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Abstract: In order to explore the moduli decay patterns of asphalt mixtures under different loading
conditions, the nonlinear fatigue damage model was implemented in order to simulate the moduli
decay patterns. Then, the direct tensile, indirect tensile, and uniaxial compression fatigue tests
were employed under four kinds of stress levels with four parallel tests. The specimens of AC-13C
Styrene-butadiene-styrene (SBS) modified mixtures were manufactured. Based on the test results,
the decay patterns of the moduli during fatigue tests under different stress states were revealed,
and the parameters of the damage model under different test conditions were obtained. By changing
the values of the model parameters under a certain loading condition, fatigue curves were obtained.
Then, the fatigue properties of asphalt mixtures under different stress states could be compared and
analyzed directly. The result indicated that the evolution curves of fatigue damage for the direct
tensile test, the indirect tensile test, and the uniaxial compression test all experienced three stages,
which indicates that the fatigue damage characteristic of asphalt mixtures is non-linear. The decay
patterns of the direct tensile moduli and the tensile moduli measured by the indirect tensile test are
similar. The decay patterns of the uniaxial compression and the compression moduli measured by
indirect tensile test are similar. The decay patterns of tensile and compressive moduli are obviously
different. At the same cycle ratio state, the position of the decay curve for the compression moduli
is higher than that of the tensile moduli. It indicates that the tensile failure is the main reason of
the fatigue damage for asphalt mixture. The new analysis method of fatigue damage was proposed,
which provides a possibility to compare the fatigue results that were obtained from different loading
conditions and different specimen sizes.
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1. Introduction

Fatigue cracking is one of the most common distresses in asphalt pavement [1–3]. Fatigue cracking
of asphalt pavement is an important consideration in asphalt mixture design and the structural design
of flexible pavements [4,5]. Fatigue life design and maintenance strategies employ a challenging task
due to the inherent nonlinear viscoelastic properties of asphalt mixtures and the complex cracking
behavior observed in the field [6–10]. The damage appeared and accumulated gradually during the
service life of asphalt pavement [11]. Under the action of cyclical traffic loads, the damage will increase
and the pavement would suffer from the fatigue failure. Therefore, the service life of asphalt pavement
would be decreased. More and more studies of fatigue performance for asphalt mixtures under the

Appl. Sci. 2018, 8, 840; doi:10.3390/app8050840 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-6576-8200
http://dx.doi.org/10.3390/app8050840
http://www.mdpi.com/journal/applsci
http://www.mdpi.com/2076-3417/8/5/840?type=check_update&version=3


Appl. Sci. 2018, 8, 840 2 of 16

traffic and environmental conditions have been conducted [12,13]. In order to ensure the durability and
usability of asphalt pavement, many researchers have been conducting the works of evaluation of fatigue
characteristics via varied fatigue test methods in different specimen’s size and different stress levels.

Xie Jun suggested that the direct tension strength got larger at higher strain loading rate [14].
Hyung Suk Lee conducted an indirect tensile test and determined the fundamental viscoelastic
material property, which means that the strength of asphalt mixture were related to the temperature
and loading time [15]. Waleed A. Zeiada employed the uniaxial compression test and observed that
the fatigue endurance limit value increases by the increasing of temperature, asphalt content, and rest
periods, whereas it decreased when the volume of air voids increases [16]. Different test methods
produce different results. So far, three traditional test methods have been employed extensively: the
direct tensile test, the indirect tensile test, and the uniaxial compression test. The direct tensile test
refers to the test of a material under the action of a uniaxial tensile load. Under the assumption of
homogeneity, the stress level or the stress ratio is same on each cross-section of the specimen during
the test process, so the fracture position will appear at the weakest cross-section. The failure will occur
for the accumulation of the micro-cracks [14]. The indirect tensile test (IDT, also called splitting test) is
in a two-dimensional stress state. The lateral direction lies in the tension state, while the longitudinal
direction lies in the compression one. It can simulate the stress state of asphalt pavement under traffic
loads. The tensile stress near the crack area of the IDT specimen is uniform relatively [17]. The uniaxial
compression test is also a one-dimensional stress test method. During the process of the uniaxial
compression test, the stress level and the stress ratio are same on each cross-section of the specimen.
The stress state on each cross-section is the one-dimensional compression stress state [18].

