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Abstract: In this study, the Boltzmann equation with electric acceleration term is discretized and
solved by the unified gas-kinetic scheme (UGKS). The charged particle transport driven by electric
field is included in the electric acceleration term. To capture non-equilibrium distribution function,
the probability distribution functions of gas is discretized in a discrete velocity space. After discretization,
the numerical flux for distribution function is computed to update the microscopic and macroscopic
states. The flux is decided by an integral solution of Boltzmann equation based on characteristic problem.
An electron-ion collision model is introduced in the Boltzmann Bhatnagar-Gross-Krook (BGK) equation.
This finite volume method for the UGKS couples the free transport and long-range interaction between
particles. For simplicity, the electric field induced by charged particles is controlled by the Poisson’s
equation, which is solved using the Green’s function for two dimensional plasma system subjected
to the symmetry or periodic boundary conditions. Two numerical cases, linear Landau damping
and Gaussian beam, are carried out to validate the proposed method. The linear electron plasma
wave damping is simulated based on electron-ion collision operator. Comparison results show good
accuracy and higher efficiency than particle based methods. Difference between Poisson’s equation and
complete electromagnetic Maxwell equation is presented by numerical results based on the two models.
Highly non-equilibrium and rarefied plasma flows, such as electron flows driven by electromagnetic field,
can be simulated easily. The UGKS-Poisson model is proved to be promising in plasma flow simulation.

Keywords: plasma; Boltzmann equation; unified gas kinetic scheme; Poisson’s equation; finite
volume method

MSC: 35Q83; 82D10; 82C40; 74S10; 34B27

1. Introduction

The Boltzmann equation describes time evolution of physical state under external field using
gas-distribution function [1]. In description of plasma with long-range Coulomb interaction, Vlasov
showed the difficulties when kinetic theory based on standard transport-collision is applied: (1) Theory
of pair collisions disagrees with the discovery by Rayleigh, I. Langmuir and L. Tonks that vibrations
exist in electron plasma; (2) Theory of pair collisions without Coulomb interaction will lead to
divergence of kinetic term; (3) Theory of pair collisions cannot explain results of experiments by
H. Merrill and H. Webb that electrons scatter anomalously in gaseous plasma [2]. In gas, binary
interaction is taken as the rule. However, in plasma, waves, or organized motion of plasma, are very
important because the particles can interact at long ranges through the electric and magnetic forces.
Vlasov suggested a source term which contains the Coulomb interaction added in Boltzmann equation.
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It is a partial differential equation (PDE) for distribution function of particles, which represents
probability that particle stays at a specific position and velocity. The acceleration term in the equation
describes redistribution of particle on particle phase space due to electromagnetic force.

Many work about numerical methods have been done to model plasma evolution. Particle based
method is a direct simulation method by tracing particle trajectory. P. Degond et al. (2010) proposed
a particle-in-cell (PIC) method based on Vlasov equation [3]. In PIC method, the particle details, such as
the location, velocity, are exactly captured by the equation of motion. To reduce computational cost, finite
element method (FEM) and spectral method are proposed. In FEM the whole computational domain
is divided into several discrete elements and a polynomial is applied to approximate the distribution
function in phase space. N. Crouseilles et al. (2011) proposed a Galerkin method for the Vlasov equation.
Lagrange polynomials are applied to construct basis function [4]. D. C. Seal (2012) reported a work in
his doctorate thesis that focuses on a discontinuous Galerkin method for the solution of the Vlasov
equation. In finite element space, the basis functions used for representation of the distribution function
in the Vlasov equation are allowed to be discontinuous at the cell interface [5]. R. Heath et al. (2012)
applied penalty function in approximation of discrete distribution function. The rate of convergence is
greatly improved [6]. For better accuracy in modelling non-equilibrium distribution function, many
researchers constructed spectral methods to solve plasma Vlasov equation. J. W. Schumer et al. (1998)
used the Fourier-Hermite polynomial to construct basis functions. Fourth order Runge-Kutta method
(RK) is chosen to improve the convergence rate [7]. S. Le Bourdiec et al. (2006) constructed a spectral
method based on generalized Hermite functions [8]. N. Crouseilles et al. (2009) proposed a forward
semi-Lagrangian spectral method with B-splines basis. Different from previous method, numerical time
step can be much larger than particle collision time [9].

Since it is hard to control the truncation error in approximation of gas distribution function,
conservative methods based on Godunov’s scheme are proposed [10]. E. Sonnendrücker (1999) et al.
first introduced a semi-Lagrangian conservative method [11]. F. Filbet et al. (2001) constructed
a particle based conservative method [12]. Since the accuracy of methods is severely influenced by
the phase and amplitude error because of dissipation from the way of reconstruction and the use
of slope corrector, N. Crouseilles et al. (2007) constructed a conservative method using the Hermite
spline interpolation [13]. J. W. Banks et al. (2011) proposed a finite volume method (FVM) to solve
the Vlasov equation, in which the PDE is integrated in discrete phase space and the numerical flux
of the distribution function through a cell interface is evaluated using high-order approximations of
the cell-face average [14]. S. Xu et al. (2015) simulated the Navier-Stokes dielectric barrier discharge
(NS-DBD) plasma formation between parallel electrodes in N2-O2 mixture air at low-pressure under
nanosecond impulses [15]. However, in these schemes, individual particle motion is resolved in flux
evaluation so numerical time step is limited within relaxation time.

