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Abstract: Estimating the exact residual lifetime of wire rope involves the security of industry
manufacturing, mining, tourism, and so on. In this paper, a novel testing technology was developed
based on unsaturated magnetic excitation, and a fabricating prototype overcame the shortcomings
of traditional detection equipment in terms of volume, sensibility, reliability, and weight. Massive
artificial discontinuities were applied to examine the effectiveness of this new technology with
a giant magneto resistance(GMR) sensor array, which included types of small gaps, curling
wires, wide fractures, and abrasion. A resolution enhancement method, which was adopted for
multiframe images, was proposed for promoting magnetic flux leakage images of a few sensors.
Characteristic vectors of statistics and geometry were extracted, then we applied a radial basis
function neural network to achieve a quantitative recognition rate of 91.43% with one wire-limiting
error. Experimental results showed that the new device can detect defects in various types of wire
rope and prolong the service life with high lift-off distance and high reliability, and the system could
provide useful options to evaluate the lifetime of wire rope.
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1. Introduction

Magnetic flux leakage (MFL) technology is widely used in nondestructive testing (NDT) methods
and is extensively researched for application in evaluating wire rope safety for reliable ferromagnetic
materials. Traditional MFL equipment saturates the inner magnetic field in wire rope using permanent
magnets or coils; because the permeability of the defect region is sharply reduced, magnetic lines
of flux go through the air and then back to the rope. Thus, there is leakage of the magnetic field
around the defect region [1], where the magnetic distribution is relevant to the width and depth of
the defect [2]. Finite element analysis has been applied to research the relationship between defect
features and MFL distribution, particularly in pipeline testing [2–4]. However, in wire rope detection,
there were major defects of broken wires, abrasion, corrosion, and diameter shrinkage; among these,
broken wire is the most dangerous defect for security [5].

To achieve qualitative detection in traditional MFL technology, a coil testing head was employed
to obtain magnetic flow on the wire rope surface [6,7], then the system judged the defect through a
threshold. Because one-dimensional magnetic flow signal only could reflect axial defect information
but no circumferential properties, integrated sensors were used to acquire MFL array signals [8–11].
Hall sensors ordinarily were uniformly distributed on the circumference of saturated magnetic wire
rope, and a controller was used to acquire the MFL array data [5], because image description is a good
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visual in two directions, reflecting more information about defects. Digital image processing was used
to dispose defect images and exact characteristic vectors after converting array data to gray image [12].
The purpose of testing wire rope was to quantify defects. Support vector machine was applied to depict
defect parameters [2], back propagation (BP) neural network achieved quantitative multidiscontinuity
recognition [13] or classification of percentage of broken wires [7,9], and because of good classification
performance, radial basis function (RBF) neural network was applied to quantitative recognition of
broken wires [10].

Owing to strong magnetic equipment, the wire rope was magnetized to saturation by a coil circuit,
system power consumption was large, and installation was tedious at the site [14]. Moreover, this
system needed a well-considered yoke to gather the magnetic field, forming a mutual flux loop even
using permanent magnets [5,15,16]; this part sharply increased the weight of the device. Meanwhile,
detection results were easily affected by the excitation source in the strong magnetic method, and the
magnetic shielding device was designed to isolate the main magnetic flux and MFL. To overcome these
disadvantages of the traditional MFL method, [9,10] proposed a novel testing technology using GMR
sensors, which was based on remanence of ferromagnetic materials. This detection device separated
the testing head and excitation source and removed the yokes to reduce the system weight. However,
its reliability was poor for testing small gaps where the signal-to-noise ratio (SNR) was low. The other
wire rope detection methods included ultrasonic guided wave [17], ray method [18], magnetostrictive
guidedwave [19], eddy current method [13], and optics. However, these methods have been researched
less and have obvious limitations in usage, such as inconvenient installation, poor anti-interference,
high maintenance cost, radioactive contamination, and easily affecting surface conditions.

Signal processing is an important step in NDT testing, and promoting SNR is the basic goal
of processing. Furthermore, the algorithm should be easily implemented online and have good
computation performance. Wavelet is the most common tool in MFL signal application, such as wavelet
multiresolution analysis [20], wavelet threshold [21], and wavelet denoising based on compressed
sensing [9]. Some simple digital filtering algorithms, such as digital filter and adaptive filter, easily
achieved processing online but did not show good performance [11]. Besides, signal preprocessing
algorithms show significant defect segmentation and extraction, baseline estimation, and channel
balance methods, mainly including subsection mean method [5], wavelet multiresolution analysis [9],
Hilbert–Huang transformation [10], and morphological filtering algorithm.

