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Abstract: Reachability queries plays a crucial role in accessing relationships between nodes in
tree-structured data. Previous studies have proposed prime number labeling schemes that answer
reachability queries using arithmetic operations. However, the prime numbers in these schemes
can become very large when a tree contains a considerable number of nodes; thus, it is not scalable.
Recently, a repetitive prime number labeling scheme that reduces space requirements was proposed.
Unfortunately, it suffers from slow query processing, owing to the complexity of its reachability test.
In this paper, we propose a more efficient method for answering reachability queries in a repetitive
prime number labeling scheme. The results of experiments using real-world XML datasets show that
our approach reduces reachability query processing times.
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1. Introduction

A vast amount of tree-structured data on diverse domains is available in eXtensible Markup
Language (XML) files on the Web, such as SwissProt (protein sequence database), DBLP (computer
science bibliography), and Treebank (tagged sentences). A query that determines whether there exists
a path between the two nodes of a given pair (source and target) is an important one for trees. It can
also be regarded as a reachability or ancestor–descendant query. A straightforward manner to address
it is tree traversal, starting from the source node and then visiting intermediate nodes until arriving at
the target node. However, it is not feasible to use this method in the case of large trees.

To avoid visiting intermediate nodes, labeling schemes have been proposed [1]. Existing works
are classified into containment-based [2,3], prefix-based [4,5], and prime number labeling schemes.
In this paper, we focus on a prime number labeling scheme that does not require all the nodes to be
re-labeled when some nodes are updated. An earlier study on a prime number labeling scheme was
reported in [6]. In this scheme (hereafter, PRM), each node is assigned a globally unique prime number,
called a self label. The node label is then recursively computed by multiplying its self label and its
parent node’s label. The pair of two nodes is reachable if the target node label is divisible by the source
node label. An approach has been proposed to utilize the MapReduce framework in order to do prime
number labeling of massive XML data [7]. The schemes’ shortcomings are apparent when the number
of nodes becomes very large—the size of self labels increases as well. In addition, they did not consider
the performance of answering reachability queries.
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Attempts to reuse self labels were made. In [8,9], a repetitive prime number labeling scheme
(hereafter, REP) was described that reuses prime numbers inherited from parents. In [10], the order of
ancestors’ self labels is encoded based on the Chinese Remainder Theorem (hereafter, CRT). A drawback
of these approaches is that their inefficient method for performing reachability tests significantly
reduces their usability in the case of large datasets. In this paper, we propose an efficient method for
answering reachability queries in REP.

2. Repetitive Prime Number Labeling Scheme

In this section, REP is explained, and then, we explain the drawbacks related to its inefficient
method for performing reachability tests. Let v and w be nodes in a tree. If an edge (v, w) exists, then v
is the parent of w. We denote by v = pa(w) the parent node of w. Furthermore, w is reachable from v
if there exists a sequence of nodes starting at v and ending at w, where consecutive node pairs in the
sequence are in edges. In REP, each node is assigned a prime number, called a self label.

Definition 1. Self Label: sel f (v) is the self label of a node v such that sel f (v) is the s(v)-th prime number, where

s(v) =

{
1 if v is root

s(pa(v)) + order(v) otherwise

where order(v) is the sibling order starting from 0. The 1-th prime number is 2, which means that sel f (v) is 2
if v is a root.

Note that a self label in PRM [6] is a globally unique prime number, whereas in REP, self labels are
locally unique prime numbers within sibling nodes. We now provide the definition of the label of a node.

Definition 2. Node Label: L(v) is the label of a node v, which is a composite number computed as

L(v) =

{
2 if v is root

L(pa(v))× sel f (v) otherwise

Lemma 1. Given a node v, sel f (v) is equal to lp f (L(v)), where lp f (n) is the largest prime factor of n.

(B) in Figure 1 depicts an illustrative example labeled by Definition 2. For example, L(I) is
computed by multiplying L(F) = 2× 3× 3 by sel f (I) = 5. A tree-labeling algorithm for this scheme
is outlined in Algorithm 1.