In current paper, a unified gas kinetic scheme (UGKS) is applied to simulate plasma flows based on
the Boltzmann-Poisson equation. The UGKS is proposed by Xu, Huang and Yu [16,17], which attracts
more and more researchers’ attention [18–32]. In plasma flow, particle transport is controlled by electric
force, so the state of gas is decided by electric field. In mathematics, electric force term does not appear
in advection part but a source term in discretization. Gas distribution function can never evolve
towards Maxwellian as the Bhatnagar-Gross-Krook (BGK) model describes. The real gas distribution
function in the highly non-equilibrium region is never able to be described by a Maxwellian. In this
paper, the particle velocity space is discretized so that distribution can be exactly described in all flow
regimes [16]. The flux reconstruction at the cell interface is treated as the Riemann problem along
characteristic curves presented as particle transport velocity [33]. The free transport and interaction
between particles are coupled so that the dissipation in the transport process is controlled by the
source of the long-range interaction rather than numerical time step. With this technique, the artificial
dissipation as the one in J. Banks et al. (2011) [14] will not be brought in numerical process.

With integral solution of Boltzmann equation, The UGKS obtains accurate gas distribution
function at cell interface at each time step [33]. The numerical time step can be decided by the
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Courant- Friedrichs-Lewy (CFL) condition [34]. This high fidelity and efficiency in numerical
simulation make the UGKS a better way to solve plasma problems. Based on the BGK model equation,
C. liu et al. (2017) simulated multi-scale and multi-component plasma transport based on the UGKS
[35]. Many challenging cases including magnetic reconnection problem in the transition regime are
simulated. In study of plasma, UGKS provides a reliable multi-scale approach for numerical simulation.
In solving the Boltzmann equation, gas distribution function at cell interface is obtained by the solution
for the local Riemann problem [10] by using difference biased in the direction determined by the sign
of the characteristic speeds [36], thus UGKS has good conservation property and good robustness.
Spectral methods has a high order accuracy in smooth regime [37]. However, highly non-equilibrium
state will be a challenge because a large error appears in a strong discontinuity at cell interface of
phase space. This problem becomes severe when micro-electromechanical systems should also be
paid enough attention in rarefied regime [38]. In plasma, time-varying electric field causes collective
behavior with many degrees of variation [39,40]. Since the flux of gas distribution function for particles
in discrete microscopic velocity space is computed in UGKS, the multi-scale property is satisfied.
Therefore, the present UGKS is a promising scheme for plasma simulation.

Unlike neutral gas, plasma consists of a significant number of charge carriers, which makes it
electrically conductive. Because of this feature, plasma responds strongly to electromagnetic field.
Plasma does not have certain shape or certain volume if not enclosed in a container, but its motion
and state are able to be controlled by electromagnetic force. Under influence of electromagnetic field,
plasma can be formed into various structures. An important property used to describe the electric field
is electric potential. It represents the amount of electrical energy of a unitary point charge at any point
in an electric field. The electric potential, which denotes the ability of non static electricity to carrying
a charge from reference point to present location, is related to the force directly. The electric potential
of a point charge declines as it is driven by an electric force and moving in the direction of electric
field line. By Faraday’s law, the electric field has zero curl. Therefore, the electric field can be obtained
directly by electric potential. The Maxwell equations are a set of PDEs that describe how the fields
vary in space due to sources. In this paper, we concentrate on plasma evolution under electric field so
only Poisson’s equation is solved. All cases are tested in symmetric configuration. Green’s function
is an efficient approach to solve Poisson’s equation under this condition. In mathematics, an electric
field leaving a volume is proportional to the charge inside. The Green’s function is applied to solve
the Poisson’s equation which denotes electric potential. Electric potential obtained by the Poisson’s
equation is a sum of series whose basis functions are Green’s functions. The basis functions represent
Coulomb interaction potential induced by charges in the whole computational domain [41]. After the
electric potential is obtained, the electric field can be obtained by spatial gradient of the electric potential.
The acceleration term in the Boltzmann equation can be decided. In more generalized cases, UGKS is
also able to simulate plasma flows under a correct acceleration term.

The rest of the paper is organized as follows. First, we emphasize the numerical method for
solution of the Boltzmann-Poisson equation in Section 2. Then, the Landau damping, Gaussian beam
and linear electron plasma wave damping are numerically simulated and the numerical results are
presented in Section 3. Finally, some remarks concluded from this study are grouped in Section 4.