Aiming at traditional devices of complex structure, big weight, and low reliability, we proposed a
novel wire rope testing technology using unsaturated magnetic excitation (UME). A GMR sensor array
was used to acquired two-dimensional MFL signal distribution, acquiring high SNR signal. In this
paper, we directly utilized digital image processing technology to filter, locate, and extract defect images
after baseline estimates and channel balance. Because the sensor’s size caused low circumferential
resolution, a super-resolution (SR) reconstruction method based on Tikhonov regular multiframe was
proposed. We calculated a suitable down-sampling interval, then axial down-sampling data formed
multiframe images and reconstructed high-resolution images. Finally, parts of statistical texture and
invariant moment characteristics were selected to train an RBF neural network. Through experimental
testing, classification accuracy rate was up to 91.43% with one wire-limiting error. Comparing the
remanence method in [9,10], the detection system is smaller, lighter, and more convenient than
previous papers, and the UME signal is smoother. The filtering algorithm system has less computation;
in addition, recognition error is smaller than previous papers.

2. Experimental Design

The principle of the proposed UME testing method is as shown in Figure 1. Permanent magnets
were used as an excitation source, while ferromagnetic materials would be produced a weak magnetic
field near external excitation. Considering this condition, the exciting rope would form a magnetic loop
though the air, thus there is inner magnetic line in the rope. Once there was a defect in the excitation
region, there was weak MFL signal caused by the defect. Considering a microscopic explanation,
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each electron rotating around the nucleus produces a loop circuit in normal conditions. According to
Maxwell equations, loop circuits produce a stable magnetic field, but in stable ferromagnetic materials
the magnetic fields offset each other because of untidy direction. However, under external magnetic
field excitation, the magnetic fields produced by loop circuits would be uniform, then the rope
would form a weak magnetic field. We can analyze the defect information by obtaining the weak
magnetic field.
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Figure 1. The principle of the unsaturated magnetic excitation (UME) testing method. The solid line
represents the magnetic loop of the excitation source; the dotted line represents the wire rope inner
magnetic field.

According to this principle, a prototype was manufactured to test wire rope local discontinuities
in this paper. This device utilized 12 Nd–Fe–B permanent magnetic strips as the excitation source.
The length of each strip was 28.6 mm, diameter was 4.7 mm, and remanence strength was 1.18 Tesla.
Eighteen GMR sensors were uniformly distributed around the rope, with which an advanced RISC
machine (ARM) was selected as the controller of the data-collection system. The number of sensors
was confirmed according to the lift-off distance and sensors size. Sensors may be saturated because
of small lift-off distance, and detection too close would scratch the wire rope while testing the rope.
We hoped to employ many sensors to obtain circumferential high resolution of MFL distribution.
However, when the detection distance is far, some small defects would not be tested well, even if it
cannot be detected. After much experimental testing, when the diameter of sensor array board was
10 cm, sensors could sense the signal and most defects could be detected well. Thus, 18 GMR sensors
were employed at most. To achieve the recognition of discontinuities, the following processing steps
were applied in this paper, as shown in Figure 2.
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2.1. Experimental Platform

The structure of the prototype is shown in Figure 3a, including system power module, analog signal
modulation, encoder module, GMR sensor array, data storage control unit, and corresponding bypass.
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Figure 3. (a) The structure of the prototype; (b) the object of experimental application.

The two analog signal modulations consisted of eight times preamplifier on GMR differential
signal, then an additional circuit was used for impedance matching and lifting signal baseline.
The voltage of the additive circuit was about 2 V after preamplifier. The system used equal-space
sampling to acquire the weak MFL, and the pulse signal was produced by an encoder whose rotation
perimeter was 0.31 m, sending 1024 pulses. With every pulse, the controller unit operated two
analog-digital convertors(ADCs) on the 18 sensors’ output, then the 18-length array data was stored in
an secure digital memory (SD) card. All the data was processed offline or transmitted to PC for further
processing. System working frequency was 120 MHz, 18 GMR sensors were installed with switch
devices, then transferred signal to ADC. The prototype object is shown in Figure 3b; the diameter of
the detection array was 30 mm, the excitation source was about 15 cm away from the detection board,
and magnetization spacing was 1.5 cm [22].