Fatigue test results of asphalt mixtures are sensitive to different test conditions. Different test
methods will have the different loading conditions, which will lead to the different stress states for
the specimen of asphalt mixtures. For each test method, the test results of fatigue are not correlated
and are inconsistent with others. Moreover, the difference of fatigue test results is still relatively large.
Therefore, even to the same material, the fatigue properties from the different test methods cannot be
compared. So far, it cannot form a unified evaluation and comparison method among different fatigue
test results of asphalt mixtures. Furthermore, the fatigue tests of asphalt mixtures are sensitive to the
test types and size of the specimens [19,20].

The main purpose of this paper is to reveal the decay patterns of different modulus for asphalt
mixture in fatigue test, which can be employed to improve the design accuracy of asphalt pavement.

2. Materials Preparation and Test Method

2.1. Materials

The main materials of the tests were the Styrene-butadiene-styrene(SBS) modified asphalt and
the limestone aggregate. The AC-13 dense graded asphalt mixture was employed. The test results of
asphalt are shown in Table 1. The test results of limestone aggregate are shown in Table 2. The gradation
curve of dense graded asphalt mixture is shown Figure 1.
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Table 1. Test result of Styrene-butadiene-styrene (SBS) modified asphalt.

Test Projects Test Standard: JTG F40-2004 (China) [21]

Technical
Requirements Test Results Test Methods

Penetration (25 ◦C, 100 g, 5 s) (0.1 mm) 30~60 53.9 T 0604-2000
Penetration index PI ≥0 0.533 (r = 0.997) T 0604-2000

Ductility (5 cm/min, 5 ◦C) (cm) ≥20 36.3 T 0605-1993
Softening point (Ring ball) (◦C) ≥60 72.5 T 0606-2000

Flash point (◦C) ≥230 265 T 0611-1993
Solubility (%) ≥99 99.9 T 0607-1993

135 ◦C kinematic viscosity (Pa.s) ≤3 2.37 T 0620-2000

Rolling Thin Film Oven Test
(RTFOT) 163 ◦C 85 min

Mass loss (%) ≤±1.0 0.23 T 0609-1993
Residual penetration ratio (25 ◦C) (%) ≥65 75.2 T 0604-2000

Residual ductility (5 ◦C) (cm) ≥15 23.4 T 0605-1993

Table 2. Physical property of aggregates.

Test Item Technical
Requirements [22] Test Results Test Methods

Crushed stone value (%) ≤28 15.6 T 0316-2005
Los Angeles weared stone value (%) ≤30 19.7 T 0317-2005
Apparent relative density (g/cm3) ≥2.5 2.6 T 0321-2005

Water absorption (%) ≤2.0 1.4 T 0304-2005
Content of flat and elongated particles in coarse aggregate (%) ≤15 8 T 0312-2005

<0.075 mm particle content (Washing methods) (%) ≤1 0.2 T 0310-2000
Asphalt adhesion/grade ≥4 6 T 0616-1993

Firmness (%) ≤12 5 T 0314-2000
Content of soft stone (%) ≤5 2.5 T 0320-2000

The optimum asphalt-aggregate ratio was 5.2%, which was obtained by the Marshall Tests, and
the test results are shown in Table 3.

Table 3. Marshall Test results at optimal asphalt content.

