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Abstract: Low frequency communication, taking advantage of the features of low frequency
electromagnetic signals in near field, is widely used in through-the-earth (TTE) wireless applications.
However, the low frequency non-Gaussian noise severely limits the communication performance.
In this paper, an adaptive noise cancellation algorithm based on time delay estimation (ANC-TDE)
and maximum correntropy criterion (MCC) is proposed. The explicit time delay estimation algorithm
based on MCC (MCC-ETDE) is used to estimate the time-varying delay and the noise correlationship
between the primary input and reference inputs. With a reference noise selected and time delay
compensated, the non-Gaussian noise is canceled by adaptive filter based on MCC. The proposed
algorithm is implemented on field programmable gate array (FPGA) and the performance is evaluated
by simulation and experiment. As shown in the results, the ANC-TDE algorithm can reduce the
complexity of ANC filter and adaptively compensate the varied time delay between the primary
input and reference input. With the time delay compensated, the ANC-TDE algorithm has better
performance in non-Gaussian noise environment and is more suitable for real-time systems.

Keywords: low frequency communication; non-Gaussian noise; adaptive noise cancellation; time
delay estimation; maximum correntropy criterion (MCC); field programmable gate array (FPGA)

1. Introduction

Low frequency (LF) electromagnetic signals are less prone to multipath effect and provide
good obstacle penetration in near field [1,2]. Low frequency communication, taking advantage
of these features, is an alternative solution for through-the-earth (TTE) wireless applications, such
as subsurface wireless data acquisition [3], underground localization [4,5] and magnetic resonance
sounding [6]. To achieve two-way communication in long range, there still are many problems to
solve. Low frequency signals have great path loss when propagating through the rock, water, and
soil [7]. Therefore, huge antennas are used to obtain sufficient radiation gain, probably unsuitable
for some applications [8]. In addition, the atmospheric noise mixed to the weak signals limit the
signal-to-noise ratio (SNR) at the surface receiver [9]. In this paper, we focus on noise cancellation in
low frequency communication.

In the low-frequency radio range, the electromagnetic noise is caused by the natural electrical
activity in the atmosphere and man-made electrical disturbances. The atmospheric noise is produced
primarily by local and distant thunderstorms. The man-made noise arises from mining machines,
transportation vehicles, power generators, transmission lines, etc. [10]. Because of all these factors, the
low frequency noise tends to be highly impulsive and cannot be characterized by Gaussian distribution.
The low frequency noise which is picked up by narrowband receivers, can be approximated by a
symmetric α-stable (SαS) model [11]. Usually, the receiver consists of multiple antennas, which are
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used for the direction of arrival (DOA) estimation [12,13]. In some cases, the additive noise can be
cancelled from the signal with some reference antennas [6,14,15]. The reference antennas are used
to record only noise which is correlated with the noise in the signal [16]. Then the noise can be
subtracted from the signal through adaptive noise cancellation, without prior knowledge of signal and
communication systems. A popular adaptation technique is the least mean squares (LMS) adaptive
algorithm which exploits the second order moments of the error between the desired signal and the
filter output [17]. However, in the presence of impulsive of noise, the poor performance of LMS based
methods cannot satisfy the requirements of TTE communication systems. To improve the performance,
the least mean fourth (LMF) criterion [18] and least mean p-power (LMP) criterion [19] were proposed,
using the fourth-order moment or p-order absolute moment of the error as the adaptation cost
function. These algorithms are robust in impulsive noise, but the convergence speed and steady-state
performance are not good enough [20].

In order to obtain faster convergence and smaller steady-state error, the information theoretic
quantities can be used as cost functions to train adaptive systems [21]. There are two families of
algorithms: minimum error entropy (MEE) based algorithms and maximum correntropy criterion
(MCC) based algorithms. Using entropy of the error signal as a cost function, MEE based algorithms
have good robustness and steady-state performance in non-Gaussian and impulsive noise. However,
they are quite unsuitable for practical implementation because of their high computational complexity.
As a compromise, MCC based algorithms have the robustness comparable to the MEE based algorithms,
with similar computational complexity to LMS [22]. As a localized similarity measure, the correntropy
places exponentially decreasing weights on impulsive samples.