It is necessary to point out that the used GMR sensors had linear output when magnetic field
varied between 0.5 and 3.0 Oe, and sensor sensitivity varied between 11 and 18 mV/V-Oe (the magnetic
field strength corresponds to 11 and 18 mV multiplied by supply voltage). This sensor’s output is
unipolar differential voltage; thus, the output is not affected by magnetic direction. Besides, because
of the hysteresis effect, the sensor output would hysteretically export minimum voltage when the
magnetic field direction changed from zero Oe. Thus, this sensor could export normal curve voltage to
small defects, but big defects exported folding voltage curve. It can be a good feature to distinguish
small and big defects. The GMR output curve when the temperature was 26 ◦C and supply voltage
was 5 V is showed in Figure 4.
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The traditional detection system in [9,10] needed to magnetize wire rope first, and the step may be
repeatedly implemented until it is magnetized to form stable remanence. However, the remanence of
wire rope would drop away after one week, and the rope need be magnetized again. The repetitive step
increases maintenance time and cost contrasting with the UME detection method. More technology
comparison details are showed in Table 1. It can be seen that the UME testing system has smaller size,
lighter weight and simpler operation.

Table 1. Comparison of the remanence device with UME.

Method Testing Step Value (dm2) Weight (kg) Detection Time (s)

Remanence Detection after magnetizing 11.5 2.5 30+ 1,2

UME Direct detection 6.5 3 1 3 24 1

1 Detection speed of remanence was the same as UME, and slow testing speed can guarantee compete sampling;
2 Magnetizing time of remanence was 6 s every time, and it mostly needed to be implemented more than three
times in the experiment; 3 Core components were transplanted to a remanence assembly.

2.2. Data Preprocessing

In the experiment, because the detection system could test wire rope of different diameters,
we selected 28 mm and 30 mm diameter wire rope as testing specimens; their structure was 6 × 37
(the rope consisted of 6 strands and each strand had 37 steel wires). Artificial defect types included
one discontinuity to five and seven broken wires; moreover, each defect was destroyed as small gap,
curling wires, and wide fracture. Besides, we tested the system performance of abrasive wire, and part
defects of a specimen rope are shown in Figure 5. The length of this rope was 6 m, and its permitting
detection was 4.5 m because of the magnetic pole. There was an abrasive defect at 1.1 m; 1.46 m and
1.67 m separately had a one-wire broken defect. There were two-wire broken defects at 1.22 and 2.02 m,
three-wire broken defects at 2.52 m, five-wire broken defects at 3.04 and 3.54 m, seven-wire broken
defects at 3.97 m, and four-wire broken defects at 4.31 m. The width of all small gaps was not more
than 3 mm, the height of curling wires was about 0.5 cm, and wide fracture was about 1 cm.
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Figure 5. Manufacturing standard small gap defects: (a) worn wire at 1.1 m; (b) two wires broken at
1.22 m; (c) one wire broken at 1.46 m; (d) one wire broken at 1.67 m; (e) two wires broken at 2.02 m;
(f) three wires broken at 2.52 m; (g) five wires broken at 3.04 m; (h) five wires broken 3.54 m; (i) seven
wires broken at 3.97 m; (j) four wires broken at 4.31.

Implementing the system to detect the specimen rope above, we acquired surface UME array
signals, spreading the raw data by channel number, as shown in Figure 6. In the red circles,
these singular signals were MFL signals of one or two broken wires in the gap condition.
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It can be seen in Figure 6 that both ends had magnetic pole for magnetization. There the magnetic
field strength exceeded sensor sensitivity range, thus there was no fluctuant curve. Besides, because of
local magnetizing, sensor differences, and channel imbalance, the baseline of testing signal was not
coherent. Thus, the data need to be preprocessed, including removing outliers and estimating baseline.
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The magnetic field distribution is continuous in the air, therefore adjacent sampling points would
not differ severely. We adopted Equation (1) to process the outliers, where the outlier was replaced by
the mean of two adjacent points [23]:

X′i,j = (Xi,j+1 + Xi,j−1)/2||Xi,j−Xi,j+1|>T∩|Xi,j−Xi,j−1|>T (1)

where i is the channel number, j is the sampling length, and T is a threshold and was set as 50 in
this paper.

After removing the outliers, a promoted subsection mean method was implemented to estimate
the baseline of each signal, then removed to acquire the balanced MFL array signal. This method was
based on the mean of MFL signal in a strand period of zero. The estimation algorithm was as shown in
Equation (2):

s(i) = x(i)− 1
2m

m

∑
j=i−m+1

x(i + j)(i = m, m + 1, m + 2 · · ·N) (2)

where s(i) is the MFL signal without baseline, x(i) is the input signal, m is the sampling points of lay
length, and N is the length of signal. According to the measurement, the lay length of specimen rope
was about 3.1 cm, and combining the system sampling frequency we set the subsection as 102 points;
that is to say, m is 52 in this paper. After estimating the baseline, the balanced array signal could be
expanded as shown in Figure 7.

As a contrast, we tested the same wire rope by the remanence detection method. Figure 8a shows
the raw remanence data of 18 channels; the remanence balance signal after implementing baseline
estimation, the remanence balanced signals are shown in Figure 8b.

