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Abstract: Top-down cracking (TDC) alongside the wheel path is one of the commonly seen distress
types on asphalt pavements, especially on heavy-duty asphalt pavements. It has been believed that
TDC is caused by either tension stress or shear stress in the top asphalt layer(s). In this paper, new
initiation and propagation mechanisms of TDC are proposed and validated through both accelerated
pavement testing in the field and uniaxial repeated loading penetration tests in the laboratory at
different temperatures. The test results clearly show that the uniaxial repeated loading penetration
test can simulate both initiation and propagation processes of TDC very closely. Based on these
test results, the mechanisms for crack initiation and propagation are further investigated with the
finite element (FE) program. The FE analysis results show that under repeated loading, shear
damage will occur first in the asphalt layer, then extend horizontally and consequently result in a
shear-damaged layer. The damaged layer then led to higher tensile strain in the upper mixture which
caused tension cracks and finally propagated upwards to the pavement surface. The whole process
of TDC initiation and propagation can be described as “shear damage, then tension propagation”,
which is the new mechanism proposed in this paper.

Keywords: asphalt pavements; top-down cracking mechanism; shear damage; tension propagation

1. Introduction

Cracking alongside the wheel path is one of the common distress types seen on asphalt pavements,
especially on heavy-duty ones. Different from the traditional bottom-up fatigue cracking, this type of
longitudinal cracking, observed within two to six years after opening to traffic [1–4], initiates at the top
part of asphalt layer and then propagates downward, and is often called top-down cracking (TDC).
There are two different views on TDC mechanisms. Some researchers believe that TDC is caused by the
tensile stress/strain initiated at the surface of the pavement. For example, Molenaar [5] used Australian
CIRCLY(a computer program for mechanistic pavement design and analysis) elastic analysis program
to analyze the effects of the lateral and vertical contact stresses within the pavement and stresses of the
tyre on the pavement within the asphalt layers, and concluded that the surface tensile stress at the
tyre edge was the cause for top-down cracking. Similar findings were later published by Hugo [4] and
Gerritsen [6], respectively. By using a finite element (FE) program CAPA (FE program developed at
Delft University of Technology in the Netherlands), Groenendijk [7] analyzed the pavement structure
under the measured non-uniform tyre–pavement contact load with the South African Vehicle-Road
Pressure Transducer Array (VRSPTA). He found that higher tensile stress at the surface of the layer is
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associated with non-uniform tyre–pavement contact pressure and aging of the asphalt mixture, which
ultimately led to TDC. Mayer [8] suggested that longitudinal TDC cracks were caused by principal
tension stress due to radial ply tyres. Kim and Roque et al. [9] later developed the models for TDC
initiation and propagation based on the “tension cracking mechanism assumption”.

The second view on TDC is that it is caused by shear stress/strain. By using the FE method
to analyze the pavement stress/strain distributions under tyre loads, Bensalem [10] found that
traffic-induced shear strain on the vertical plane at tyre edge was much larger than the lateral tensile
strain at same position. Wang [11] computed the stress distributions using the discrete element
method (DEM) and bimodal mechanics. The results indicated that the crack was initiated at a depth
of 25 mm, and obvious plastic deformation was observed below the cracking zone. He believed that
the crack was caused by the shear stress. Based on the calculated octahedral shear strain for three
pavement structures, Pellinen et al. [12,13] found that the maximum shear strain location is at the
inner side of tyre edge, which indicated that the top-down crack was more likely to occur in the
summer time. In recent years, Kim and Roque have shifted their research focuses from the “tension
cracking mechanism assumption” to the “shear cracking mechanism assumption” and proposed that
TDC was shear-induced or shear-dominant cracking.

This paper, based on the latest findings from TDC-oriented accelerated pavement testing (APT)
and laboratory uniaxial repeated penetration tests, develops and validates new TDC initiation and
propagation mechanisms. Details are presented in the following sections.

2. Field and Laboratory TDC Tests

In order to investigate the TDC mechanisms, both field accelerated pavement testing with
MMLS3 (Model Mobile Load Simulator) and laboratory uniaxial repeated loading penetration tests
were conducted. The MMLS3 is a mobile loading system developed in South Africa with a maximum
load of 2.9 kN, maximum tyre pressure of 850 kPa, maximum loading rate of 7200 pass/h, and tyre
that was 80 mm wide inflated to 700 kPa. Since traffic wander was not considered in the test, the wheel
track area was 80 mm wide. The test pavement structures for the field APT are listed in Table 1.