2. Numerical Methods

The Boltzmann BGK equation is used for UGKS to simulate plasma. Other collision term can also
be adapted to this method via modelling particle relaxation time. The BGK equation can be written as

∂ f
∂t

+ u
∂ f
∂x

+ a
∂ f
∂u

=
g− f

τ
, (1)
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where f is the particle distribution function of the space x, time t, particle velocity u = (u, v), collision
time τ, and acceleration a due to electromagnetic field. g is the equilibrium distribution function,

g = ρ

(
λ

π

) K+D
2

e−λ[(u−U)2+ξ2], (2)

where K denotes internal freedom degree and D denotes dimension, ξ is the internal freedom of gas,
U is the macro velocity and ρ is the density of plasma. In this paper, only two dimensional cases are
considered, so the relation between the macroscopic variables W with the microscopic variables ψ is

W =


ρ

ρU
ρV
ρE

 =
∫

ψ f dudvdξ, (3)

where ρE = 1
2 ρ
(

U2 + V2 + K+2
2λ

)
, and ψ = (1, u, v, 1/2(u2 + v2 + ξ2))T . The pressure and density

can be related with λ as p = ρ
/

2λ.
In discrete particle velocity space, Equation (3) can be written as

W = ∑ ∑ ∑ ψ f ∆u∆v∆ξ. (4)

where ∆u, ∆v and ∆ξ are microscopic velocity intervals. In this discrete integration, the limit is decided
by three times of initial Maxwell variance [−3σ, 3σ].

In the unified gas kinetic scheme, at the cell interface the solution fc f for Boltzmann BGK equation
is constructed from an integral solution using the method of characteristics

f j,k

(
xc f , u, t

)
=

1
τ

∫ t

0
g
(

x′, u′, t
)

e−(t−t′)/τdt′ + e−t/τ f̃ j,k

(
xc f − ut, u− at, 0

)
. (5)

Here x′ = xc f − ut + 1
2 at2 and u′ = u− at are particle trajectory and velocity, respectively. f̃ is the

initial distribution function. Subscript c f denotes cell interface, j and k represent the index of particle
velocities u, v. Inside each control volume of physical space and discrete particle velocity space, the gas
distribution function at the beginning of time step is computed using a linear reconstruction [17]

f̃ j,k

(
xc f − ut, u− at, 0

)
=


f l
c f ,j,k −

(
∂ f
∂x

)l

c f ,j,k
· ut−

(
∂ f
∂u

)l

c f ,j,k
at, u · Sc f ≥ 0,

f r
c f ,j,k −

(
∂ f
∂x

)r

c f ,j,k
· ut−

(
∂ f
∂u

)r

c f ,j,k
at, u · Sc f < 0,

(6)

where l and r represent left and right of cell interface. In a two dimensional configuration, i represents
cell index of an unstructured mesh. Under unstructured mesh, spatial derivatives of distribution
functions can be obtained via least square method. The approximation of the partial derivative of f
with respect to the particle velocity u can be written as(

∂ f
∂u

)
i
=

fi,j+1,k − fi,j−1,k

2∆u
,(

∂ f
∂v

)
i
=

fi,j,k+1 − fi,j,k−1

2∆v
.

(7)

For a second order scheme, it is an appropriate approach. An efficient fast spectral method can
also be implemented in UGKS solver for high order accuracy [42]. At the boundary of particle velocity
space for two dimensional plasma, distribution function is set to be zero.
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For integral term of equilibrium distribution function in Equation (5), continuous particle velocity
space is applied to evaluate this Maxwell distribution function. Around cell interface c f , it can be
expanded as

g
(
x′, u′, t

)
=

{
g0 (x, u, 0)

[
1− (t− t′) āl · u− (t− t′) b̄l · a + Āt′

]
, u · Sc f ≥ 0,

g0 (x, u, 0)
[
1− (t− t′) ār · u− (t− t′) b̄r · a + Āt′

]
, u · Sc f < 0,

(8)

where g0(x, u, 0) is local Maxwellian located at cell interface which reads

g0 (x, u, 0) = ρ0

(
λ0

π

) K+D
2

e−λ0[(u−U0)
2+ξ2], (9)

where ā and Ā are derivatives of Maxwellian in space and time. They can be obtained from Taylor
expansion of Maxwellian. b̄ is the derivative term of Maxwellian g with respect to the particle velocity
u. In a two dimensional configuration, they have the following form,

ān = ā1
n + ā2

n u + ā3
n v + ā4

n

1
2

(
u2 + v2 + ξ2

)
,

āt = ā1
t + ā2

t u + ā3
t v + ā4

t
1
2

(
u2 + v2 + ξ2

)
,

Ān = Ā1
n + Ā2

n u + Ā3
n v + Ā4

n

1
2

(
u2 + v2 + ξ2

)
,

(10)

where n and t represent the normal and tangential direction component respectively. Macroscopic
variables in Equation (9) are determined by the compatibility condition of BGK model. The conservation
constraints are given as

W0 =
∫

ψg0 (x, u, 0) dΞ =
∫

ψ
(

gl H [un] + gr (1− H [un])
)

dΞ, (11)

where H is Heaviside function defined by

H [x] =

{
0, x < 0,
1, x ≥ 0.