Asphalt Aggregate Ratio (%)

Bulk
Specific
Gravity

(g·cm−3)

Volume of
Air Voids
VV (%)

Voids Filled
with

Asphalt
VFA (%)

Voids in
Mineral

Aggregate
VMA (%)

Marshall
Stability

(kN)

Flow
Value

(0.1 mm)

5.2% 2.44 4.5 67.2 16.1 12.7 27.9
Specification Requirement [23] / 3~6 55~70 >12.5 >8 15~40

2.2. Specimens Preparation

According to the Chinese Standard Test Methods of Asphalt and Asphalts Mixtures for Highway
Engineering (JTG E20-2011) [23], the block samples of 400 mm × 300 mm × 50 mm were fabricated
through the equipment of vibrating compaction. Then, the beam specimens were cut from block
samples into the size of 250 mm × 50 mm × 50 mm for the direct tensile tests, as shown in
Figure 2a. During the uniaxial compression test, the Superpave Gyratory Compactor (SGC) was
employed, which can control the volume of air voids of asphalt mixture more accurately. The previous
studies [24,25] showed that the stress concentration would be occurred when the height is less than
50 mm. The specimens for uniaxial compression test were manufactured with 100 mm in height and
100 mm in diameter, which was shown in Figure 2b, and the indirect tensile specimens were prepared
by cutting the top and the bottom surface of the specimens of uniaxial compression test to the size of
100 mm in height and 60 mm in diameter, which was shown in Figure 2c. All of the specimens were
put in an environment chamber at 15 ◦C for 24 h before the tests. There were four parallel tests for
each type of test.
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Figure 2. (a) Direct tensile test specimen; (b) Uniaxial compression specimen; and, (c) Indirect
tensile specimen.

2.3. Test Method

In this paper, some influencing factors were considered for the fatigue test. The external factors,
such as stress ratio, test temperature, loading frequency, and loading waveform were considered in the
fatigue test. The internal factors, such as the fatigue test method, asphalt varieties, asphalt content,
mineral type, mixture gradation, porosity, etc. were considered in the mix design. The specific test
conditions are shown in Table 4.

Table 4. Influencing factors of fatigue test and the levels of each factor.

Factor Type Factor Name Factor Level Number Levels of Factor

External factors
Stress ratio 1 0.4

Test temperature (◦C) 1 15
Load frequency(Hz) 1 10

Internal factors

Fatigue test method 3

Direct tensile test,
Indirect tensile test,

Uniaxial compression
test.

Asphalt types 1 70
Asphalt content (%) 1 5.2%

Mixing gradation (AC) 1 AC-13
Volume of air voids (%) 1 4.5%

The process of the three kinds of fatigue tests is shown in Figure 3.
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3. Test Result and Analysis

The fatigue test results of the direct tensile, the uniaxial compression, and the indirect tensile were
shown in Tables 5–7, respectively.

Table 5. Test result of direct tensile.

Stress Level
(MPa)

Maximum Load Value
(KN) Stress Ratio Average Fatigue Life

(Times) CV%

0.25 0.625 0.223 398,879 0.176
0.5 1.25 0.446 41,129 0.203
1 2.5 0.892 3686 0.188

1.5 3.75 1.338 993 0.176

(CV is the coefficient of variation).

Table 6. Test result of uniaxial compression.

Stress Level
(MPa)

Maximum Load Value
(KN) Stress Ratio Average Fatigue Life

(Times) CV%

2 15.7 0.178 797,470 0.098
2.5 19.625 0.223 198,977 0.074
3 23.55 0.268 91,067 0.086

3.5 27.475 0.312 26,734 0.105

(CV is the coefficient of variation).

Table 7. Test result of indirect tensile.

Stress Level
(MPa)

Maximum Load Value
(KN) Stress Ratio Average Fatigue Life

(Times) CV%

0.25 2.386 0.11 1,283,789 0.021
0.5 4.772 0.22 50,062 0.166
1 9.544 0.439 2236 0.079

1.5 14.315 0.659 435 0.167

(CV is the coefficient of variation).