As shown in Figure 1, to obtain excellent performance with finite-length filters in practical
circumstances, a delay ∆ should be inserted into the primary input [23]. Typically, the value of delay ∆ is
chosen equal to about half time delay of the adaptive filter. In the practical TTE communication systems,
the primary antenna and reference antennas are usually placed in different locations. The noises from
different sources have different and time-varying delays between the primary channel and reference
channels, resulting in poor noise cancellation performance. To solve this problem, we can estimate
the time-varying delays and compensate them by nonlinear processing [24,25]. But the time delay
estimation algorithms based on correlation have poor performance in the impulsive noise environment.
To suppress the influence of impulsive noise, the explicit time delay estimation (ETDE) algorithm
based on MCC (MCC-ETDE) is proposed in [26], and has better performance in indoor near-field
electromagnetic ranging system. In the near-field electromagnetic ranging system, the ETDE algorithm
is used to estimate the time delay between the electric filed and magnetic field of transmitted signal.
The electric and magnetic fields of the signal are correlated. Therefore, the ETDE algorithm can
converge to true time delay, which is used to measure the distance between receiver and transmitter.
In the TTE communication systems, some reference inputs are not correlated with the noise in the
primary input, which leads to non-convergence of the ETDE algorithm. Therefore, the convergence
performance of the ETDE algorithm can be used to measure the correlationship between the reference
inputs and the primary input. The reference input will be selected as the reference noise only when the
time delay estimation value of this input has the smallest variance. Then the time delay is compensated
to improve the noise cancellation performance.
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Figure 1. Adaptive noise cancellation with correlated noise at the primary and reference input.

In this paper, an adaptive noise cancellation algorithm based on time delay estimation (ANC-TDE)
is proposed and implemented on field programmable gate array (FPGA). The ETDE algorithm not
only estimates the time-varying delay but also evaluates the noise correlationship between the primary
channel and reference channels. The reference input will be selected as the reference noise only when
the time delay value of this input has the smallest variance. Then the time delay is compensated to
make sure that the delay between primary input and inference input is almost half the time delay
of the adaptive filter. At last, the noise is removed from primary input by adaptive noise canceller
based on MCC. The performance of the proposed adaptive noise cancellation algorithm is evaluated
by simulation and experiment. As shown in the results, the MCC-ETDE algorithm can converge to the
true time delay with small variance in the impulsive noise when the reference noise is correlated to
the noise in the primary input. With the time delay compensated, the proposed ANC-TDE algorithm
can reduce the impulsive noise, and provide better performance. With the filter length shortened,
the proposed ANC-TDE algorithm can reduce the complexity of the ANC filter and is suitable for
real-time systems.

In summary, our main contributions are as follows:

• An adaptive noise cancellation algorithm is proposed based on time delay estimation.
The convergence performance of the ETDE algorithm is used to measure the correlationship
between the reference inputs and the primary input. The reference input will be selected as the
reference noise only when the time delay estimation value of this input has the smallest variance.

• When the reference noise is determined, the time delay between primary input and inference
noise is compensated according to the time delay estimation results. After compensation, the
value of delay ∆ is equal to about half time delay of the adaptive filter and the adaptive filter can
obtain best noise cancellation performance.

• The adaptive filter is designed based on MCC, which can improve the noise cancellation
performance in the impulsive noise environment.

• In order to filter out the correlated noise in real time, the proposed algorithm is implemented on
FPGA, which includes three modules: time delay estimation module, delay and channel control
module, and noise cancellation module.

The remainder of this paper is organized as follows. Section 2 describes the proposed adaptive
noise cancellation algorithm based on MCC. Section 3 details the FPGA implementation of the
proposed algorithm. Section 4 evaluates the performance of the proposed system using simulation
and experiments. We present conclusions in Section 5.

Notation: Lower-case (resp. Upper-case) bold letters denote column vectors, with W(k) being
the kth results obtained in the iteration process; E [·], (·)T , exp (·), kσ (·) and Gσ (·) denote expectation,
transpose, natural exponential function, shift-invariant Mercer kernel function with kernel size σ and
Gaussian kernel function with kernel size σ, respectively; j denotes the imaginary unit; ∇J (k) denotes
the gradient of J (k), while J (k) denotes the cost function at k moment.
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2. Adaptive Noise Cancellation Based on Time Delay Estimation

In most applications, low frequency magnetic signals are used as the communication signals,
received by a primary loop antenna. Then the reference noise can be electric field component of noise
received by electric antennas at the same position or magnetic field component of noise received by
loop antennas at different locations. As shown in Figure 1, suppose that d is the desired signal at
primary input and x is the noise signal at the reference input. So we get:

d = s + n0 (1)

x = n1 (2)

where, s is the interesting signal, n0 and n1 are the low frequency correlated noises. The adaptive filter
output is obtained by:

y = WTx (3)

where, W is the adaptive filter coefficient vector. With appropriate cost function, the additive noise can
be subtracted from the primary signal by adaptive noise canceller.