Table 1. Pavement structures used for field APT.

Pavement Structure
Thickness,

Material Type
Asphalt Binder

Structure 1 Structure 2

Asphalt Layers

Wearing Course 40 mm SMA13
SBS Modified

Asphalt

SBS Modified asphalt

Binder Course 60 m SUP-19 SBS Modified asphalt
+ Gilsonite asphalt

Bottom Layer 80 m SUP-25 Shell70# + Anti-rutting additive

Base layer 500 mm, 5.0% Cement-treated gravel

Subbase layer 170 mm, Granular base

For pavement structure 1, the APT loading was applied under four different temperature
conditions: low (Figure 1a), normal (Figure 1b), and two high temperature conditions (Figure 1c).
However, pavement structure 2 was tested under the high temperature condition (Figure 1d) only.
The number of load repetitions for each test was 1 million. The temperatures at different pavement
depth, deformation and cracks on pavement surface were measured during testing. The air
temperatures at normal conditions are listed in Table 2.
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Table 2. Air temperature when testing (normal temperature).

Load Repetition
(×1000)

Maximum Air
Temperature, ◦C

Minimum Air
Temperature, ◦C

Average Air
Temperature, ◦C Remarks

0~80 27.5 22.0 24.0

Clear Day80~150 38.5 24.0 31.8
150~230 28.0 21.0 24.2
230~300 36.0 23.0 31.4

300~380 28.0 22.0 24.4
Cloudy Day380~440 34.0 27.0 30.2

440~540 27.0 23.0 24.9

540~630 35.0 25.0 29.9

Little Rain
630~710 31.0 20.0 23.0
710~860 22.0 16.0 18.5
860~1000 16.0 11.0 13.2

Note: The italic data mean the air temperature was taken at night.
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Figure 1. Pavement temperature variations during testing. (a) Low temperature test for structure 1; 

(b) high temperature test for condition 1; (c) high temperature test for condition 2; (d) high 

temperature test for condition 3. 
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to within 0.01 mm. For pavement structure 1, the measured pavement deformation was 2.4 mm after 

one million load repetitions at normal temperature conditions (Table 2). Neither upheave nor visual 

crack were observed near the outside of the wheel path. Similar observations were made at the low 

temperature conditions: there was not any significant deformation nor any cracks after applying one 

million repetitions of MMLS3 loading. In the case of high temperature conditions (Figure 1b), 

significant deformation occurred alongside the wheel path, and clearly, longitudinal cracking was 

found within 2 cm outside of the wheel path. Figure 2 shows the measured rutting profiles at the 

high temperature conditions (Figure 1c) under different loading repetitions, varying from 0 to 1 

million. In Figure 2, there is a “rutting zone” in either side of upheave which is circled in red. It was 

found that the deepest position in the either red circle is around 20 mm away from the tyre edge, 

where the longitudinal cracking is located. To further verify this observation, another test was 
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longitudinal cracking occurs more often at higher temperature conditions. 

Figure 1. Pavement temperature variations during testing. (a) Low temperature test for structure 1;
(b) high temperature test for condition 1; (c) high temperature test for condition 2; (d) high temperature
test for condition 3.

Pavement deformation from transverse profiles was automatically measured with a laser
profilometer (MLS Profilometer Drive-P2003). The data obtained from the profilometer was accurate
to within 0.01 mm. For pavement structure 1, the measured pavement deformation was 2.4 mm after
one million load repetitions at normal temperature conditions (Table 2). Neither upheave nor visual
crack were observed near the outside of the wheel path. Similar observations were made at the low
temperature conditions: there was not any significant deformation nor any cracks after applying
one million repetitions of MMLS3 loading. In the case of high temperature conditions (Figure 1b),
significant deformation occurred alongside the wheel path, and clearly, longitudinal cracking was
found within 2 cm outside of the wheel path. Figure 2 shows the measured rutting profiles at the high
temperature conditions (Figure 1c) under different loading repetitions, varying from 0 to 1 million.
In Figure 2, there is a “rutting zone” in either side of upheave which is circled in red. It was found
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that the deepest position in the either red circle is around 20 mm away from the tyre edge, where the
longitudinal cracking is located. To further verify this observation, another test was conducted at
high temperature conditions (Figure 1c) at 10 m away from the test site where longitudinal cracking
was observed. Again, longitudinal cracks were found within 20 mm from the wheel path.
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Figure 2. Deformation on pavement surface of high temperature test for structure 2.