Algorithm 1 Labeling

1: procedure ASSIGNLABELS(T,p) . T is a tree and p is a parent node (the root for the first-time call)

2: for the i-th child node c of p in T do

3: sel f (c)← the i-th next prime number from sel f (p) . Definition 1

4: L(c)← L(p)× sel f (c) . Definition 2

5: ASSIGNLABELS(T,c)

6: end for

7: end procedure

In [8], a prime factorization method to answer a reachability query in REP was described.
Both labels of the given two nodes must be prime factored; subsequently, prefix matching is performed
against the two prime factor sequences. For example, referring to (B) in Figure 1, H is not reachable
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from D as 2× 2× 3 is not prefix-matched in 2× 3× 3× 3. On the other hand, H is reachable from E as
2× 3 is a prefix. We argue that prime factorization is an expensive task, which led us to devise a more
efficient method of answering reachability queries, as explained in the next section.

A

EB

C D F

H JIP

A

EB

C D F

H JIP

Figure 1. (A) is produced by PRM and (B) by REP. self labels are in bold. Note that a node label that is
in fact to be stored is a single composite number computed by a multiplication of its prime numbers
sequence. It can be easily seen that node labels produced by PRM are much bigger than those by REP.

3. Improving on Answering Reachability Queries

We observed that if a label is not divisible by the other label, it is not reachable. Referring to (B)
in Figure 1, for example, L(H) is not divisible by L(D) and H is not a descendant of D. Even if these
nodes have the same self label 3, they differ in terms of their ancestor nodes’ self labels, as in the case
of sel f (B) = 2 and sel f (F) = 3. This observation allows us to devise a simpler method of making
decisions for unreachable pairs, which is proved in Theorem 1.

Theorem 1. If L(v) mod L(w) is not 0, then v is not a descendant of w.

Proof. In a proof by contrapositive, first we assume that v is a descendant of w. By Definition 2,
because the label is computed recursively, L(v) contains the label of its parent node L(pa(v)) as a
factor, L(pa(v)) contains L(pa(pa(v))), and so on. This indicates that L(v) contains L(w) as a factor,
that is, L(v) is divisible by L(w).

However, the inverse of Theorem 1 does not always hold, i.e., if L(v) mod L(w) is 0, then v
is a descendant of w. Consider the two node pairs (E, H) and (E, P) in (B) of Figure 1. L(H) is
divisible by L(E) and H is a descendant of E. This is trivial, because a child node label must have its
parent node label as a factor. On the other hand, L(P) is also divisible by L(E), but P is indeed not
a descendant of E. This occurs because both have the same self labels and their ancestor nodes also
have the same self labels (i.e., sel f (B) = sel f (A) = 2). Definition 2 leads us to consider the quotient of
L(P)÷ L(E) = 2× 3 and sel f (E) = 3. If P is a descendant of E, every factor of the quotient must be
larger than or equal to sel f (E), because the self label of a child node is larger than or equal to any self
labels of its parent nodes. This is not true in this case, which means that P is not a descendant of E.
We formally define this observation in Theorem 2.

Theorem 2. Let sp f (n) be the smallest prime factor of a number n. Let q be the quotient of L(v)÷ L(w).
Assume that L(v) mod L(w) is 0. If sel f (w) ≤ sp f (q), then v is a descendant of w; otherwise, v is not a
descendant of w.

Proof. In a direct proof, because L(v) mod L(w) is 0, we have
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L(v) = L(w)× q (1)

There exist two cases for q. Assume that q is a prime number. Consider the case (sel f (w) ≤
sp f (q)). It is trivial that sp f (q) = q and q must be sel f (v) by the antecedent and Property 1. Therefore,
Equation (1) can be rewritten as L(v) = L(w)× sel f (v). By Definition 2, we have w = pa(v), which
proves the consequent. Now, consider the case (sel f (w) > sp f (q)). Because sel f (w) is the largest
factor of L(w) (by Property 1) and is larger than q, sel f (w) is the largest factor of L(v), which means
that sel f (v) = sel f (w). We now rewrite Equation (1) as L(v) = (L(w)/sel f (v) × q) × sel f (v).
By Definition 2, there exists a node h = pa(v) such that L(h) = L(w)/sel f (v)× q. Consider Theorem 1.
Because L(h) mod L(w) is not 0, h = pa(v) is not a descendant of w. Therefore, v is not a descendant
of w, which proves the consequent.