Widely used to model the non-Gaussian signals in brain images [27], power-line
communication [28], pattern recognition [29], and so on, the α-stable distributions can well represent
the impulsive noise in low frequency communication. Lack of a closed-form expression for the
probability density function (PDF), the α-stable distributions are usually described by the characteristic
function [30], as:

Φ (t) = exp
{

jδt− γ|t|α [1 + jβsign (t)ω (t, α)]
}

(4)

where,

ω (t, α) =


tan

απ

2
α 6= 1

2
π

log |t| α = 1
(5)

sign (t) =


1 t > 0

0 t = 0

−1 t < 0

(6)

Thus, the α-stable distributions are completely characterized by four parameters and can be
denoted by Sα (β, γ, δ). α ∈ (0, 2] is the characteristic exponent and determines the shape of the
distribution. As α is closer to 0, the variables have higher levels of impulsiveness and the PDF has
heavier tail. β ∈ [−1,+1] is the skewness parameter. When β < 0, the distribution is left-skewed,
while β > 0 means the distribution is right-skewed. When β = 0, the distribution is symmetric.
γ > 0 is the scale parameter and −∞ < δ < +∞ is the location parameter, analogous to the scale
and location in Gaussian distribution respectively. Note that when α = 2, the value of β is irrelevant
and the distribution is Gaussian distribution. When α = 1 and β = 0, the distribution reduces to a
Cauchy distribution.

2.1. Maximum Correntropy Criterion

The correntropy, measuring the similarity between two arbitrary scalar random variables X and
Y, is defined by:

Vσ (X, Y) = E [kσ (X−Y)] (7)
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where kσ is a shift-invariant Mercer kernel with kernel size σ, and E [·] is the mathematic expectation.
Using the most popular Gaussian kernel Gσ and substituting E [·] by the most recent L samples
estimator, the correntropy estimator becomes:

V̂σ (X−Y) =
1
L

k

∑
i=k−L+1

Gσ(x(i)− y (i))

=
1
L

k

∑
i=k−L+1

1√
2πσ

exp

(
− (x (i)− y (i))2

2σ2

)
(8)

In the adaptive filter, the correntropy estimator between the desired signal di and the filter output
yi is used as the cost function, then we get the cost function at k moment:

J (k) =
1√

2πσL

k

∑
i=k−L+1

exp

(
− (d (i)− y (i))2

2σ2

)
(9)

The cost function J (k) is maximized using the stochastic gradient and the filter coefficient vector
W is updated online:

W(k + 1) = W(k) + µ∇J (k) (10)

J (k) is substituted in (9), then we obtain:

W(k + 1) = W(k) +
µ√

2πσ3L

k

∑
i=k−L+1

[
exp

(
−e(i)2

2σ2

)
e (i) x (i)

]
(11)

where e (i) = d (i)−W(k)Tx (i) and µ is a positive scalar. As shown in (11), when the errors increase,
the weighting term decreases exponentially, and shows robust in impulsive noise environments.

When MEE criterion is used to train the adaptive filter, the filter coefficient vector WMEE is
updated online [21]:

WMEE(k + 1) = WMEE(k) +
µ√

2πσ3L2

k
∑

n=k−L+1

k
∑

i=k−L+1

[
exp

(
−(e(n)−e(i))2

2σ2

)
(e (n)− e (i)) (x (n)− x (i))

]
(12)

For the most recent L samples, the computational complexity of MCC algorithm is O (L).
The computation of entropy for L samples involves a double sum over all the samples and the
computational complexity of MEE algorithm is O

(
L2) [22]. Therefore, the computational complexity

of MEE algorithm is much higher than that of MCC algorithm and MEE algorithm is unsuitable for
real-time implementation.

2.2. Explicit Time Delay Estimation

Suppose that the relationship between d (k) and x (k) is:

d (k) = Ax (k− D) (13)

where A is the attenuation factor and D is the time delay between the primary channel and reference
channel. As shown in Figure 2, the finite impulse response (FIR) filter coefficients are replaced by a
truncated sinc function in ETDE algorithm, then x (k− D) can be expressed as:

x̃ (k− D) =
P

∑
i=−P

x (k− i) sin c (i− D) (14)
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where, P should be set large enough to reduce the time delay modeling error and

sin c (u) =
sin(πu)

πu
(15)

When maximum correntropy criterion is used in ETDE algorithm, the cost function becomes:

JETDE(D) =
1
L

k

∑
i=k−L+1

Gσ(d(i)− x̃ (i− D)) (16)

Then, the time delay estimation value D (k+1) at (k + 1)th iteration can be obtained through:

D(k + 1) = D(k)− µ

σ2 Gσ(e(k))e(k)
P

∑
j=−P

x (k− j) f (j− D(k)) (17)

where f (v) = (cos(πv)− sinc(v))/v.