(12)

The normal derivatives term can be obtained by the relation between the spatial derivatives of
the distribution function and the conservation variables,

W0 −W l

ρ0∆xl =
∫

āl
nψg0 (x, u, 0) dΞ,

W r −W0

ρ0∆xr =
∫

ār
nψg0 (x, u, 0) dΞ.

(13)

For the two dimensional problems, the the normal and tangential component of b̄ in
Equation (8) read

g0 (x, u, 0) b̄n =
∂g (x, u, 0)

∂u
= −2λ (u−U) g0 (x, u, 0) ,

g0 (x, u, 0) b̄t =
∂g (x, u, 0)

∂v
= −2λ (v−V) g0 (x, u, 0) .

(14)

Now, we have determined all parameters of the initial distribution function and the Maxwell
distribution function in Equation (5). After substituting these parameters into the formula of gas
distribution function, we have
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f j,k

(
xc f , u, t

)
=
(

1− e−
t
τ

)
g
(

x′, u′, t
)
+
(

e−
t
τ (t + τ)− τ

) (
al

nu · n + b
l
nan

)
H [u · n] g

(
x′, u′, t

)
+
(

e−
t
τ (t + τ)− τ

) (
ar

nu · n + b
r
nan

)
(1− H [u · n]) g

(
x′, u′, t

)
+
(

e−
t
τ (t + τ)− τ

) (
ātv + btat

)
g
(

x′, u′, t
)

+
[
t− τ

(
1− e−

t
τ

)]
Ag
(
x′, u′, t

)
+ e−

t
τ

((
f l
0,j,k −

(
∂ f
∂x

)l

c f ,j,k
· ut−

(
∂ f
∂u

)l

c f ,j,k
at

)
H[u · n]

)

+ e−
t
τ

((
f r
0,j,k −

(
∂ f
∂x

)r

c f ,j,k
· ut−

(
∂ f
∂u

)r

c f ,j,k
at

)
(1− H[u · n])

)
,

(15)

where n denotes the normal vector of interface.
Finally, the macroscopic variables and discrete gas distribution function are updated respectively.

For macroscopic conservative variables, we have

Wn+1 = Wn − 1
Ω

F · S + Sr, (16)

where Ω is volume of a cell and S is the area of all the interfaces of the cell. The flux of macroscopic
conservative variables reads

F =
∫ ∆t

0

∫
u · nψ fc f (x, u, t) dΞdt. (17)

The source term Sr is induced by inaccurate computation of reconstruction. The acceleration term
does not appear in the evaluation of the particle trajectory when solving the gas distribution function
at the cell interface. So a source term should be added in the projection stage [43], which reads

Sr =


0

ρax∆t
ρay∆t
~Fρ ·~a

 . (18)

In above equations, integration under particle velocity space takes a discrete form. For discrete gas
distribution function in each cell of physical space and particle velocity space, the update is realized by

f n+1
i,j,k = f n

i,j,k −
1
Ω

∫ ∆t

0
u · S fc f (x, u, t) dt +

∆t
2

(
gn+1

i,j,k − f n+1
i,j,k

τn+1 +
gn

i,j,k − f n
i,j,k

τn

)
. (19)

In all above formulas, the relaxation time τ is related to different scales of particles in plasma,
which reads [35]

τα =
1

∑
κ

θακρκ
mκ

, (20)

where ρκ represents density of component κ, mκ represents particle mass of component κ and θακ

represents collision frequency coefficient between component α and κ,

θακ =
4
√

π

3

(
2kBTα

mα
+

2kBTκ

mκ

)(
dα + dκ

2

)2
, (21)

where T represents temperature, kB represents Boltzmann constant, and d represents diameter
of particle.
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Next, we will introduce the process of solving the electromagnetic Poisson’s equation. Solving
the Poisson’s equation amounts to finding the electric potential Φ for a given charge distribution.
The mathematical details behind the Poisson’s equation in electrostatics are described by Gauss’s law
for electricity [44]. The Poisson’s equation applied in our work is written as

∆Φ = −ρc

ε
, (22)

where ρc is the charge density and ε is the permittivity of the medium. Equation (22) is solved using
the Green’s function [45]. First, we find the particular solution.