3.1. The Establishment of the Decay Model for Moduli

The conventional S-N fatigue Equation is widely used to analyze the fatigue performance of
asphalt mixtures [26,27]. Chaboche [28] defined the traditional S-N fatigue Equation as:

N f = k(
1
t
)

n
(1)

or

N f = k(
1
σ
)

n
(2)

where, Nf is fatigue life, t is stress ratio, σ is stress level. K, and n are the material parameters of asphalt
mixtures.

According to Equations (1) and (2), the fatigue curves characterized by stress ratios and stress
levels were shown in Figure 4a,b, respectively.
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From Figure 4, it can be observed that the S-N fatigue curves of asphalt mixtures show great
difference under different stress conditions. It is difficult to evaluate the fatigue performance of asphalt
mixtures in different test methods [7]. Given that, in this paper, the nonlinear fatigue damage model
was implemented to simulate the moduli decay patterns. Defining the moduli as the damage variable,
the damage model based on the moduli decay was established.

The damage variable could be expressed, as shown in Equation (3).

D(N) = 1− E(N)

E0
(3)

where, D(N) is damage variable, E(N) is modulus in loading cycle Nf the specimen, and E0 is the initial
value of modulus.

Chaboche [28] established another fatigue damage model. As shown in Equation (4).

D(N) = 1−
[

1− (
N
N f

)

1
1−α

] 1
1+γ

(4)

where, Nf is the fatigue life, N is the loading cycles, and α and γ are the material parameters related to
the stress.
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Based on Equations (3) and (4), in this paper, Equation (5) is deduced as the decay Equation of the
moduli for asphalt mixtures.

E(N)

E0
=

1−
(

N
N f

) 1
1−α


1

1+γ

(5)

The fitting parameters are replaced by m, n, where, m = 1
1−α , n = 1

1+γ .
Equation (5) can be simplified as:

E(N)

E0
=

[
1−

(
N
N f

)m]n

(6)

3.2. The Initial Values of Moduli at Different Fatigue Stress Levels

The moduli of 50th cycle is widely used as the initial moduli of fatigue test [29]. However,
the fatigue lives of the same material vary at different stress levels, so the initial moduli values that
were obtained by this method has a large deviation. In this paper, the initial moduli E0 was defined as
the average one of the 10 moduli, which were near the cycle ratio N/Nf = 0.01. Because the specimen
of the indirect tensile test is in the state of two-dimensional stress state, the pattern of double moduli
decay of the indirect tensile test was considered. The average initial moduli values of four parallel
specimens under different stress state and different stress levels are summarized in Table 8:

Table 8. The initial moduli values in different fatigue tests.

Stress Level/MPa 0.25 0.5 1 1.5 2 2.5 3 3.5

Tensile moduli
E0 (MPa) 1384 1686 2121 2407 / / / /
CV (%) 0.054 0.055 0.058 0.045 / / / /

Compression moduli E0 (MPa) / / / / 8852 10,102 11,167 11,943
CV (%) / / / / 0.021 0.024 0.023 0.055

Indirect tensile moduli
E0 (MPa) 3560 4027 4585 5057 / / / /
CV (%) 0.011 0.019 0.014 0.019 / / / /

Compression moduli measured
by indirect tensile test

E0 (MPa) 7926 8835 9975 10,760 / / / /
CV (%) 0.015 0.018 0.018 0.014 / / / /

Tensile moduli measured by
indirect tensile test

E0 (MPa) 2547 2935 3464 3858 / / / /
CV (%) 0.024 0.021 0.027 0.012 / / / /

From Table 8, it can be observed that the initial moduli value varies in different stress levels.
It also varies in the different fatigue tests, which have the different stress states. However, it shows a
common characteristic that the initial values of the fatigue moduli increase with the increase of the
stress levels. The initial compression moduli are larger than that of the tensile moduli.