Figure 2. Explicit time delay estimation based on MCC (Maximum Correntropy Criterion).

2.3. Time Delay Compensation

When the reference inputs are used to reduce the noise, we need to know, not only the time-varying
delays between primary input and reference inputs, but also which channel to be selected to collect
the correlated noise. Because, if the reference noise is not correlated to the noise in the primary input,
adaptive filter will not work and the SNR of output will decrease. Through time delay estimation,
we can know the time-varying delay and relationship between primary input and reference inputs.
For example, if the primary input and reference input 1 are correlated, the time delay estimation
will converge to the steady state with a certain value and the noise in reference input 1 is chosen as
reference noise. The proposed method works as shown in Figure 3.

Figure 3. Adaptive noise cancellation based on time delay estimation.
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• Time Delay Estimation

As shown in Figure 3, each reference input has an individual delay estimation module which
estimates the time delay between primary input and reference input. The more correlated the noises
are, the more accurate the estimated time delay is. If the SNR in the primary input is not very low, the
communication signals cause a big error in time delay estimation. Therefore, the time delay estimation
module may fail to converge in the communication process. In practical applications, the time delay
should be corrected in the communication gap, based on the assumption that the noise source is the
same during a communication process.

• Delay and Channel Control

The delay and channel control module is used to set the time delay in primary input and chose
the reference input. The time delay values obtained from the delay estimation modules of reference
inputs are compared in this module. The reference input selected as the reference noise is the input
with more accurate time delay value, having a smaller variance. Then the time delay is compensated
to make sure that the delay between primary input and reference input is almost half the time delay of
the adaptive filter.

• Noise Cancellation

With time delay compensation, the adaptive filter can cover most significant part of the noise
path’s impulse response with a limited number of coefficients [25]. In addition, the ANC algorithm
can be only applied to the active regions where the communication signals appear [24]. As a result, the
complexity of ANC algorithm is reduced and the performance is greatly improved.

3. FPGA Implementation

As shown in Figure 3, the proposed algorithm includes three modules: time delay estimation
module, delay and channel control module, and noise cancellation module. As shown in Equation (17),
there are (2P + 1) multiply-accumulate operations and one exponential operation for each sample to
get the time delay estimation value. In order to obtain high time delay estimation accuracy, all the
operations should be executed in one sampling period and the sampling period should be reduced [31].
Therefore, acceleration of computing is needed. FPGA is more suitable for multiple-instruction,
single-data (MISD) applications when power and space considerations outweigh price [32]. In order to
execute the proposed algorithm in real time, the proposed algorithm is implemented on FPGA. In this
paper, the sampling frequency is 1 MHz and the ADC is 14 bit. Next, this system is described in detail.

Figure 4 shows the time delay estimation block diagram. For each channel, the noise signal x (k)
is stored in register stack and P is set to be 32. Through the multiply-accumulate (MAC) operation, the
noise signal x (k) is multiplied by sinc and f (v) functions. To reduce the computational complexity,
the sinc and f (v) functions are stored in two lookup tables. The values of sinc and f (v) functions
are obtained from the lookup tables, based on the time delay estimation value D (k) from previous
iteration. Then the time delay estimation value is updated based on Equation (17).

Figure 4. Time delay estimation block diagram.
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After getting the time delay values of all channels, the values are processed by the delay control
module, which is shown in Figure 5. In order to reduce the computational complexity, we use mean
absolute error (MAE) of D (k) rather than the variance to evaluate the correlation between the primary
input and the reference inputs. Then the reference input with least MAE will be selected as the
reference noise. We will also obtain the time delay value Dc (k) inserted in the primary input:

Dc (k) = E [D (k)] +
LW
2

(18)

where, LW is the length of coefficient vector W.

Figure 5. Delay control block diagram.

Figure 6 shows the adaptive noise cancellation block diagram. The desired signal with the delay
DC (k) is subtracted by the filter output, which is obtained through MAC operation. As we have
known the time delay between the primary input and the reference input, we can shorten the filter
length. In this paper, the length of filter coefficient is 4 and the filter coefficient vector is updated based
on Equation (11).