Φi =
1
ε

Nc

∑
j=1

G
(
xi, xj

)
Qj, (23)

where Nc represents the number of cells, i represents the cell being studied, j represents cells in discrete
computational domain and j 6= i. Qj represents charge in cell j. G

(
xi, xj

)
is the Green’s function for

the Poisson’s equation, which can be written as

G (x1, x2) =
1

4π|x1 − x2|
. (24)

In the Green’s function, x1 and x2 represent radius vectors for two locations of charges. To give
a unique Green’s function, symmetry or periodic boundary conditions should be implemented [46].
According to the Faraday’s law, the electric field from charged particles is a conservative vector field.
The electric potential Φ can be defined [47], such that

Esel f = −∇Φ. (25)

Equation (25) is used for the electrostatic part of the electric field. The electrodynamic part of the
electric field is induced by magnetic field due to motion of charged particles. If the magnetic field is
taken into consideration, the electric field induced by charged particles can be written as

Esel f = −∇Φ− ∂A
∂t

, (26)

where A is the magnetic vector potential [48]. The relation between the magnetic field B and A can be
written as

B = ∇× A. (27)

The component of particle acceleration due to the electrostatic part of electric field obtained
by particular solution via the Green’s function and electrodynamic part of electric field induced by
magnetic field is computed as,

a = − qi
m

(
∇Φ +

∂A
∂t

)
= − qi

m

(
1
ε

Nc

∑
j=1
∇G

(
xi, xj

)
Qj +

∂A
∂t

)
, (28)

where qi is the charge of the particle in cell i, m is the mass of the particle. In this paper, the charge to
mass ratio of the particle, q

m , is a non-dimensional value which satisfies the relation
∣∣ q

m

∣∣ = 1.
Besides the electric field induced by the charged particles, the external electric field Eappl also

contributes to variation of distribution function. So the acceleration term in Equation (1) includes
two parts.

a = asel f + aappl , (29)

After substituting Equations (6), (7) and (29) into Equation (5), we can update the distribution function
at n + 1 step. The above procedure can be repeated in the next time level.
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3. Numerical Results

3.1. Linear Landau Damping

The Landau damping is the effect of damping of longitudinal space charge waves in plasma [49].
It prevents an instability from developing and creates a region of stability in the parameter space [50].
Energy exchange between electromagnetic wave in phase space and charged particles in plasma is the
cause of Landau damping. In evolution, particles interact strongly with the wave [51]. In current work,
we simulate the Landau damping based on the UGKS to study the way in which electrons interact
and exchange energy with electromagnetic field. This case is used to test the accuracy of the UGKS
for solving the Boltzmann equation in describing time-variant electromagnetism parameters such as
electric field and electric potential energy. First, an electromagnetic wave should be added to flow field.
This wave is caused by an initial disturbance of distribution function [52].

In current work, 2D initial condition is set to

f0 = ρ
λ

π
e−λ((u−U)2+(v−V)2) (1 + α cos (kxx) cos

(
kyy
))

, (30)

where λ = 0.5, U = V = 0 , α = 0.05 and the wave numbers kx = ky = 0.5 in current problem. In this
case, the scales of non dimensional axis of X and Y are set to be 4π for a period in disturbance.

In the linear Landau damping case, a periodic boundary condition is applied. The four dimensional
phase space contains 64 points per dimension. The particle velocity is truncated at 6.0. The periodic
boundary condition is chosen for 2D linear Landau damping. The length for computational domain in
each dimension is set to be 4π. The constant time step ∆t is chosen as 0.01. The evolution of density
contour is presented in Figure 1. The energy of electric field is being carried away by electrons moving
at the phase space. To show this process, the evolution of symmetric electric field and electric energy
will be given. First, we computed the average of symmetric electric field. The logarithmic scale of it is
used for damping process of electric field, which is presented in Figure 2. In evolution, non dimensional
numerical time is decided by t/t∗. Reference time t∗ = Lre f /C, in which Lre f = 4π and C denotes
speed of sound.

Now, the electric potential energy is computed to show the process of energy transport and
conversion during interaction between the electric field and electrons. The electric potential energy is
a potential energy that results from coulomb forces between charges. This kind of energy is associated
with the configuration of a defined system which contains a certain number of charged particles.
In physics, the electric potential energy of a system is the energy required for assembling charges
from an infinite distance by bringing them close together. If an object has electric potential energy UE,
two key elements are crucial: (1) this object keeps its own charge; (2) it stays at a relative position to
other electrically charged objects.