Contrasting Figure 7 with Figure 8b, both methods can detect the one-wire defects and the
remanence signal amplitude is higher than UME at the detection sensor channel, but there is more
noise in other channels. As for the UME signal, more channels can capture the weak MFL distribution,
and there is less strand noise at all sensor channels. The remanence signal of a one-wire defect cannot
be separated from the array signals because of strong strand noise. On the other hand, this signal
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processing algorithm has less computation than the [9,10], because this algorithm is a part of the
previous work.Appl. Sci. 2018, 8, x FOR PEER REVIEW  7 of 16 

 
Figure 7. Expanded UME estimated signal by channel number, circles show one broken gap condition 
signal was circled at 1.22 and 1.46 m. 

 
(a) 

 
(b) 

Figure 8. (a) Raw remanence signal of 18 channels; (b) balanced remanence signal after baseline 
estimation. 

3. Image Processing 

The preprocessing signal could be expanded as an asymmetrical sampling MFL image, and high-
frequency axial sampling had abundant information, including helpful information to calculate 
circumferential MFL distribution. Thus, we proposed a down-sampling method to acquire 
multiframe symmetric sampling MFL images, then, using the SR method, reconstructed a high-

Figure 7. Expanded UME estimated signal by channel number, circles show one broken gap condition
signal was circled at 1.22 and 1.46 m.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  7 of 16 

 
Figure 7. Expanded UME estimated signal by channel number, circles show one broken gap condition 
signal was circled at 1.22 and 1.46 m. 

 
(a) 

 
(b) 

Figure 8. (a) Raw remanence signal of 18 channels; (b) balanced remanence signal after baseline 
estimation. 

3. Image Processing 

The preprocessing signal could be expanded as an asymmetrical sampling MFL image, and high-
frequency axial sampling had abundant information, including helpful information to calculate 
circumferential MFL distribution. Thus, we proposed a down-sampling method to acquire 
multiframe symmetric sampling MFL images, then, using the SR method, reconstructed a high-

Figure 8. (a) Raw remanence signal of 18 channels; (b) balanced remanence signal after
baseline estimation.



Appl. Sci. 2018, 8, 767 8 of 17

3. Image Processing

The preprocessing signal could be expanded as an asymmetrical sampling MFL image,
and high-frequency axial sampling had abundant information, including helpful information to
calculate circumferential MFL distribution. Thus, we proposed a down-sampling method to
acquire multiframe symmetric sampling MFL images, then, using the SR method, reconstructed
a high-resolution defect image. Before resolution enhancement, data must be transformed, filtered,
located, and have defects extracted out, then the central image is normalized by translating the
defect image [10]. Finally, the SR reconstruction method based on Tikhonov regularization was used
to enhance image resolution. To achieve quantitative recognition discontinuities, we extracted a
characteristic vector by selecting sensitive defect image descriptions.

3.1. Defect Image

3.1.1. Transformation and Filtering

A balanced MFL array signal was acquired after preprocessing. This data could be transferred to
a two-dimensional gray image, with a mapping function as follows:

f (i, j) = L · ( f (x, y)
N

· Vs

Vp
+ 0.5) (3)

where L is the maximum gray value after transformation, f (x, y) is the array input, N is the minimum
quantification value of ADC, Vs is the maximum sampling voltage, Vp is the maximum peak-to-peak
voltage of amplifier, and f (i, j) is the output gray image.

Limiting sensor size, system axial frequency is much more than circumferential. In real sampling
conditions, the voltage of axial neighboring domain does not vary obviously; the most variety was
from quantization errors. Besides, the device would lightly swing then acquire circumferential MFL
information in neighboring detection. Thus, the dense axial sampling contained much circumferential
MFL information, and we could use this high-frequency sampling to forecast circumferential
distribution through equal two-dimensional sampling. In this paper, axial sampling frequency was
about nine times as much as that of circumferential sampling, thus the axial was down-sampled nine
times to fit the circumferential sampling. We can obtain nine frames of MFL images of wire rope.
We adopted Equation (4) to prove that the down sampling interval does not cause signal distortion.

