk − ẑk|k−1), (9)

Pk|k = Pk|k−1 −KkPzz,k|k−1KT
k , (10)

Kk = Pxz,k|k−1P−1
zz,k|k−1 (11)

3. Orthogonal Simplex Chebyshev-Laguerre Cubature Kalman Filter

The key of the Bayesian filter is how to compute Gaussian weighted integrals whose integrands
are a product of a nonlinear function and a Gaussian density function that are present in (5)–(7).
Considering the standard Gaussian distribution N(x; 0, I), the integral can be expressed as follows:

I( f ) =
∫
Rnx

f (x)N(x; 0, I)dx = (2π)−
nx
2

∫
Rnx

f (x)e−
1
2 xTxdx, (12)

where f (x) is an arbitrary nonlinear function.
Now, we transform the integral from the Cartesian coordinate to the spherical-radial coordinate.

Assuming that x = ry with yTy = 1 and r =
√

xTx, Equation (12) can be rewritten in the
spherical-radial coordinate system as follows [18]:

I( f ) = (2π)−
nx
2

∫ ∞

0

∫
Unx

f (ry)rnx−1e−
r2
2 dσ(y)dr, (13)
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where direction vector y and radius r are the corresponding parameters in the spherical-radial
coordinate [18]. Unx =

{
y ∈ Rnx

∣∣yTy = 1
}

is the spherical surface and dσ(·) is the spherical surface
measure. As a consequence, two kinds of integrals are given by the following:

S(r) =
∫

Unx

f (ry)dσ(y), (14)

Gs = (2π)−
nx
2

∫ ∞

0
S(r)rnx−1e−

r2
2 dr, (15)

3.1. Orthogonal Spherical Simplex Rule

According to Mysovskikh and Lu [24,25], the cubature rule for Equation (14) can be obtained
from the transformation group of the regular simplex with vertices, that is:

αj =
[
αj,1, αj,2, . . . , αj,nx

]T , (16)

where j = 1, 2, . . . , nx + 1, and

αj,m =


−
√

nx+1
nx(nx−m+2)(nx−m+1) m < j√

(nx+1)(nx−j+1)
nx(nx−j+2) m = j

0 m > j

, (17)

Accordingly, the third-degree spherical simplex rule is constructed as follows:

S3(r) =
ns

∑
j=1

ws
j f (·) = Anx

2(nx + 1)

nx+1

∑
j=1

(
f
(
rαj
)
+ f

(
−rαj

))
, (18)

where ns = 2(nx + 1), Anx = 2
√

πnx /Γ(nx/2), and Γ(nx) =
∫ ∞

0 xnx−1e−xdx.
Compared with the cubature rule based on Arasaratnam et al. [18], two more sample points are

needed in the spherical simplex rule, but it has been proven that the spherical simplex rule is more
accurate [21]. According to Equation (1), the highly nonlinear nature of the nonlinear system model
may lead to the nonlocal sampling effects, with the covariance being easily affected by unknown high
order behavior (especially when nx > 3). Thus, we introduce the orthogonal method to tune the
high order information of the spherical simplex transformation. In other words, Equation (18) can be
updated as follows:

S3(r) =
Anx

2(nx + 1)

ns

∑
j=1

f
(
rγj
)
, (19)

where γ = [γ1, γ2, . . . , γ2nx+2] = B× [α − α] and B = [B1, B2, . . . , Bnx ] is an nx× nx orthogonal matrix,
where Bi = [βi,1, βi,2, · · · , βi,nx ]

T . Therefore, γ is a nx × (2nx + 2) matrix.
The method to select an orthogonal matrix can be seen in the works of [26,27]. In this paper,

we construct B according to Xiu [28]:

βi,2p−1 =

√
2

nx
cos

(2p− 1)iπ
nx

, (20)

βi,2p =

√
2

nx
sin

(2p− 1)iπ
nx

, (21)

where p = 1, 2, · · · , max{p ∈ Z|p ≤ nx/2}. If nx is odd, βi,nx = (−1)i/
√

nx.
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From Equations (18)–(21), it can be seen that the orthogonal method does not introduce additional
computational costs to the spherical simplex rule, because the new orthogonal sample points can be
computed offline in advance.