UE = qΦ. (31)

The evolution of potential energy in systems with time-variant electric fields is given in Figure 3.
In the current work, we obtain the same evolution process of the electric field and electric energy

as Reference [12]. Many works have been done to study the physical picture of Landau damping.
Linearized theory is the simplest and rather complete way [53], but it is not physically reasonable
because interaction between charged particles and electromagnetic field is coupled with particle
transport in the Boltzmann equation. The linearized method is not appropriate to be used in this
nonlinear system. However, nonlinearity has been a longstanding problem. To model nonlinear level
in the Vlasov equation, a class of exponentially damped solutions of the Vlasov-Poisson equation is
proposed [54]. This method fails to explain the mechanism of energy transport although it approximates
the damping curves in a mathematical way. The UGKS shows a great advantage on correctly
representation for the Landau damping with a much lower computational cost than particle-based
methods, which makes it a promising method in plasma simulation.
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(a) t = 0.5 (b) t = 1.0

(c) t = 1.5 (d) t = 2.0

(e) t = 2.5 (f) t = 3.0

Figure 1. Density contour of the linear Landau damping at different time steps under non dimensional axis.
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Figure 2. Evolution of symmetric electric field of the linear Landau damping with non dimensional time.
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Figure 3. Evolution of electric potential energy of the linear Landau damping with non dimensional time.

3.2. Nonlinear Landau Damping

In linear Landau damping case discussed above, the non-equilibrium phenomenon is still not
very significant because the initial perturbation of density is very small. In this example, we increase
amplitude of the initial perturbation of density in 1D space. The perturbation rate is set to be α = 0.5.
The wave number and periodic length remain the same k = 0.5 and non dimensional scale of axis
L = 4π f oraperiodindisturbance. The initial particle distribution function reads:

f =
1√
2π

e−
u2
2 (1 + α cos (kx)) . (32)
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In UGKS, the discrete particle velocity space is applied. The 1D velocity space is truncated at
[−6, 6] with 128 intervals. When the velocity space is being discretized, we used cosine to decide
the positions of discrete velocity points so that a high resolution can be obtained near the peak of
distribution function. This equation is written as

ux = −vmax

(
1 + cos

(
−π

2
+ π

i
Nu− 1

))
, (33)

where vmax is the maximum of particle velocity and Nu is the number of discrete velocities of particle.
The non dimensional scale of microscopic velocity space is decided by U/C, in which C denotes speed
of sound.

The evolution of the kinetic entropy is taken as a benchmark solution. Traditional FEMs always
overestimate this value.The particle-based methods may be an alternative, but computational cost
would be overwhelming. The UGKS is able to obtain the same accuracy as particle-based method but
calls for much lower computational cost. The comparison result between UGKS and Filbet et al. [12]
is presented in Figure 4. The kinetic entropy is computed by H = −∑ f ln f . In evolution, non
dimensional numerical time is decided by t/t∗. Reference time t∗ = Lre f /C, in which Lre f = 4π.

t

H

20 40 60 80

17.5

18

18.5

19

19.5

Present

Filbet et al

Figure 4. Evolution of the kinetic entropy of nonlinear Landau damping with non dimensional time.

Another benchmark result is L2-norm of the distribution function. Variation of L2-norm is
often used to show the rate of negative values because the global mass

∫
f dΞ should be preserved.

This value ∑ f 2 is used to test the characteristics of conservative of UGKS in simulation for plasma
flow. The comparison result of L2-norm between UGKS and Filbet et al. [12] is given in Figure 5.
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Figure 5. Evolution of L2-norm of distribution function in nonlinear Landau damping with non
dimensional time.

The results of UGKS fit well with the ones of the particle-based method. With a much lower
computational cost, the UGKS can archive the same accuracy. The UGKS has a good conservation
property and good accuracy in reconstruction, so that the spurious dissipation is avoided. The nonlinear
Landau damping case is a highly non-equilibrium phenomenon. To show this, particle distribution
functions at different time steps at the center of space are presented in Figure 6.

Figure 6 shows the distribution function in velocity space. To give a better description of particle
distribution in phase space, the distribution function in the (x, u) space is presented in Figure 7.
Distribution functions at x = 0 for t = 10, 20, 30 are given in Figure 8 to compare with the results in
Reference [35]. The heaps of distribution profiles fit with each other. However, difference between
Poisson’s equation in this paper and complete Maxwell equation causes inconsistent results. To simplify
computation and reduce computational cost, only electric Poisson’s equation is considered. However,
in simulation of plasma in electric field, it is an accurate method.

In nonlinear Landau damping case, nonlinear effect dominates the evolution of particle motion
and electric field. UGKS successfully captures the unsteady and highly nonlinear waves in plasma.
Numerical scheme proposed in this paper provides an accurate method for highly non-equilibrium
plasma flow simulation. Time development of entropy under meshes with different cell size Nx and
discrete velocity space with different number of points Nu are given in Figure 9. The computation
results convergence at Nx = 128 and Nu = 128 for present method.
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Figure 6. Non-equilibrium distribution functions at different time steps of nonlinear Landau damping
under non dimensional microscopic velocity space.
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(a) t = 5 (b) t = 10

(c) t = 15 (d) t = 20

(e) t = 25 (f) t = 30

Figure 7. Distribution functions of nonlinear Landau damping in phase space at different non
dimensional numerical time steps.
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(c) t = 30

Figure 8. Development of the distribution function at x = 0 in nonlinear Landau damping case with
non dimensional time.
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Figure 9. Development of entropy in nonlinear Landau damping case with non dimensional time.