Similarly, APT testing was performed on pavement structure 2 at the temperature conditions
shown in Figure 1d. Similar deformations (Figure 2) and obvious longitudinal cracking were observed
within 20 mm of the wheel path. It can be concluded from the APT test results that longitudinal
cracking occurs more often at higher temperature conditions.

Figure 3 shows the observed longitudinal cracking located within 20 mm from the tyre edge with
a width of 3 mm. To identify whether or not the longitudinal cracking is TDC, cores were taken and
cut in half. It was obvious that the longitudinal cracking observed outside the wheel path was TDC,
and that TDC propagated downwards 9 mm from the pavement surface. This observation matches the
FE analysis results, which indicates that the maximum shear stresses for pavement structures 1 and 2
at high temperature conditions are located at 10–12 mm below the pavement surface.
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In addition to field APT testing, a simple laboratory test—uniaxial repeated penetration
test [14]—was developed in Tongji University, as shown in Figure 4, that simulates TDC initiation
and propagation. In Figure 4, the specimen diameter is 150 mm, the plunger diameter is 42 mm, test
temperature is 60 ◦C, the loading rate is 1 mm/min, and the loading frequency is 10 Hz.
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Figure 4. Uniaxial penetration test.

Figure 5 shows a cracked specimen after the uniaxial repeated penetration test. There is downward
deformation beneath the plunger in the specimen, and obvious cracks were observed at the edge of
the plunger.

Then, the cracked specimen was sliced two times with a diamond saw at Sections A and B, as
shown in Figure 5. Cross-Section A was sliced perpendicular to the crack alongside the edge of the
plunger; Cross-Section B was sliced around 20 mm away from Section A. The cross-sections of Sections
A and B are shown in Figure 6. It can be seen that TDC of Cross-Section A was much more severe than
that of Cross-Section B. Therefore, it can be excluded that TDC initiates from outside the specimen
(Cross-Section B) and moves inside (Cross-Section A). Compared to the field TDC observed on cores
taken from the APT site, the cracks observed in Cross-section A were very similar to the longitudinal
cracking seen alongside the wheel path in terms of both the characteristic and the formation of cracks
via top to downward propagation.

Additionally, Figure 6 also shows the variations of shear stress (red line) and tangent tension
stress (blue line) on the section along its depth. The most severe cracking area occurred at the top part
of the specimen (6 mm down from the top surface of specimen)—where the largest shear stress was
located—as shown in Figure 6. Meanwhile, tangent stress is compressive stress, rather than tensile
stress in this area, and the greatest tangent stress is 40 mm from the top surface, located far away from
the severe TDC area. Therefore, it can be concluded that the crack on Cross-Section A was due t shear
stress at the edge of the plunger, and initiated at the maximum shear stress area. The uniaxial repeated
penetration test result is consistent with the field APT test. Thus, the uniaxial repeated penetration test
is a valid test for simulating TDC in the laboratory.
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3. Investigation of the TDC Propagation and Material Modulus Decrease under Uniaxial
Repeated Penetration Test

3.1. TDC Initiation and Propagation Process under the Uniaxial Repeated Penetration Test

The uniaxial repeated penetration test was performed on specimens with similar
volumetric property. The tests were stopped at 30, 50, 70, 90, and 105 thousand load repetitions.
Again, each the specimen was sliced at the same Section A as described previously. Figure 7 shows the
TDC growing process. It can be seen that the cracks occur first in the area where the maximum shear
stress is located, and then gradually grow downward until going through the whole specimen with an
increasing number of load repetitions. This process implies that the uniaxial repeated penetration test
simulates the TDC initiation and growth process very well.
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3.2. Modulus Decrease Process under the Uniaxial Repeated Penetration Test

During the uniaxial repeated penetration test, the deformation vs. number of load repetitions
curve was recorded. Based on the relationship between deformation and number of load repetitions,
the penetration modulus (tentatively called the dynamic penetration modulus) can be calculated from
Equation (1):

|E∗p| = σ0

ε0
(1)

where |E∗p| is the dynamic penetration modulus, MPa. σ0 is initial penetration loading intensity,
σ0 = P