According to signal decimation, a discrete signal x(n), assuming a down-sampling signal of
y(n) = x(Mn), if their frequencies are in accord with fs ≥ 2Mfc, where fs is discrete sampling frequency
and M is down-sampling interval, the DTFT of signal y(n) and x(n) is satisfied as follows:

Y(ejw) =
1
M

M−1

∑
k=0

X(ej(w−2πk)/M) (4)

According to Equation (4), the spectrum of down-sampling signal was extended M times, then
shifted 2πk/M (k = 1, 2, ..., M–1) and superposed together; moreover, the amplitude was reduced nine
times but y(n) was equivalent to x(n). Figure 9a shows a balanced signal block from the testing results
above, and Figure 9b shows the spectrums of balanced and down-sampling signals, where frequency
of peak value conformed to a nine-time relationship and there was no frequency aliasing. Thus,
the nine-times down-sampling signal was equivalent to raw signal and there was no signal distortion.
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Figure 9. (a) A defect balanced signal block of one channel; (b) spectrums of primary sampling
and down-sampling.

These new images combined noise, such as pulse noise, strand waves, and converted noise.
A mean filter mask was applied to restrain the noise. Then, utilizing a second-order derivative mask to
sharpen images, we get:

W = [0, 1, 0; 1,−4, 1; 0, 1, 0] (5)

The down-sampling image is shown in the top section of Figure 10, and the middle one was
filtered and sharpened. Canny edge detector was applied to get the locations of defects, and to avoid
the influence of weak region, we performed an expand and corrosion operation where structure
elements were separately a 3 × 3 mask and 3 × 1 mask. Defect regions after this process are shown in
the bottom section of Figure 10. The contrast of all pictures was enhanced for defect visualization.
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Figure 10. Raw down-sampling gray image (top); sharpened defect image (middle); and defect
location image (bottom). In the first location were two defects along the circumference with one and
two broken wires.

3.1.2. Segmentation and Normalization

After locating defects, defect regions need to be segmented along the axis of the rope. In this
paper, the projection method was utilized to obtain positional information of two dimensions. First,
the binary image was projected to transverse with the sum and let the curve binary, then the derivative
of this curve was calculated, with the axial starting position of the defect shown with 1 and the end
shown with −1. To acquire accurate positions of defects, we calculated the maximum and minimum
in the target region, the center of the two values was considered the new central point, and we again
extracted defect images 18 points long. After processing all down-sampling gray images, each defect
UME defect had a nine-frame picture.

To guarantee that all the centers had similar position, the center of the image needed to be
normalized. On the basis of the first frame image, its central coordinate was (9, jc); when jc was less
than 9, the image needed to be processed as follows:{

g(i, j + N/2− jc) = f (i, j), 0 ≤ j ≤ N − jc − 1
g(i, j− N + jc) = f (i, j), N − jc ≤ j ≤ N − 1

, (6)

when jc was more than 9, the image needed to be processed as follows:{
g(i, j + jc − N/2) = f (i, j), 0 ≤ j ≤ jc − N/2
g(i, j− jc + N/2) = f (i, j), jc − N/2 < j ≤ N − 1

, (7)

and when jc was 9, there was no transformation, where f (i, j) is the image before being transformed
and g(i, j) is the normalized image. Taking the wire rope from Section 2.2 as an example, the primary
resolution MFL image and down-sampling images are shown in Figure 11, and the contrast of all
images was increased for defect visualization.
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3.2. Image Super-Resolution Reconstruction

Super-resolution is an image restoration technique that utilizes low-resolution images to rebuild a
high-resolution image. We acquired nine-frame UME pictures of each defect, so that a multiframe image
reconstruction technique could be used to rebuilt high-resolution images. For an image degeneration
process, the mathematical model can be described as follows:

Y = DBX + E (8)

where X, Y, and E are high-resolution image, low-resolution image, and noise, respectively. B is a
fuzzy convolution matrix and D is a down-sampling matrix, and we can replace W = DB. It is an
ill-posed problem that X was reconstructed by Y because of multisolution or non-solution. To solve
this problem, a classical method named Tikhonov regularization, which is based on remaining raw
data to solve a solution by satisfying a priori constraints, was used [24]. The regularization process
could be divided into two methods, deterministic regularization and random regularization. In this
paper, first the regularization method was performed to optimize the problem in order to make it
solvable. This was done through a minimization cost function [24]:

argmin
X
‖Y−WX‖2 + λ‖CX‖2, (9)

where ‖Y −WX‖2 is the error term, λ is the regularization parameter used to balance the relationship
between error and high-frequency energy, ‖CX‖2 is the penalty term, and C is a high-pass filter.
In general, natural images have finite smooth continuity, and this condition is a constraint term for the
convex Function (9) and recovering X by an iteration procession as follows:

X̂n+1 = X̂n − α
P

∑
k=1

ck{Wk
TWk + λkCTC}X̂k −Wk

TYk}, (10)

where α is the step size, ck is the weight coefficient of each frame image, λk is the regularization
parameter, and P is the number of frames per image.