Assume the second case for Equation (1), where q is a composite number. We consider pa(v) and
then replace L(w) in Equation (1) as follows:

L(v) = L(pa(v))× lp f (q) (2)

where
L(pa(v)) = L(w)× q′ (3)

such that q = q′× lp f (q). If q′ is still a composite number, L(w) in Equation (3) can further be rewritten
as L(pa(v)) = L(pa(pa(v)))× lp f (q′), where L(pa(pa(v))) = L(w)× q′′, such that q′ = q′′ × lp f (q′).
This process can be continued until we have a node label L(pa(...pa(v))) = L(w) × sp f (q). Now,
assume a node r = pa(...pa(v)). Applying the same proof as above for the case where q is a prime,
we are able to determine the ancestor-descendant relationships between r and w. If r is determined to
be a descendant of w, v must be a descendant of w, because v is a descendant of r. If r is determined
not to be a descendant of w, v must not be a descendant of w because every descendant of r is not a
descendant of w.

We devised an algorithm based on the theorems to test the reachability of two ordered nodes,
which is outlined in Algorithm 2. In implementation level, we used BigInteger class in Java to handle
very large integers. An iterative algorithm was implemented to realize line 7–12. The algorithm
begins with the first prime factor x = 2 of Lw. We check if x is larger than sp f (q). If so, the algorithm
terminates and returns FALSE (line 9). Otherwise, we compute Lw1 by iteratively dividing Lw with
x. In other words, Lw1 is obtained by removing all prime factors x in Lw (e.g., if Lw = 2× 2× 3 and
x = 2 then Lw1 = 3). We move x to the next prime factor (e.g., 3) and repeat the above process until x
is smaller than Lwk in k-th iteration. It returns TRUE (line 11) if the iteration finishes.
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Algorithm 2 Querying

1: procedure ISREACHABLE(Lw, Lv) . Lw and Lv are node labels

2: r← Lv mod Lw

3: if r 6= 0 then . Theorem 1

4: return FALSE

5: end if

6: q← Lv÷ Lw

7: sel f _Lw← the largest prime factor of Lw

8: if sel f _Lw > sp f (q) then . Theorem 2

9: return FALSE

10: else

11: return TRUE

12: end if

13: end procedure

4. Evaluation

Since in our study we focused on a prime number-based labeling scheme, containment-based
and prefix-based approaches are beyond the scope of this paper. Experiments were conducted to
compare our approach (REP+) with PRM [6], REP [8], and CRT [10]. Note that REP+ and REP employ the
same labeling schema, called REP, but different reachability test methods. The Sections 4.1 and 4.2 are
intended to convince that REP is the state-of-the-art approach in the area of prime number labeling of
trees. Our contribution is to improve on reachability query processing of REP which is demonstrated in
Section 4.3. The experiments were performed on a machine with a 2.6 GHz CPU and 128 GB RAM.
XML datasets were obtained from [11], with varied numbers of nodes, fanouts, and depths (see Table 1).
The experimental results were averaged over five runs.

Table 1. Experimental datasets.

ID Name Nodes Avg. Fanout (max) Avg. Depth (max)

1 SigmodRecord 20,334 1.8 (89) 5.4 (6)
2 mondial-3.0 64,994 5.2 (1913) 3.1 (5)
3 partsupp 96,488 2.0 (16,001) 2.7 (3)
4 uwm 192,421 3.4 (4225) 3.4 (5)
5 orders 300,616 2.0 (30,001) 2.8 (3)
6 nasa 1,598,934 3.4 (4871) 5.3 (8)
7 lineitem 2,048,247 2.0 (120,351) 2.9 (3)
8 dblp 6,504,386 2.0 (328,858) 3.0 (6)
9 Treebank_e 7,337,533 3.0 (112,804) 7.3 (36)

11 psd7003 39,118,126 1.3 (262,526) 5.8 (7)

4.1. Labeling Time

Figure 2 depicts the labeling time for each dataset. Because a substantial amount of time was
spent by CRT on smaller datasets, we omit its results for larger datasets. In all cases, REP+, and REP,
outperformed PRM and CRT. Notable results were observed for large datasets, such as Treebank_e,
SwissProt, and psd7003. As the time expended by PRM increased exponentially, the time expended
by REP+ increased gradually. This occurred because PRM assigned larger prime numbers, and thus,
additional time was required to determine the next prime number. REP+ uses much smaller prime
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numbers because it reuses them. CRT also reuses prime numbers; however, it considers every self label
of ancestor nodes, which significantly reduces its speed.