A , MPa. P is penetration load, A is area of the plunger, mm2. ε0 is the initial vertical strain.
Because there is a settling process at the initial loading stage, the dynamic penetration modulus

at the 500th load repetition was defined as the initial modulus of the specimen for comparison.
The measured relationship between the dynamic penetration modulus and number of load
repetitions for 3 different asphalt mixtures (styrene-butadiene-styrene (SBS) Modified asphalt:
AC13/AC20/SMA13) under five levels of penetration loading are shown in Figures 8–10, respectively.

It can be seen from Figures 8–10 that the decreasing trends of the dynamic penetration modulus
for 3 SBS modified asphalt mixtures are very similar. For example, when the penetration load is
1.3 MPa or higher, the dynamic penetration modulus curves for all 3 asphalt mixtures deteriorate
following an S-shape, and keep decreasing towards 0 with an increasing number of load repetitions.
When the dynamic penetration modulus decreases to 1/3 of its initial value, the deterioration rate
becomes very rapid for all 3 asphalt mixtures.



Appl. Sci. 2018, 8, 774 8 of 14

Appl. Sci. 2018, 8, x FOR PEER REVIEW  7 of 14 

3.2. Modulus Decrease Process under the Uniaxial Repeated Penetration Test 

During the uniaxial repeated penetration test, the deformation vs. number of load repetitions 

curve was recorded. Based on the relationship between deformation and number of load repetitions, 

the penetration modulus (tentatively called the dynamic penetration modulus) can be calculated 

from Equation (1): 

0

0*E



=p

 
(1) 

where p*E  is the dynamic penetration modulus, MPa. 0  is initial penetration loading intensity, 

A

P
=0 , MPa. P is penetration load, A is area of the plunger, mm2. 0  is the initial vertical strain. 

Because there is a settling process at the initial loading stage, the dynamic penetration modulus 

at the 500th load repetition was defined as the initial modulus of the specimen for comparison. The 

measured relationship between the dynamic penetration modulus and number of load repetitions 

for 3 different asphalt mixtures (styrene-butadiene-styrene (SBS) Modified asphalt: 

AC13/AC20/SMA13) under five levels of penetration loading are shown in Figures 8–10, 

respectively. 

Accumulated Load Repetitions, passes

D
y
n

a
m

ic
 P

en
et

ra
ti

o
n

 M
o

d
u

lu
s,

 M
P

a

Accumulated Load Repetitions, passes

D
y
n

a
m

ic
 P

en
et

ra
ti

o
n

 M
o

d
u

lu
s,

 M
P

a

 

Figure 8. Modulus variation for SBS-AC13. 

0        100000  200000   300000   400000   500000   600000   700000   800000

Accumulated Load Repetitions, passes

D
y
n

a
m

ic
 P

e
n
e
tr

a
ti

o
n

 M
o

d
u

lu
s,

 M
P

a

0        100000  200000   300000   400000   500000   600000   700000   800000

Accumulated Load Repetitions, passes

D
y
n

a
m

ic
 P

e
n
e
tr

a
ti

o
n

 M
o

d
u

lu
s,

 M
P

a

 

Figure 9. Modulus variation for SBS-AC20. 

Figure 8. Modulus variation for SBS-AC13.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  7 of 14 

3.2. Modulus Decrease Process under the Uniaxial Repeated Penetration Test 

During the uniaxial repeated penetration test, the deformation vs. number of load repetitions 

curve was recorded. Based on the relationship between deformation and number of load repetitions, 

the penetration modulus (tentatively called the dynamic penetration modulus) can be calculated 

from Equation (1): 

0

0*E



=p

 
(1) 

where p*E  is the dynamic penetration modulus, MPa. 0  is initial penetration loading intensity, 

A

P
=0 , MPa. P is penetration load, A is area of the plunger, mm2. 0  is the initial vertical strain. 

Because there is a settling process at the initial loading stage, the dynamic penetration modulus 

at the 500th load repetition was defined as the initial modulus of the specimen for comparison. The 

measured relationship between the dynamic penetration modulus and number of load repetitions 

for 3 different asphalt mixtures (styrene-butadiene-styrene (SBS) Modified asphalt: 

AC13/AC20/SMA13) under five levels of penetration loading are shown in Figures 8–10, 

respectively. 