3.2. High Order Chebyshev-Laguerre Quadrature Rule

Due to the quadratic term r2/2 in the exponential function, it is difficult to deal with the
radial integral (15) directly. Hence, we make an equivalent transformation that t = r2/2, and then
Equation (15) can be rewritten as follows:

Gs =
1
2

π−
nx
2

∫ ∞

0
S
(√

2t
)

t
nx
2 −1e−tdtv, (22)

The integral on the right-hand side is in the form of the generalized Gauss-Laguerre integral.
Numerical integration is generally utilized because seeking an optimal or analytical solution to
Equation (22) is typically intractable. Here, we evaluate it using quadrature points tk and associated
weights wc

i :

Gs =
nc

∑
k=1

wc
i S
(√

2t
)

, (23)

which are determined by the Chebyshev-Laguerre polynomials [29]:

L(a)
nc (t) = (−1)nc t−aet dnc

dtnc

(
ta+nc e−t), (24)

where a = nx/2− 1 and nc is the order of the Chebyshev-Laguerre polynomials.
The quadrature points tk are the roots of the Chebyshev-Laguerre polynomials, and associated

weights can be obtained as follows [30]:

wc
k = −π−

nx
2 · nc!Γ(a + nc + 1)

2
.
L
(a)
nc (tk)L(a)

nc+1(tk)
, (25)

where k = 1, · · · , nc. From the theory of Laguerre polynomials, the relation between L(a)
nc (tk) and

L(a)
nc+1(tk) is described as follows:

L(a)
nc+1(tk) = −tk

.
L
(a)
nc (tk), (26)

and then we obtain the following:

wc
k = π−

nx
2 · nc!Γ(a + nc + 1)

2tk

[
.
L
(a)
nc (tk)

]2 . (27)

Obviously, the precision of the quadrature formula can be readily improved with the increase of
the polynomials’ order, which is linear to the number of quadrature points.

3.3. Orthogonal Spherical Simplex Chebyshev-Laguerre Quadrature Rule

In Section 3.1, integral (13) is transformed into two kinds of integrals, which are dealt with in
Sections 3.1 and 3.2, respectively. Substituting Equations (18) and (23) into Equation (13), the orthogonal
spherical simplex Chebyshev-Laguerre rule for N(x; 0, I) is as follows:

∫
Rnx

f (x)N(x; 0, I)dx ≈
ns

∑
i=1

nc

∑
j=1

ws
i wc

j f (·), (28)
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That is,

I( f ) ≈
ns
∑

i=1

nc
∑

j=1
ws

i wc
j f (·)

=
ns
∑

i=1

nc
∑

j=1

Anx
ns
· nc !Γ(a+nc+1)
√

πnx 2tj

[
.
L
(a)
nc (tj)

]2 f
(√

2tjB× [α − α]i

)
=

ns
∑

i=1

nc
∑

j=1

2
√

πnx /Γ(nx/2)
2(nx+1) · nc !Γ(a+nc+1)

√
πnx 2tj

[
.
L
(a)
nc (tj)

]2 f
(√

2tjγi

) (29)

Therefore,

I( f ) =
2(nx+1)

∑
i=1

nc

∑
j=1

nc!Γ(nx/2 + nc)

2tj(nx + 1)Γ(nx/2)
[

.
L
(nx/2−1)
nc

(
tj
)]2 f

(√
2tjγi

)
(30)

The cubature formula is easy to extend to an arbitrary Gaussian distribution N(x; x̂, Px).
Computing Equations (5)–(7) using the formula, the new nonlinear filter, called the orthogonal simplex
Chebyshev-Laguerre cubature Kalman filter, can be obtained.

The new filter uses 2(nx + 1)nc sample points to approximate the Gaussian-weighted integral.
The number of sample points is linear to that of the state dimension nx and the polynomials’ order nc,
respectively. It is more efficient than high-degree CKF and high-degree SCKF from the computational
point of view. The accuracy of the filter depends on the order of the Chebyshev-Laguerre polynomials.
In theory, the higher the order is, the more accurate the filter would be. Moreover, the high order
moments of the OSCL transformation are tuned according to the designed orthogonal matrix, which
can alleviate the nonlocal sampling effects efficiently.

When nc = 1 and γ = [α − α], Equation (30) can be rewritten as follows:

I( f ) =
2(nx+1)

∑
i=1

1!Γ(nx/2+1)

2t1(nx+1)Γ(nx/2 )
[

.
L
(nx/2−1)
1 (t1)

]2 f
(√

2t1[α − α]i
)

=
2(nx+1)

∑
i=1

Γ(3)

4(nx+1)Γ(2)
[

.
L
(1)
1 (2)

]2 f (2[α − α]i)

= 1
2(nx+1)

2(nx+1)
∑

i=1
f (2[α− α]i)

, (31)

which means that the third-degree SCKF is a specific form of the proposed filter, where the orthogonal
matrix is an identity matrix and the order of the Chebyshev-Laguerre polynomials is nc = 1. The accuracy
can be further improved by increasing nc. On the other hand, the advantages of the SCKF are also retained
in the proposed filter, such as derivative-free and better numerical stability compared with the UKF.

4. Simulations

To describe the performance of the proposed algorithm, two nonlinear estimation examples as the
nonlinear estimation problem and the bearings-only tracking problem, are considered.