3.3. Gaussian Beam

In the optical field, the Gaussian beam is a beam of monochromatic electromagnetic radiation
which has a Gaussian intensity profile. As a result, it has a transverse electromagnetic field given by
the Gaussian function. Such a beam can be expanded and focused through lens thus becomes different
Gaussian beam at different time steps. According to the theory of quantum mechanics, electrons
can both interact with other particles and be diffracted. It has properties of particle and wave [55].
For Gaussian beam case, a beam of electrons is a good model since both interaction between particles
due to electromagnetic force and intensity of light should be simulated. In current paper, we choose
an electron beam as model to be deformed by the electromagnet field. In addition, the external electric
field plays a role of lens. In evolution of beam, the external electric field has an opposite direction to
electric field induced by electron itself. In the Boltzmann equation, the acceleration term is from the
electric field which includes two parts: Electric field Esel f induced by electron given by the Poisson’s
equation and external electric field Eappl . The external electric field is decided by self-consistent field
method (SCF) using initial electric field induced by electrons. In current work, the external electric
field is linear with respect to spatial coordinates. The relation between Esel f and Eappl can be written as

Esel f + Eappl = −ω2r, (34)

where ω represents the difference between the initial self-consistent electric field due to particle charges
and the linear external electric field. Its value is decided by a self-consistent domain.
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I =

{
(x̄, ȳ, ū, v̄) | x̄

2

a2 +
ȳ2

a2 +
ū2

(ωa)2 +
v̄2

(ωa)2 = 1

}
. (35)

All values in Equation (35) are nondimensionalized by the root mean square (RMS) thermal
velocity vth. The RMS results for space and particle velocity are computed by

√
x̄2 =

√∫
x2 f dΞdΩ∫

f dΞdΩ
= a,

√
ȳ2 =

√∫
y2 f dΞdΩ∫

f dΞdΩ
= a,

√
ū2 =

√∫
u2 f dΞdΩ∫

f dΞdΩ
= ωa,

√
v̄2 =

√∫
v2 f dΞdΩ∫

f dΞdΩ
= ωa.

(36)

For Gaussian beam case, the initial self-consistent electric field is linear in space. So we can obtain
the two unknown variables ω and a using RMS thermal velocity vth,

a =
ra

2
, vth =

ωra

2
, (37)

where ra is the radius of beam. Now we introduce a tune depression factor χ = ω0
ω such that we can

adjust external electric field with initial self-consistent electric field. The linear external electric field
whose direction is opposite to initial self-consistent electric field can be written as

Eappl = ω2
0r. (38)

In the evolution of a beam, the external electric field Eappl is used to focalize the beam.
The dimensionless form of Equation (1) can be rewritten as

∂ f
∂t

+ u
∂ f
∂x

+
(
−
(

Esel f + Eapp

)) ∂ f
∂u

=
g− f

τ
. (39)

The negative sign “− ” is because of the negative charge carried by electron.
The 2D initial condition is written as

f0=

{
ρ λ

π e−λ((u−U)2+(v−V)2) x2 + y2 ≤ r2
a ,

0 x2 + y2 > r2
a .

(40)

In kinetic theory, λ can be obtained by [56]

λ =
m

2kBT
, (41)

where m is the particle mass, kB is the Boltzmann constant, T is the temperature. The mesh for beam
case has a round boundary, which is shown in Figure 10. In this case, 4032 mesh cells are used to
discretize the computational domain.

Absorbing boundary condition (ABC) is applied in Gaussian beam case. The buffer zone is added
between the computational domain and boundary with a range 0.52 < x2 + y2 < 1.02. The flux damps
along warp of a circular zone in buffer zone.

Fro = δFri , (42)

where δ is damping rate, ro and ri are the two location on a warp line respectively. The damping rate
can be computed as

δ = cos
(

π

2
r− ri
ro − ri

)
, (43)
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where ri and ro represent the two limit of buffer zone. In our work, we have

ri = 0.5,

ro = 1.0.
(44)

The location for Fro and Fri is described in Figure 11.
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Figure 10. Mesh for the simulation of the Gaussian beam under non dimensional physical space.
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Figure 11. Buffer zone and flux on the warp for simulation of the Gaussian beam under non dimensional
physical space.

In evolution, the electric field induced by charged particles and particle free transport will expand
the beam. Applied external electric field focalizes the beam. So there is a process in which expansion
and contraction take place alternately. We describe evolution process of beam using electron density
contour at different time steps. The particle velocity is truncated at 6.0 with 64 points.

We simulated the evolution of a Gaussian beam and compared our results with the work of
Reference [12], which proves the accuracy of UGKS in plasma flow simulation.
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Now, let’s compare the computational cost with particle-based methods introduced in
Reference [12]. The test model is put in a 64× 64× 64× 64 phase space.