Accumulated Load Repetitions, passes

D
y
n

a
m

ic
 P

en
et

ra
ti

o
n

 M
o

d
u

lu
s,

 M
P

a

Accumulated Load Repetitions, passes

D
y
n

a
m

ic
 P

en
et

ra
ti

o
n

 M
o

d
u

lu
s,

 M
P

a

 

Figure 8. Modulus variation for SBS-AC13. 

0        100000  200000   300000   400000   500000   600000   700000   800000

Accumulated Load Repetitions, passes

D
y
n

a
m

ic
 P

e
n
e
tr

a
ti

o
n

 M
o

d
u

lu
s,

 M
P

a

0        100000  200000   300000   400000   500000   600000   700000   800000

Accumulated Load Repetitions, passes

D
y
n

a
m

ic
 P

e
n
e
tr

a
ti

o
n

 M
o

d
u

lu
s,

 M
P

a

 

Figure 9. Modulus variation for SBS-AC20. Figure 9. Modulus variation for SBS-AC20.Appl. Sci. 2018, 8, x FOR PEER REVIEW  8 of 14 

0        100000  200000   300000   400000   500000   600000   700000   800000

Accumulated Load Repetitions, passes

D
y
n

a
m

ic
 P

en
et

ra
ti

o
n

 M
o

d
u

lu
s,

 M
P

a

0        100000  200000   300000   400000   500000   600000   700000   800000

Accumulated Load Repetitions, passes

D
y
n

a
m

ic
 P

en
et

ra
ti

o
n

 M
o

d
u

lu
s,

 M
P

a

 

Figure 10. Modulus variation for SBS-SMA13. 

It can be seen from Figures 8–10 that the decreasing trends of the dynamic penetration modulus 

for 3 SBS modified asphalt mixtures are very similar. For example, when the penetration load is 1.3 

MPa or higher, the dynamic penetration modulus curves for all 3 asphalt mixtures deteriorate 

following an S-shape, and keep decreasing towards 0 with an increasing number of load repetitions. 

When the dynamic penetration modulus decreases to 1/3 of its initial value, the deterioration rate 

becomes very rapid for all 3 asphalt mixtures. 

3.3. Relationship between Dynamic Penetration Modulus Decrease and TDC Growth 

Figure 11 shows the relationship between the dynamic penetration modulus deterioration 

percentage, cracking length percentage (the ratio of cracking length on Cross-Section A to specimen 

height), and the number of penetration loading repetitions. It can be seen from Figure 11 that there is 

an obvious consistency between the modulus deterioration percentage and TDC growth ratio. After 

80,000 load repetitions, specimens start to show rapid growth in TDC until failure. The threshold for 

dynamic penetration modulus reduction is about 60–70%, which corresponds to 80,000 load 

repetitions. The dynamic penetration modulus reduction was found to correlate with the growth of 

TDC well. The greater the reduction of the dynamic penetration modulus, the more severe the TDC 

damage. 

 

Figure 11. Variation of modulus and crack length. 

It can be concluded that the uniaxial repeated penetration test simulates the decreasing process 

of the dynamic penetration modulus during TDC initiation and growth process very well. The 

greater the decrease in dynamic penetration modulus, the more severe TDC damage is. The TDC 

grows rapidly when the dynamic penetration modulus reaches 1/3 of its initial value. 

Figure 10. Modulus variation for SBS-SMA13.



Appl. Sci. 2018, 8, 774 9 of 14

3.3. Relationship between Dynamic Penetration Modulus Decrease and TDC Growth

Figure 11 shows the relationship between the dynamic penetration modulus deterioration
percentage, cracking length percentage (the ratio of cracking length on Cross-Section A to specimen
height), and the number of penetration loading repetitions. It can be seen from Figure 11 that there is an
obvious consistency between the modulus deterioration percentage and TDC growth ratio. After 80,000
load repetitions, specimens start to show rapid growth in TDC until failure. The threshold for
dynamic penetration modulus reduction is about 60–70%, which corresponds to 80,000 load repetitions.
The dynamic penetration modulus reduction was found to correlate with the growth of TDC well.
The greater the reduction of the dynamic penetration modulus, the more severe the TDC damage.
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It can be concluded that the uniaxial repeated penetration test simulates the decreasing process of
the dynamic penetration modulus during TDC initiation and growth process very well. The greater the
decrease in dynamic penetration modulus, the more severe TDC damage is. The TDC grows rapidly
when the dynamic penetration modulus reaches 1/3 of its initial value.