4.1. The Highly Dimensional Nonlinear Estimation Problem

The system model of nonlinear estimation is defined as:

xk = x2
k−1 cos(xk−1) + vk−1,

zk =
nx
√

1 + xT
k x + ek,
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where cos(xk−1) = [cos(x1,k−1), cos(x2,k−1), · · · , cos(xnx ,k−1)]
T . Here we set the dimensions nx = 20.

vk−1 and ek are the independent Gaussian noise with zero means and covariance Inx and 1, respectively.
The true initial value is x0 = 0.1× 1nx×1, and the initial estimate x̂0 used in the filters is generated

randomly from N(x̂0; x0, P0), where the initial covariance is P0 = Inx . The mean squared error (MSE)
for each Monte-Carlo run is defined as follows:

MSEi =
1
n

n

∑
k=1

[
1

nx
(xk − x̂k,i)

T(xk − x̂k,i)

]
, (32)

Accordingly, the average MSE can be written as follows:

MSE =
1
L

L

∑
i=1

MSEi, (33)

where the Monte-Carlo runs L = 100. The MSEs of the algorithms are shown in Figure 1.Appl. Sci. 2018, 8, x FOR PEER REVIEW  8 of 14 
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As is shown in Figure 1, the MSEs of the OSCL-CKFs are smaller than those of the CKF and the SCKF,
which means that OSCL points can provide more accurate performance in this highly dimensional problem.
It can be also seen that the MSEs of the OSCL-CKF4 and OSCL-CKF3 are almost the same, which illustrates
that the accuracy of the filter will hardly be improved if the order further increases.

4.2. Bearings-Only Tracking Problem

Bearings-only tracking is a typical nonlinear problem which estimates the position and the velocity
of a target from noisy bearing measurements.

As is shown in Figure 2, we assume that the target is in uniform linear motion with acceleration

disturbance. The state vector at time index k can be expressed by xt
k = [xt

k, yt
k,

.
xt

k,
.
yt

k]
T

, where

xp
k =

[
xt

k, yt
k
]T is the position and

.
xv

k =
[ .

xt
k,

.
yt

k

]T
is the velocity vector. The true state of the observation

platform is xo
k =

[
xo

k , yo
k,

.
xo

k,
.
yo

k

]T
, and the state vector in the relative own-ship reference at time index k

can be defined as follows:
xk , xt

k − xo
k = [xk, yk,

.
xk,

.
yk]

T
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The system model is written as follows:{
xk = Fxk−1 + vk − uk−1,k

zk = h(xk) = arctan yk
xk

+ ek
, (34)

where uk−1,k is the deterministic input and F is the state transition matrix, which can be given by:

uk−1,k =


xo

k − xo
k−1 − ∆

.
xo

k−1
yo

k − yo
k−1 − ∆

.
yo

k−1.
xo

k −
.
xo

k−1.
yo

k −
.
yo

k−1

, F =

1 0 ∆ 0
0 1 0 ∆
0 0 1 0
0 0 0 1

where ∆ = 1min is the measurement interval. The standard deviation of measurement noise ek is σe,
and vk is the process noise vector with a covariance matrix of:

Q = ΓTΓ · q

where q = 10−10 km2/s3 represents the intensity of the process noise, and Γ is the noise drive matrix:

Γ =


∆2/2 0

0 ∆2/2
∆ 0
0 ∆


A single observer is assumed to be maneuvering, where the start coordinate is (0,0). From 0 min to

12 min, the observer is in uniform linear motion, where the speed is 3 knots and the course is 2.44 rad
(“rad”denotes radian). From 13 min to 17 min, the observer is in uniform turning motion, where the
speed is 3 knots and the turn rate is 0.52 rad. From 18 min to 30 min, the observer is in uniform linear
motion, where the speed is 3 knots and the course is 5.06 rad.

The root mean square error in position (RMSEpos) at time index k is defined as follows:

RMSEpos,k =

√√√√ 1
L

L

∑
j=1

[
(x̂t

k,j − xt
k,j)

2
+ (ŷt

k,j − yt
k,j)

2
]
, (35)

where L = 100. Similarly, the RMSE in velocity (RMSEvel) can be easily written according to the
RMSEpos. The mean squared error in position (MSEpos) for each Monte-Carlo run is defined as follows:

MSEpos,i =
1
n

n

∑
k=1

[(
xt

k − x̂t
k|k,i

)2
+
(

yt
k − ŷt

k|k,i

)2
]

(36)
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 = − + −  j ,  (35) 

where . Similarly, the RMSE in velocity (RMSEvel) can be easily written according to the 
RMSEpos. The mean squared error in position (MSEpos) for each Monte-Carlo run is defined as 
follows: 
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Figure 2. Model of bearings-only tracking. 