We compared computation time of the UGKS and particle-based scheme under the same phase
space in Table 1. The comparison results show a high efficiency of UGKS under the same condition.
Although electron has wave-particle dualism, in this paper, we only study Gaussian beam under an
electrodynamics frame. Based on the Boltzmann-Poisson system, the motion of electrons is described
in phase space with particle distribution function. Electrons are moving in space for existence of
electromagnetic force. So the peak value of intensity of the beam varies with time in Figure 12.
In evolution, non dimensional numerical time is decided by t/t∗. Reference time t∗ = Lre f /C,
in which Lre f = 2ra. To obtain a correct evolution process of beam, the transport and acceleration term
in the Boltzmann equation should be accurately coupled. Although the wave nature for electrons is
out of the range in this paper, the Schrödinger equation can be used to construct a numerical method
for quantum results of Gaussian beam case in the future.

Table 1. Computation time for comparison under 64× 64× 64× 64 phase space. PIC: particle-in-cell.

Number of Processors Unified Gas Kinetic Scheme PIC

1 2645.7 s 11,324.1 s
2 1458.6 s 6287.0 s
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Figure 12. Cont.
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(j) t = 0.62

Figure 12. Density distribution of the Gaussian beam at different non dimensional time steps in non
dimensional physical space for 2.5× 1015 particle density.

3.4. Linear Electron Plasma Wave Damping

In this section, the effect of collisions on linear damping of spatially one-dimensional electron
plasma wave (EPW) is simulated based on Boltzmann equation with electron-ion collision operator.
The complete Boltzmann equation is written as [57]
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∂ f
∂t

+ u · ∂ f
∂x

+ a · ∂ f
∂u

= −Cei f , (45)

where the collision operator −Cei f is given by

Cei f = −νei,th|uth|3
∂ (P)

∂u
· ∂ f

∂u
, (46)

where νei,th denotes the thermal electron-ion collision frequency and uth is velocity of particle thermal
motion. Tensor P is defined by

P =
1
u3

(
u2 I − u : u

)
. (47)

In the EPW case, the wavenumber is set to be 0.3. In the low perturbation amplitude regime,
the initial electron distribution is

f = ρ

(
λ

π

)
e−λ(u2) (1 + α cos (kx)) , (48)

where α = 0.0001 and k = π
250 . The 1D computational domain is discretized with 64 grid

points. In microscopic velocity space, 128 discrete points are used. To compared with the result
of Reference [57], the thermal electron-ion collision frequency νei,th is set to be 0.05. The amplitude of
the perturbation’s electric field E is plotted on a log scale as a function of time in Figure 13.
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Decaying line

Figure 13. Amplitude of the perturbation’s electric field for particle density perturbation ∆N/N = 10−4.

Where ωpe is the circular frequency of initial perturbation. The result obtained from present
methods is consistent with Reference [57]. The decaying process fit well with exponential decaying line.
Because of the initial perturbation of particle distribution, the electric field is also damped in oscillatory
process. In traditional numerical method based on continuous assumption, it is very hard to capture
these phenomena for the lack of direct modelling of particle motion. For the particle-based method,
the huge number of particles always produces unacceptable computational cost. In UGKS, particle
motion is described in modelling of flux through cell interface under discrete microscopic velocity
space. For every discrete distribution function, computational cost only comes from reconstruction
in flux evaluation. However, its accuracy is the same as particle-based method since all particles are
considered based on statistical concept using distribution function. With the suitable collision model,
a different state of plasma can be accurately obtained.
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4. Conclusions

In this paper, we solve the Boltzmann equation to simulate the plasma flow based on the UGKS.
This approach gives a full representation for particle moving in phase space under electric field.
An integral solution of the kinetic model under discrete physical and particle velocity space is applied.
In non-equilibrium state, this method can describe distribution function with discrete phase space.
Compared to Lagrangian method, the UGKS has a much lower computational cost but achieves the
same accuracy in plasma simulation. Many methods for solution of the Vlasov equation, such as
FEM and spectral method, still have to solve equation of particle motion to decide the coefficients
in basis functions for particle velocity dimensions. As a result, the time step is restricted according
to dissipative length scale determined by the physical transport. Time step in current work can
be decided by CFL strategy without spurious dissipation. In order to simplify the solution of the
Poisson’s equation by using the Green’s function, we restrict the boundary conditions to the periodic
or symmetric boundary conditions. The method presented in this paper can be used in simulation
for plasma flows in electric field. In multi-scale problems of plasma flows from free transport regime
to collisional effect, UGKS can give pretty good description of physical evolution. Compared to the
particle-based method, computational efficiency has also been greatly improved. Its advantages will
make it a promising tool for plasma research.
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EPW Electron Plasma Wave
FEM Finite Element Method
FVM Finite Volume Method
NS Navier-Stokes
PDE Partial Differential Equation
PIC Particle-in-Cell
RK Runge-Kutta Method
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