Multiframe image super-resolution reconstruction based on the Tikhonov regularization step was
as follows:

Step one: Calculate mapping parameter between images.
First, initialize affine shifting set.
For i = 2:P.
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Register current image to first frame: compute the Lucas–Kanade optical using a Gaussian
pyramid for the two images in each level.

End.

Step two: Divide image mesh, simulate the basic image as a high-resolution image with
spine interpolation.

Step three: Regularize adaptive super-resolution based on Tikhonov:
Initialize output
while iter < 200 or Variation < 10−4

calculate WTWX̂k, CTCX̂k, and WT
k Yk;

For k = 1:P–1
Perform (10)
End

Calculate Variation as Variation = ∑ ∑ (I − I iter−1)
2;

iter++;
End.

To reduce computation, we did not use the step, weight, and regularization parameter selection
principle of [24], but the step was set as 0.2, the weight coefficient was 1, and the regulation parameter
was 0.01. Double, triple, and quadruple resolution reconstruction images are shown in Figure 12. Also,
the contrast of the three images was enhanced for defect visualization.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  11 of 16 

general, natural images have finite smooth continuity, and this condition is a constraint term for the 
convex Function (9) and recovering X by an iteration procession as follows: 

1
1

ˆ ˆ ˆ{ } }
P

T T T
n n k k k k k k k

k
X X c W W C C X W Yα λ+

=

= − + − , (10) 

where α is the step size, ck is the weight coefficient of each frame image, λk is the regularization 
parameter, and P is the number of frames per image. 

Multiframe image super-resolution reconstruction based on the Tikhonov regularization step 
was as follows: 

Step one: Calculate mapping parameter between images. 
First, initialize affine shifting set. 
For i = 2:P. 
Register current image to first frame: compute the Lucas–Kanade optical using a Gaussian 

pyramid for the two images in each level. 
End. 

Step two: Divide image mesh, simulate the basic image as a high-resolution image with spine 
interpolation. 

Step three: Regularize adaptive super-resolution based on Tikhonov: 
Initialize output 
while iter < 200 or Variation < 10−4 

calculate WTWX෡k,  CTCX෡k, and Wk
TYk; 

For k = 1:P–1 
Perform (10) 
End 

Calculate Variation as Variation= ∑ ∑ (I-Iiter-1)ଶ; 
iter++; 
End. 

To reduce computation, we did not use the step, weight, and regularization parameter selection 
principle of [24], but the step was set as 0.2, the weight coefficient was 1, and the regulation parameter 
was 0.01. Double, triple, and quadruple resolution reconstruction images are shown in Figure 12. 
Also, the contrast of the three images was enhanced for defect visualization. 

 
Figure 12. Different resolution reconstruction results: (a) double resolution reconstruction image; (b) 
triple resolution reconstruction image; (c) quadruple resolution reconstruction image. 

Contrasting the three reconstruction results, excessive resolution reconstruction would produce 
jagged contour when other parameters and input images were the same. However, the image contrast 
of low-resolution SR results was higher than the high-resolution reconstruction. Contrasting the three 
pictures of Figure 12, when SR result was triple the computation and image property was the best, 
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Figure 12. Different resolution reconstruction results: (a) double resolution reconstruction image;
(b) triple resolution reconstruction image; (c) quadruple resolution reconstruction image.

Contrasting the three reconstruction results, excessive resolution reconstruction would produce
jagged contour when other parameters and input images were the same. However, the image contrast
of low-resolution SR results was higher than the high-resolution reconstruction. Contrasting the three
pictures of Figure 12, when SR result was triple the computation and image property was the best,
its resolution was 53 × 53. Thus, we set the resolution reconstruction number as three in this paper.

3.3. Defect Description

To achieve quantitative recognition, direct image input will increase the computation, so it is
necessary to extract a description of the image. In addition, image characteristics must be sensitive
when reducing image dimensionality. We selected parts of sensitive features from [10], where the
statistical texture features and seven invariant moments were described as defect image.

Image texture features are based on image pixel grayscale statistics, which usually include average
brightness, average contrast, relative smoothness, third-order moment, conformance, and entropy.
We implemented an experimental screening, which was achieved by variable control. Finally,
experimental recognition results showed that average contrast, third-order moment, conformance,
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and entropy were more sensitive than other texture features. The basis of this statistical texture is
the image’s histogram, and describing the shape distribution of the histogram relies on the central
moment, which is defined as

µn =
L−1

∑
i=0

(zi −m)n p(zi) (11)

where n is the order of the moments, p(zi) is the normalized histogram, L is a random quantity of gray
level zi, and m is the average brightness:

m =
L−1

∑
i=0

zi p(zi) (12)