4. Proposed New Mechanisms for TDC Initiation and Propagation

Inspired by the laboratory observations (Figures 7–11) and the relationship between TDC initiation
and propagation and the dynamic penetration modulus deterioration, the authors explored a new way
to view TDC initiation and propagation in asphalt pavements. A pavement structure with a geometry
of 6 m × 6 m × 15 m was analyzed by FE method. Traffic loading was represented using a 22 × 16 cm
rectangle with uniform distribution pressure of 0.7 MPa.

4.1. Simulation of Cracking Initiation and Propagation Process with FE Method

Based on the field and laboratory test results discussed previously, it was concluded that
under repeated loading, shear damage occurs first in areas where maximum shear stress is located.
Consequently, the modulus in those areas decreases and pavement stresses/strains are re-distributed
within the whole pavement structure. When the modulus of the asphalt mixture in this area decreases
to around 1/3 of initial value, the crack starts to grow rapidly. This is simulated by FE method, and
detailed steps are described as follows:

• Step 1: Establish a set of elements for the shear damage area, named set U.
• Step 2: Compute the shear stress in the original pavement structure, and identify the element

(say, e1) with maximum shear stress, then put this element (i.e., e1) into U.
• Step 3: Assign a reduced modulus value to the elements in U, then reanalyze pavement structure

with FE program.
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• Step 4: Identify again the element (for example, e2) with the maximum shear stress in the pavement
structure, and put element e2 into U.

• Step 5: Again, assign the discounted modulus value to the elements in U, then reanalyze pavement
structure with the FE program.

• Step 6: Find again the element (say, e3) with the maximum shear stress in the pavement structure,
and put element e3 into U.

• Step 7: Repeat above steps.

The element set {e1 e2 e3 . . . en} of the shear damage area constitutes the shear damage area in the
asphalt pavement structure under repeated loading.

With an assumed 0.7 MPa loading pressure, the numerical simulation of the shear damage process
for various pavement structures (see Table 3) was performed. It can be seen from the simulations
that maximum shear stress always occurred at the inner side of the tyre edge at a depth of 40 mm.
The element with maximum shear stress is believed to damage first, gradually extending to the adjacent
elements in a horizontal direction towards the outside of tyre edge. Finally, a “damaged layer” is
formed from a damaged element in the pavement structure. Figure 12 shows an example of pavement
structure with a damaged layer (DL). The FE method was employed to investigate the impact of the
weakened layer on the shear stresses in the layers above (LA) and beneath (LB) the damaged layer.
As shown in Figure 13, after shear damage, the maximum shear stresses τ in the pavement structures
kept a fixed relationship: τDL > τLA > τLB. Therefore, the maximum shear stress always occurs at
the bottom of the damaged layer, 40 mm from the pavement surface. Accordingly, it is anticipated
that shear damage in pavements under repeated loading will extend in a horizontal, rather than
vertical, direction. Certainly, a shear-damaged layer will be formed. The same conclusion was made
when analyzing other types of pavement structures. Horizontal, rather than vertical, extension of
shear damage implies that the cause for TDC initiation and propagation may be more complex than
initially thought.

Table 3. Pavement structures used in finite element method (FEM) simulation.

Structure Parameter Parameter Value

Asphalt Layer Thickness 10 cm, 18 cm and 30 cm
Modulus Gradient in Asphalt Layer See Figure 1

Modulus of Base Course 500 MPa, 2000 MPa and 8000 MPa
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4.2. Effects of Shear Damage Layer on Pavement Tensile Strain Distribution

As discussed above, repeated loading results in a damaged layer in the pavement structure. It is
obvious that this damaged layer will influence the tensile stress/strain distribution in nearby layers,
including both LA and LB. The maximum tensile strains (at x direction, which is perpendicular to
the traveling direction) in the layers were computed with different assumed shear-damaged areas, as
shown in Figure 14.