In the Monte-Carlo test, the target begins at the same state every time for a fair comparison. The 
scale parameter  κ  of the UKF is set as 3 xn− , and all the algorithms are set at the same initial 

conditions. The initial range estimate follows 2~ ( , )rr N σr , where r  is the true range. The initial 

bearing follows 2
0 0~ ( , )ez N z σ , where 0z  is the true bearing. Similarly, the initial velocity estimate 

2~ ( , )ss N s σ , where s  is the true initial target velocity. The target course estimate follows 
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Figure 2. Model of bearings-only tracking.
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In the Monte-Carlo test, the target begins at the same state every time for a fair comparison.
The scale parameter κ of the UKF is set as 3 − nx, and all the algorithms are set at the same initial
conditions. The initial range estimate follows r ∼ N

(
r, σ2

r
)
, where r is the true range. The initial

bearing follows z0 ∼ N
(
z0, σ2

e
)
, where z0 is the true bearing. Similarly, the initial velocity estimate

s ∼ N
(
s, σ2

s
)
, where s is the true initial target velocity. The target course estimate follows c ∼ N

(
c, σ2

c
)
,

where c is the true target course. The parameters in the simulation scenario are shown in Table 1.
(“mrad” denotes milliradian in Table 1).

Table 1. The parameters of the tracking.

Parameters r s c σr σe σc

Value 5 km 4 knots −2.44 rad 2 km 17.5 mrad π
√

12

The initial estimate state and initial estimate covariance can be obtained according to Wu et al. [31].
Hence, the RMSEpos and RMSEvel are shown in Figures 3 and 4, respectively.
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The MSEpos for different noise intensities are shown in Figure 5.Appl. Sci. 2018, 8, x FOR PEER REVIEW  11 of 14 
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As is shown in Figure 3, all algorithms tend to be convergent, with the measurement times
increasing. During the Monte-Carlo test, the performance of CKF is better than that of UKF.
One explanation is that the negative κ may lead to non-positive definiteness of the covariance matrices
when nx > 3. Moreover, the OSCL-CKF-based algorithms perform better than the other algorithms.
As the first order OSCL-CKF (OSCL-CKF1) provides better performance over the SCKF, it is proven
that the orthogonal transformation can efficiently modify the uncertain higher order terms and relieve
the nonlocal sampling effects. On the other hand, the high order OSCL-CKFs generally outperform the
low order OSCL-CKF. At the end of the Monte-Carlo test, the RMSEpos of the OSCL-CKF4 is 3.2%
better than that of the OSCL-CKF1, and 5.2% better than that of the SCKF. As is shown in Figure 4,
the differences in the velocity estimate accuracy among these algorithms are not as obvious as in the
position estimate. This is mainly due to the uniform linear motion of the target.

As is shown in Figure 5, the MSEspos of the filters become larger with the increasing of the
noise intensity. In Case 1, the OSCL-CKF4 improves the CKF by 9.7%, and in Case 3, the OSCL-CKF4
improves the CKF by 13.3%, which means that the OSCL-CKFs show better performance to reduce the
influence of the noise.

5. Conclusions

In order to improve the filtering accuracy of cubature Kalman filters in nonlinear estimation
systems, this paper utilizes the orthogonal simplex Chebyshev-Laguerre polynomial to calculate the
numerical integration of the cubature Kalman filter. The performance of the nonlinear filtering problem
can be improved based on the orthogonal method, which is introduced to the spherical simplex
rule without computational burden. Furthermore, unlike some high-degree sample points-based
filtering algorithms, the filter improves the accuracy according to the order of the Chebyshev-Laguerre
polynomials. This is an important observation because the computational cost increases linearly
with the increase of state dimensions nx, which is more practical. In our simulation, the accuracy is
improved slowly when the order exceeds 4. The choice of the order also depends on the accuracy
request and the specific application. Furthermore, the OSCL-CKF has potential applications in other
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nonlinear systems of different fields. In future work, how to design orthogonal matrix suitably and
how to choose the order of the CL polynomials in different application should be further studied.
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Abbreviations

x vector of the state
xk|k−1 x of the prediction
xk|k x of the update at time index k
z vector of the measurement
zk|k−1 z of the prediction
zk the measurement at time index k
vk−1 vector of the process noise
ek vector of the measurement noise
Qk−1 covariance of the process noise
Rk covariance of the measurement noise
P covariance of the state
Pk|k−1 P of the prediction
xk P of the update at time index k
Pzz,k|k−1 innovation covariance
xxz,k|k−1 cross-covariance
Dk−1 history of input-measurement pairs up to k − 1
Kk Kalman gain
y direction vector
r radius
αj j-th sample point of the regular simplex
γ a set of the orthogonal transformation points
γi i-th orthogonal transformation point
B orthogonal matrix
Bi orthogonal sample point
wc

k weight associated with k-th quadrature point
ws

j weight associated with αj

nx dimension of state space
nz dimension of measurement space
nc order of the Chebyshev-Laguerre polynomials
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