The average contrast is defined as

σ =
√

µ2(z) =
√

σ2 (13)

which is the standard deviation of the image. It reflects the average change in the image. The third-order
moment is defined as

µ3 =
L−1

∑
i=0

(zi −m)3 p(zi) (14)

If the histogram is symmetric, u3 is zero; if the skewness tends to the right, the value is positive;
but if it tends to the left, the value is negative. The conformance is defined as

U =
L−1

∑
i=0

p2(zi) (15)

where, when the image is constant, U is maximum. The entropy reflects the degree of randomness in
the gray-level values, and is defined as

e = −
L−1

∑
i=0

p(zi) log2 p(zi) (16)

The invariant moment characteristic is based on a statistical analysis of the gray distribution of an
image. It describes all the features of the object from an overall view, which is not easily affected by
noise, shifting, rotation, or changes in the size of the image. After experimental selection, odd order
invariant moments were more sensitive than other moments by variable control. Thus, we just selected
the odd order features of seven order invariant moments.

For an image f (x, y), varied order exists if it is continuous in block, and there is a limited non-zero
number available in the image. The (p + q)th order moment of f (x, y) is defined as

mpq = ∑
x

∑
y

xpyq f (x, y) (17)

The central moments are defined as

upq = ∑
x

∑
y
(x− x′)p

(y− y′)q f (x, y) (18)

where x’ = m10/m00, y’ = m01/m00; that is to say, they are the gravity of the image. By calculating the
different central moments, the odd order invariant moments are defined as

M1 = u20 + u02 (19)
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M3 = (u30 − 3u12)
2 + (3u21 + u03)

2 (20)

M5 = (u30 − 3u12)(u12 + u30)[(u30 + u12)
2 − 3(u21 + u03)

2]

+(3u21 − u03)(u21 + u03)[3(u30 + u12)
2 − (u21 + u03)

2]
(21)

M7 = (3u21 − u03)(u30 + u21)[(u30 + u12)
2 − 3(u21 − u03)

2]

+(3u12 − u30)(u21 + u03)[3(u30 + u12)
2 + (u21 + u03)

2]
(22)

Characteristic description is the bridge of classification and image. In this paper, part defect
images were processed by all the algorithms above, and the selected sensitive description vectors are
shown in Table 2. The invariant moments were processed by absolute value of logarithm to reduce the
range of variation, because the value of invariant moments is very small, except the invariance and
modulus of moments are important.

Table 2. Part defect sensitive characteristic vectors.

Broken Wires σ u3 × 10−4 U × 10−2 e M1 M3 M5 M7

1 5.33 −7.11 6.1446 4.3744 6.6409 30.9157 57.4199 58.6916
2 9.08 77.47 5.0684 4.8489 6.6487 29.2743 55.5046 59.2687
3 11.03 18.17 6.3782 4.7540 6.6390 30.5603 55.9229 57.8301
4 15.07 158.12 3.7091 5.4579 6.6519 28.0789 55.1216 53.8476
5 22.18 596.7 2.8029 5.9044 6.6520 28.0685 52.8666 52.6630
7 20.71 170.74 4.1813 5.6123 6.6389 27.8631 54.5276 52.9025

4. Classification

RBF neural network [10,13] is better than BP in convergence rate learning and local approximation
performance, because minority weights will locally influence net output in local input sets. Thus,
RBF was successful in applying an approximation of nonlinear function, time series analysis,
data analysis, pattern recognition, information processing, image processing, system modeling,
controlling, and fault diagnosis.

The basic idea of RBF is that solved problems are linearized by mapping nonlinear input to
high-dimensional space, where the Gaussian function is usually chosen as a transformation function.
A simple RBF neural network has a three-layer mapping structure, which includes an input, a hidden
layer, and an output layer. The input layer consists of sensing units, which are used to link the outer
data and the inner network. The hidden layer is a high-dimensional mapping structure of kernel
function, which transforms the nonlinear data to a linearly divisible set. Moreover, the linear output
layer fits a curve in the high-dimensional dataset that is optimally equal, to find divisional surfaces in
the hidden layer set. Once the central position of the activated distance function is confirmed in the
hidden layer, the relationship of input and output is also confirmed, and the output is the linear sum of
hidden units. The RBF neural network usually utilizes a distance function (such as Euclidean distance)
as the basic function of hidden nodes and adopts a radial basis function (such as Gaussian function) as
the activation function. The radial basis function is a radial symmetric about the central point of an
n-dimensional space. Once the input of a neural unit is far away from the central point, the activation
degree of this unit is low. This feature is generally named as a local characteristic of the hidden layer.