3.3. The Critical Value of Moduli at Different Fatigue Stress Levels

During the fatigue tests, the moduli decrease with the increase of the load cycles until the failure
of the specimens. The critical value refers to the damage value when the specimen occurs fatigue
failure at the end of the fatigue test. In this paper, the average value of the moduli in the last five
loading cycles in the fatigue tests were taken as the critical moduli value. The tensile, compressive,
and indirect tensile moduli of asphalt mixtures, which is based on the indirect tensile test, and the
calculation formula was derived on the Hooke’s law in two-dimensional stress states [7]. The average
critical moduli values of the four parallel specimens under different stress states and different stress
levels are summarized in Table 9.
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Table 9. The critical moduli value of fatigue test.

Stress Level (MPa) 0.25 0.5 1 1.5 2 2.5 3 3.5

Tensile moduli
Emin (MPa) 609 716 869 961 / / / /

CV (%) 0.049 0.057 0.052 0.051 / / / /

Compression moduli Emin (MPa) / / / / 7480 8086 8528 8787
CV (%) / / / / 0.021 0.022 0.009 0.010

Indirect tensile moduli
Emin (MPa) 895 958 1040 1106 / / / /

CV (%) 0.021 0.019 0.053 0.042 / / / /

Compression moduli measured
by indirect tensile test

Emin (MPa) 5073 5593 6184 6563 / / / /
CV (%) 0.027 0.025 0.018 0.018 / / / /

Tensile moduli measured by
indirect tensile test

Emin (MPa) 560 616 693 733 / / / /
CV (%) 0.036 0.024 0.036 0.021 / / / /

From Table 9, the similar patterns of variation can be observed that the critical moduli value
varies in different stress levels. It also varies in the different fatigue stress conditions. The common
characteristic in the different stress states is that the critical values increase with the increase of the
stress levels. The critical compression moduli are larger than that of the tensile moduli.

3.4. Analysis of the Fitting Results of Fatigue Tests under Different Stress Levels

In order to compare the moduli decay pattern under the same stress state, the tensile moduli
and compression moduli were compared, respectively. Real-time ratio E(N)/E0 for tensile moduli,
as measured by direct tensile test and indirect tensile tests, was fitted with the cycle ratio by Equation (6).
The fitting results of tensile moduli from the direct tensile and the indirect tensile fatigue tests in
different stress levels are shown in Figures 5 and 6, respectively.Appl. Sci. 2018, 8, x FOR PEER REVIEW  9 of 16 
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It can be noticed from Figures 5 and 6 that the decay patterns of tensile moduli that were
obtained from these two test methods are similar. There are three stages: migration stage, steady stage,
and destructive stage, and the whole process is nonlinear.

However, the decay rates of different stress state are different, which are caused by different
fatigue resistance of asphalt. In the direct tensile test, the specimen is within a uniform tensile condition.
The main factors determining its fatigue properties are the cohesion of the asphalt mortar (the adhesion
of the aggregate with the asphalt and its internal friction based on the aggregate gradation). The effect
of intrusion between aggregates is relatively weak [30]. During the indirect tensile tests, the transverse
tensile fatigue properties mainly depend on the adhesion (between asphalt mortar and aggregates)
and the internal frictional resistance.

Figures 5 and 6 reflect the decay pattern of different stress levels under different stress states.
In order to compare the decay pattern more obviously, this paper compared the decay pattern of tensile
moduli under the same stress level. The parameters of the fitted curves for tensile stress were shown
in the Table 10:

Table 10. Fitting parameters of the tensile moduli decay curves under different test conditions.