1 2 3 4 5 6 7 8 9 10 11

CRT 2.8 7.4 454 172 3,381

PRM 1.8 2.4 7.0 8.5 22 77 172 599 329 452 4,028

REP+, REP 0.1 0.2 0.9 0.4 2 2 7 61 12 12 204
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PRM 1.8 2.4 7.0 8.5 22 77 172 599 329 452 4,028

REP+, REP 0.1 0.2 0.9 0.4 2 2 7 61 12 12 204
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Figure 2. Labeling time (X-axis indicates datasets in Table 1).

The performance results for dblp, which are poorer than the results for the larger dataset
Treebank_e, are noteworthy. We observe that dblp has the largest max fanout, which means that
there exists a node with a large number of child nodes. In REP+, the existence of a large number of
sibling nodes is likely to increase the size of the prime numbers.

4.2. Space Requirements

Figure 3 shows a comparison of the space requirements of the approaches. For all datasets,
REP+ requires less space than PRM. CRT produced better results than REP+ for some datasets; however,
this is not a concern, because the labeling process is too slow to take advantage of the lower space
requirements. It may be interesting to analyze datasets such as SigmodRecord, mondial-3.0, and nasa.
We observed that these datasets have larger average depths and smaller max fanouts than the others
(see Table 1). Because REP+ reuses the prime numbers of the parent nodes, a smaller fanout of a certain
node could lead to its grandchild nodes beginning with smaller self labels. Meanwhile, in REP+, a taller
tree (e.g., Treebank_e) does not necessarily mean that leaf nodes have larger prime numbers. Assume
an extreme case of a leftist tree. REP+ uses only a prime number 2, while PRM uses as many prime
numbers as the number of nodes. For datasets such as partsupp, orders, lineitem, and dblp, REP+ provides
a saving in space of only 10% as compared to PRM. These datasets show large max fanouts.
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Figure 3. Space requirements (X-axis indicates datasets in Table 1).

4.3. Query Processing Time

We randomly selected 1000 TRUE (reachable) and FALSE (non-reachable) node pairs from each
dataset. The query processing time was measured to be the total time required to determine the
reachability of 1000 node pairs.

For TRUE pairs (Figure 4), CRT showed the worst performance, as it requires prime factorization
and a comparison of all remainders. The other approaches showed a similar performance. However,
for the larger datasets, such as SwissProt and psd7003, REP+ showed the best performance. The reason is
that, as already shown in the previous section, the space requirements of REP+ are the smallest, which
renders the node labels smaller than those of other labeling schemes.
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Figure 4. Query processing time for TRUE pairs (X-axis indicates datasets in Table 1).

For FALSE pairs (Figure 5), REP showed the worst performance. The prime factorization and
prefix matching of prime number sequences required by REP reduces its speed. Note that there is a
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big performance difference between REP and REP+, which employ the same labeling scheme. Consider
line 2 in Algorithm 2. In REP+, if a label is not divisible by the other label, this signifies a FALSE pair.
No additional operations are required for FALSE pairs, which allows REP+ to be much faster than REP.
That is, REP+ immediately terminates when the remainder is zero. It makes REP+ to be more efficient
than REP in terms of CPU time. Meanwhile, CRT is faster than REP because CRT stores parent labels and
self labels separately, whereas REP stores only one composite number. Thus, CRT often has smaller
number labels than REP, which reduces query processing time.
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Figure 5. Query processing time for FALSE pairs (X-axis indicates datasets in Table 1).

Considering both TRUE and FALSE pairs, PRM is the only method that is comparable to REP+. PRM
requires a single division operation for both TRUE and FALSE pairs, and is the fastest of the prime
number labeling approaches thus far. Nevertheless, it was slower than REP+ for the larger datasets.
This is because REP+ has smaller labels than PRM, which can be seen in its space requirements. This leads
us to regard REP+ as a scalable approach. Moreover, since REP+ also outperforms PRM in terms of
labeling time and space requirements, REP+ should be considered the most efficient approach overall.

5. Conclusions

We proposed an efficient method of answering reachability queries in a state-of-the-art prime
number labeling scheme for XML data. Our contribution is that we devised a novel algorithm to
determine the structural relationships between two nodes. We showed experimentally that our
approach is faster than existing approaches. However, the proposed method failed to show better
performance for TRUE pairs. It might be interesting to devise a faster way to determine reachability of
TRUE pairs. We plan to design and implement an efficient mechanism to address update issues when
there are insertions and deletions of nodes in a tree. In addition, we will devise a distributed algorithm
to label XML datasets.
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