Figure 14 shows that the maximum tensile strain in LA, DL, and LB at x direction (i.e., εLA, εDL
and εLB) increased by 140.1%, 75.4% and 1.8%, respectively, when the shear damage area increased
from 0 to 20 cm2. When the shear damage area is larger than 4 cm2, the maximum tensile strain at x
direction always kept the same order: εDL > εLA > εLB. With an increase in the shear damage area, the
maximum tensile strain in LA increased rapidly, even exceeding the strain in LB. Therefore, there is a
possibility that tension damage can occur in LA, and potentially accelerate the shear damage failure.Appl. Sci. 2018, 8, x FOR PEER REVIEW  11 of 14 
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Repeated shear stress can damage the layer and result in the DL modulus reduction to almost 1/3
of its initial value, and even to 0 (assumed to be 0.5 MPa in FE model). Consequently, the maximum
tensile strain in LA will be more than 120 µε, as shown in Figure 15.
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As illustrated in Figure 15, when the shear damage area reaches 3~4 cm2, the maximum
tensile strain in LA exceeds 120 µε. Based on the laboratory studies and field survey conducted
by Marshall [15], Robert [16], Angela [17], and Xu [18], it can be reasonably assumed that in cases
where the tensile strain is above 120 µε, fatigue cracking might occur. The tensile strain in DL is greater
than that in LA, and so will accelerate the failure of the layer or the opening of cracks. For the LB, the
tensile strain remains at a level of less than 120 µε, indicating a low probability of tension cracking.

4.3. Analysis of TDC Growth Process

It is necessary to take into account the LA modulus reduction and evaluate its impact on the
tensile strain in LA. The effects of reduced LA moduli (1, 1/2, 1/4 and 1/6 of its initial value) on the
maximum tensile strain in LA are shown in Figure 16.Appl. Sci. 2018, 8, x FOR PEER REVIEW  12 of 14 
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Figure 16. Effects of LA modulus variation on tensile strain.

Figure 16 clearly shows that the tensile strains with discounted moduli are much higher than
120 µε. Thus, longitudinal cracks will occur under repeated loading. It will affect stress and strain
responses in the layer above LA, resulting in a strain level higher than 120 µε in the layer above LA.
At same time, the maximum shear stress will increase from 0.270 MPa to 0.310 MPa.

In summary, this study proposed a new TDC initiation and propagation mechanism: shear
damage in the asphalt layer results in increased tensile strain in the LA, which causes tension cracks;
these tension cracks finally propagate upwards to the pavement surface. This new TDC mechanism
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can be described as “shear damage, then tension propagation”. After the crack propagates to pavement
surface, stresses in the pavement structure will be re-distributed, and the maximum shear stress area
will move downwards to the place beneath the crack tip. Then, the process of “shear damage, then
tension propagation” will be repeated until it completely goes through the entire asphalt layer. It is
worth noting that thermal stress will also accelerate crack propagation, although this was not discussed
in detail in this paper.

5. Summary and Conclusions

The TDC initiation and propagation process is much more complex than first believed. The field
APT test results showed that under repeated loading, TDC occurred first within 20 mm outside
of the wheel path and was more easily induced at higher temperatures. The cracking damage
characteristics of specimens under laboratory uniaxial repeated penetration test coincided well with
the field TDC. Therefore, the uniaxial repeated penetration test can be used to simulate TDC initiation
and propagation processes. With increasing load repetitions, the dynamic penetration modulus of the
mixture kept decreasing; this decreasing process is consistent with crack length growth.

Based on field and laboratory test data and extensive FE analyses, this paper concluded that
top-down cracking is caused by shear stress, although the crack propagation process is not that simple.
Maximum shear stress causes damage, which then extends horizontally and forms a damaged layer;
the damaged layer will further cause the increased tensile strain in the upper layer. Higher tensile
strain will result in crack initiation and propagation upwards to the pavement surface. The whole
process can be summarized as “shear damage, then tension extension”. More field, laboratory, and
mechanistic analysis is needed to further validate this new TDC mechanism.

Author Contributions: Lijun Sun contributed significantly to analysis idea and manuscript preparation; Gang
Wang performed the experiments and the data analyses; Hongchao Zhang contributed in mobile APT tests
(using MMLS3) and helped revise the manuscript, Liping Liu contributed in APT tests (using MSL66) and helped
perform the analysis with constructive discussions.
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