Stress Level (MPa) Parameters 0.25 0.5 1 1.5

Tensile moduli
m 0.222 0.265 0.337 0.413
n 0.229 0.235 0.248 0.2636

Tensile moduli measured by
indirect tensile test

m 0.638 0.743 0.964 1.255
n 0.503 0.586 0.732 0.844

The tensile moduli measured by indirect tensile test and direct tensile under the same stress level
1 MPa were compared. As shown in Figure 7:
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In order to compare the decay pattern more clearly, the decay Equation is simplified.
Equation (6) is simplify to y = (1− χm)n, then,

y′ = −mnχm−1(1− χm)n−1 (7)

y′′ = m2nχ2m−2(n− 1)(1− χm)n−2 −mnχm−2(m− 1)(1− xm)n−1 (8)

where, y is the ratio of the modulus of the material to the initial modulus of the undamaged state
after loading the specimen to N, χ is the ratio of the loading cycles to the fatigue life, m and n are the
material parameters related to the stress, y′ is the first derivative of y′, and y′′ is the two derivative
of y′.

While substituting parameters under the stress level of 1 MPa into Equation (8), the inflection
point can be calculated, then the tangent line at the inflection point position can be adopted to compare
the tangent slope. The result is as follows:

It can be noticed from Figure 7 and Table 11 that the decay patterns of tensile moduli, as measured
by the indirect tensile test and the direct tensile test are nonlinear. The moduli parameters are different.
The inflection point of direct tensile test is 0.381. The decay rate of direct tensile moduli decreases
gradually before the inflection, while it increases after the inflection point. The inflection point of
tensile moduli, as measured by the indirect tensile test is 0.114. In addition, the decay rate shows an
increasing trend. There are three stages of migration stage, steady stage and destructive stage in the
decay curves of the direct tensile tests and the indirect tensile tests. The decay rate of the direct tensile
moduli is more quickly than that of the indirect tensile moduli during the migration state, but it is
contrary during the steady stage. In addition, the decay rate of the direct tensile moduli is quicker
than that of the indirect tensile moduli at the destructive stage.

Table 11. Inflection points and slopes of decay curves of tensile moduli under different test conditions.

Test Type Inflection Point Tangency Point Tangent Slope

Direct tensile 0.381 (0.381, 0.727) −0.416
Tensile moduli measured by indirect tensile test 0.114 (0.114, 0.908) −0.791

Similarly, the decay patterns of the compression moduli were fitted as shown in Figures 8
and 9, respectively.
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From Figures 8 and 9, it can be observed that the decay patterns of compression moduli also exist
three stages of migration stage, steady stage, and destructive stage, and the patterns are nonlinear. But,
the decay rates are different under different stress state.

For uniaxial compression test, the specimen is in a compression stress state. The skeleton structure,
composition form, and friction coefficient of aggregates determine the inter-particle frictional resistance.
The main factors determining its fatigue properties are the cohesion of the aggregate particles [31].
In the indirect tensile test, fatigue properties mainly depend on the interlocking effect of aggregate
when the specimens are under the compression state [32]. In summary, when the materials are in a
different stress state, the factors that determine the fatigue properties are different.

In order to compare the decay pattern more obviously, this paper compared the decay pattern of
compression moduli under same stress level. The parameters of the fitted curves for different stress
levels are shown in Table 12:

Table 12. Fitting parameters of fatigue moduli decay curves under different test conditions.

Stress Level (MPa) Parameters 0.25 0.5 1 1.5 2 2.5 3 3.5

Compression moduli m / / / / 0.087 0.106 0.144 0.319
n / / / / 0.068 0.084 0.087 0.097

Compression moduli measured
by indirect tensile test

m 1.108 1.246 1.472 1.938 / / / /
n 0.191 0.203 0.215 0.223 / / / /

It is difficult to compare the moduli decay patterns. In this paper, the parameters m and n of
compression moduli were fitted with stress levels. The fitting results were shown in Equations (9)
and (10).

m(σ) = 0.086 + 0.00002e2.74521σ (9)

n(σ) = −23.514 + 23.549e0.00075σ (10)

As there are four stress level (0.25, 0.5, 1, 1.5) of compression moduli, as measured by the indirect
tensile test. Taking σ = 1 MPa into Equations (9) and (10), respectively, then the parameters m and n of
uniaxial compression moduli under 1 MPa can be obtained, as shown in Table 13.