There were 281 artificial defects of broken wires, curling wires, and wide fractures by using
the UME. To enhance reliability and generalization, the neural network was trained by a set of
211 randomly selected samples, and the others were used to test the network recognition accuracy.
We adopted the MATLAB (2013a, Mathworks Inc. Natick, MA, USA, 2013) neural network toolbox
to design an RBF neural network, where “newnpp” could quickly establish a classification network.
The designed network consisted of three layers, an input with a number of input vectors and the
distance function as the activation function. The hidden layer was a competitive layer without
threshold values, and the input of this layer was the distance between the input vectors and
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sample vectors. The probability of each element was calculated by the competitive transfer function.
The output of the function was 1, while the maximum probability of the other elements was 0.
The radial spread parameter was 0.145, and the hidden nodes adopted the automatic optimization
strategy. The activation function of the hidden layer was the “compet” function, and the output was
a vector of seven elements, where the number of broken wires was only the target element with an
output of 1. The network training accuracy was 95.26% and the average training error was 0.0616.
The maximum recognition error was three broken wires in the network testing, and with one limited
error the recognition accuracy was 91.43%. The testing performance of different parametersis shown
in Table 3. The recognition accuracy is low in Table 3. Different diameters of wire rope may cause this
result. On the other hand, lift-off distance, magnetization and shaking of detection equipment also
would cause singular signal. Slow detection, modified magnetization and more characteristics may
have a good influence on the recognition accuracy.

Table 3. Performance of the designed RBF neural network.

Spread Maximum Error Average Error Training Accuracy Recognition Accuracy One Error Accuracy

0.11 4 0.6714 99.53% 52.86% 87.14%
0.145 3 0.5429 95.26% 55.71% 91.43%
0.18 3 0.5143 91.00% 58.57% 91.43%
0.215 3 0.5 86.73% 60% 91.43%

The absolute error distribution when the “spread” was 0.145 is shown in Figure 13. It was obvious
that most errors were concentrated in one broken wire, and there were few errors of multiple wires.
Thus, this neural network was reliable with the limited recognition error combining with Table 3.
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5. Conclusions

A novel UME wire rope detection method was proposed in this paper. According to the MFL
production principle, a prototype was manufactured with small volume, light weight, and convenient
installation. We detected enough broken wire defects in the experiment, and the baseline signal was
estimated by the subsection mean method. Then digital image processing was adopted to filter the
quantification noise. To improve the image circumferential resolution, an MFL image SR method was
proposed with Tikhonov regular. Finally, the most sensitive characteristics were selected through the
variable control method, and an RBF neural network was designed to quantitatively classify broken
wires. The experimental work can be summarized as follows:
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1. The proposed detection method could effectively test various types of defects of wire rope,
even abrasion and small gaps.

2. Based on Tikhonov regular SR reconstruction methods, image features of defects could effectively
remain while the axial resolution was reduced and circumferential resolution was increased.

3. The proposed detection system, signal processing, and image processing method were applicable
and general to other testing conditions. The accuracy of the RBF neural network was high, and it
was easy to achieve online testing with the system algorithm. The testing results could provide
reliable information for estimation of the lifespan of wire rope.
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Device/Analiza falkowa efektywnym narzędziem diagnostyki lin kompaktowanych. Arch. Min. Sci. 2013, 58.
[CrossRef]

22. Zhang, J.; Tan, X.; Chen, Y. An Open Micro Magnetic Excitation Wire Rope Damage Detection System.
Patent No. CN206772899U, 3 May 2017.

23. Mukherjee, D.; Saha, S.; Mukhopadhyay, S. An adaptive channel equalization algorithm for MFL signal.
NDT & E Int. 2012, 45, 111–119. [CrossRef]

24. He, H.; Kondi, L.P. An Image Super-Resolution Algorithm for Different Error Levels Per Frame. IEEE Trans.
Image Process. 2006, 3, 592–603. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s12206-011-1234-x
http://dx.doi.org/10.1155/2014/929341
http://dx.doi.org/10.3390/ma9060451
http://www.ncbi.nlm.nih.gov/pubmed/28773574
http://dx.doi.org/10.1016/j.ndteint.2015.06.006
http://dx.doi.org/10.1109/TIM.2014.2324812
http://dx.doi.org/10.1016/j.electacta.2015.11.148
http://dx.doi.org/10.2478/amsc-2013-0011
http://dx.doi.org/10.1016/j.ndteint.2011.08.011
http://dx.doi.org/10.1109/TIP.2005.860599
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Experimental Design 
	Experimental Platform 
	Data Preprocessing 

	Image Processing 
	Defect Image 
	Transformation and Filtering 
	Segmentation and Normalization 

	Image Super-Resolution Reconstruction 
	Defect Description 

	Classification 
	Conclusions 
	References