Table 13. Fitting parameters of fatigue moduli decay curve in different tests method under 1 MPa
stress level.

Test Type m n

Compression moduli 0.086 0.053
Compression moduli measured by indirect tensile test 1.472 0.215
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The compression moduli measured by indirect tensile test and uniaxial compression moduli under
1 MPa stress level were compared, as shown in Figure 10. The decay patterns of the two compression
moduli are experienced in three stages: migration stage, steady stage, and destructive stage, and the
whole process is nonlinear.
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Figure 10. Decay pattern of compression moduli.

In order to compare the decay rate, substituting the parameters in Table 13 into Equation (8),
the inflection point of the decay curve can be calculated. Then, the tangent line at the inflection point
position can be implemented to compare the tangent slope. The result is as follows:

From Figure 10 and Table 14, it can be notified that the compression moduli decay pattern of
uniaxial compression and indirect tensile similarly exist three stages of migration stage, steady stage,
and destructive stage, and the patterns are nonlinear, too. The inflection point of uniaxial compression
moduli is 0.370. The decay rate decreases before the inflection point, while it increases after the
inflection point. There is no inflection point of indirect tensile moduli. In order to compare the decay
rate on same position, the tangency point of indirect test is also taken as 0.37. It can be observed that
the tangent slope of indirect test is larger than the uniaxial compression test on tangency point position.
During the migration stage, the decay rate of uniaxial compression is faster than that of the indirect
tensile. During the steady stage, the decay rate of uniaxial compression is slower than that of the
indirect tensile. The decay rate of uniaxial compression is also faster than that of the indirect tensile
during the destructive stage.

Table 14. Inflection points and slopes of decay curves of compression moduli under different
test conditions.

Test Type Inflection Point Tangency Point Tangent Slope

Uniaxial compression 0.370 (0.370, 0.877) −0.120
Compression moduli measured by indirect tensile test - (0.370, 0.945) −0.243

As the stress level of tensile moduli and compression moduli all is 1 MPa, the decay pattern of
tensile moduli and compression moduli were compared simultaneously. The values of m and n in
Tables 10 and 13 were substituted into Equation (6). Then, the fatigue moduli decay patterns were
shown in Figure 11.



Appl. Sci. 2018, 8, 840 14 of 16

Appl. Sci. 2018, 8, x FOR PEER REVIEW  14 of 16 

As the stress level of tensile moduli and compression moduli all is 1 MPa, the decay pattern of 

tensile moduli and compression moduli were compared simultaneously. The values of m and n in 

Tables 10 and 13 were substituted into Equation (6). Then, the fatigue moduli decay patterns were 

shown in Figure 11. 

 

Figure 11. Fatigue moduli decay patterns. 

From Figure 11, it can be observed that the fatigue moduli decay curves exist in the three stages 

of migration stage, steady stage, and destructive stage. The fatigue damage characteristics of asphalt 

mixtures are non-linear. 

However, on one hand, the decay curves of fatigue moduli under different stress levels are quite 

different. In one-dimensional stress states, the tensile moduli and compression moduli are also quite 

different. In two-dimensional stress states, the difference is obvious between the compression moduli 

and tensile moduli, which were both obtained from the indirect tensile test. On the other hand, the 

direct tensile moduli are similar to the tensile moduli obtained from the indirect tensile test. The 

compression moduli of uniaxial compression test are similar to the compression moduli that were 

obtained from the indirect tensile test. 

In addition, it can be found from Tables 11 and 14 that the inflection point of tensile moduli 

measured by the indirect tensile is the smallest and that of the direct tensile are the maximum. At the 

tangent point, the uniaxial compression has the lowest moduli decay slope and the tensile moduli, as 

measured by the indirect tensile test, has the largest moduli decay slope. It can be concluded that the 

decay rate of the tensile moduli measured by the indirect tensile test is faster than the uniaxial 

compression moduli at the tangent point during the course of the fatigue tests.  

It also can be observed that the position of the decay curve for the compression moduli is higher 

than that of the tensile moduli at the same cycle ratio state. It can be concluded that the decay rate of 

the tensile moduli is faster than that of the compression moduli during the course of the fatigue tests, 

which indicates that the tensile failure is the main reason of the fatigue damage for asphalt mixture. 

4. Summary and Conclusions 

The fatigue tests and analysis of asphalt mixture under different loading conditions and stress 

levels were carried out. The following conclusions can be drawn from above: 

(1) Under different loading conditions, the S-N fatigue curves for the direct tensile, indirect tensile 

and uniaxial compression are different. Therefore, it is difficult to compare the fatigue resistance 

of the same asphalt mixtures in the different stress conditions, according to the traditional 

method. 

(2) There are three stages in the moduli decay curves under different stress levels and conditions, 

which are migration, stabilization, and destruction. The decay patterns are nonlinear. 

Figure 11. Fatigue moduli decay patterns.

From Figure 11, it can be observed that the fatigue moduli decay curves exist in the three stages
of migration stage, steady stage, and destructive stage. The fatigue damage characteristics of asphalt
mixtures are non-linear.

However, on one hand, the decay curves of fatigue moduli under different stress levels are
quite different. In one-dimensional stress states, the tensile moduli and compression moduli are also
quite different. In two-dimensional stress states, the difference is obvious between the compression
moduli and tensile moduli, which were both obtained from the indirect tensile test. On the other
hand, the direct tensile moduli are similar to the tensile moduli obtained from the indirect tensile test.
The compression moduli of uniaxial compression test are similar to the compression moduli that were
obtained from the indirect tensile test.

In addition, it can be found from Tables 11 and 14 that the inflection point of tensile moduli
measured by the indirect tensile is the smallest and that of the direct tensile are the maximum. At the
tangent point, the uniaxial compression has the lowest moduli decay slope and the tensile moduli,
as measured by the indirect tensile test, has the largest moduli decay slope. It can be concluded that
the decay rate of the tensile moduli measured by the indirect tensile test is faster than the uniaxial
compression moduli at the tangent point during the course of the fatigue tests.

It also can be observed that the position of the decay curve for the compression moduli is higher
than that of the tensile moduli at the same cycle ratio state. It can be concluded that the decay rate of
the tensile moduli is faster than that of the compression moduli during the course of the fatigue tests,
which indicates that the tensile failure is the main reason of the fatigue damage for asphalt mixture.

4. Summary and Conclusions

The fatigue tests and analysis of asphalt mixture under different loading conditions and stress
levels were carried out. The following conclusions can be drawn from above:

(1) Under different loading conditions, the S-N fatigue curves for the direct tensile, indirect tensile
and uniaxial compression are different. Therefore, it is difficult to compare the fatigue resistance
of the same asphalt mixtures in the different stress conditions, according to the traditional method.

(2) There are three stages in the moduli decay curves under different stress levels and conditions,
which are migration, stabilization, and destruction. The decay patterns are nonlinear.

(3) The decay patterns of the direct tensile moduli and the tensile moduli, as measured by the indirect
tensile test, are similar. At the same time, the decay patterns of the uniaxial compression and the
compression moduli, as measured by indirect tensile test, are similar. Nevertheless, the decay
patterns of the tensile and the compressive moduli are obviously different.
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(4) There are significant differences in the tensile and compression characteristics of asphalt mixtures.
For the flexural fatigue test, the decay rate of the tensile modulus at the bottom of the specimen is
greater than that of the compression modulus at the top of the specimen under the same cyclic
ratio condition. So, it exhibits tensile stress failure characteristics during the flexural fatigue test
of the asphalt mixture.
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