Figure 6. Adaptive noise cancellation block diagram.

The proposed algorithm is implemented with the Altera Stratix III EP3SE260F1152C2N FPGA.
Table 1 lists the hardware resource consumption. For this design, the resources of the Stratix III
EP3SE260F1152C2N are quite sufficient. The highest resource utilization module is the MCC-ETDE
module, which requires 9 times more resource than the ANC module. In this paper, the length of filter
coefficient is 4. Therefore, the resource utilization of ANC module is equal to that of the MCC-ETDE
module when the length of filter coefficient is 40. In the actual situation, the proposed algorithm can
reduce the hardware resource consumption when the time delay is more than 40 samples.
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Table 1. Hardware Resource Consumption.

Module ALUTs Block Memory (Kbits) DSP Block

MCC-ETDE 16,478 2048 309
Control Module 867 0 0

ANC 1620 0 32
Total Utilization 18,969 2048 341
Utilization Rate 9% 14% 44%

ALUT (Adaptive Look-Up Table); DSP (Digital Signal Processing); ANC ( adaptive Noise Cancellation).

4. Results and Discussion

4.1. Evaluation Methods

In this section, the performance of the proposed ANC-TDE algorithm is evaluated by simulation
and experiment. Suppose that the communication signal is single-frequency sinusoidal signal and
frequency is 10 kHz. The sampling frequency is 1 MHz and the sample data is 14 bit.

4.1.1. Simulation Method

To evaluate the performance of the proposed adaptive noise cancellation algorithm by simulation,
the proposed algorithm is implemented on the experimental board. As shown in Figure 7, the
experimental board includes one main board and one DA/AD data conversion card. The 14-bit D/A
data conversion card is used to generate two signals. One signal is the communication signal which is
mixed with SαS noise. Another signal is the SαS noise with variable time delay. Then, the two signals
are processed by the proposed algorithm after 14-bit A/D conversion.

Figure 7. Experimental board.

To evaluate the performance of the proposed algorithm against impulsive noise, the noise is
presented as the SαS process when α = 1.5, β = 0, where the location parameter δ is 0 and the dispersion
γ is 1. In the non-Gaussian noise environment, the mixed SNR is defined in [33]

SNRm = 10log10

(
σ2

s
γ

)
(19)

where σ2
s is the variance of the signal and γ is the dispersion of the impulsive noise. Firstly, the time

delay estimation performance and noise cancellation performance are evaluated in different mixed
SNR environments respectively. Secondly, the noise cancellation performance of proposed algorithm
is evaluated when the time delay between the primary input and reference input is changing.
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4.1.2. Experimental Method

In order to verify the practicability of the proposed algorithm, the adaptive noise cancellation
system based is built on FPGA, which is shown in Figure 8. The sinusoidal signal with 10 kHz
frequency is generated by the signal generator and is amplified by the amplifier. Then The signal is
transmitted by the loop antenna, whose diameter is 20 cm. The transmitted magnetic signal is received
by a three-channel tunneling magnetoresistance (TMR) sensor (TMR2305). The Y channel of TMR
sensor is parallel to the axis of the loop antenna. The Y channel and X channel of TMR sensor are
parallel to the horizontal plane. The Z channel of TMR sensor is vertical to the horizontal plane. The
three channels are perpendicular to each other. After amplifiers, filters and 14-bit A/D converters, the
received signals are processed by the FPGA. To generate the impulsive noise, a switched-mode power
supply is used as the noise source. The comparison between original signal and filter output is made
to show the noise cancellation performance of proposed algorithm.

Figure 8. Adaptive noise cancellation system.

4.2. Simulation Results

4.2.1. Time Delay Estimation Performance

Figure 9 shows the time delay estimation performance of MCC-ETDE algorithm when the primary
input has no communication signal. Therefore, all the input signals are the correlated impulsive noises.
The time delay between the primary input and reference input is 10 Ts. The Gaussian kernel size σ

is 0.5 and the positive scalar µ is 0.4. The MCC-ETDE algorithm can converge to the true time delay
whin 1000 times of iterations (1 ms) and is suitable for real-time communication. When the pulses
occur, the MCC-ETDE algorithm has bigger errors but will come back to the steady state very soon.
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Figure 9. Time delay estimation performance without communication signal.

Figure 10 shows the time delay estimation performance of MCC-ETDE algorithm when the mixed
SNR in the primary input is −23 dB. When MCC-ETDE algorithm estimates the time delay between
the noise of the primary input and that of the reference input, the communication signal becomes an
interference signal. As shown in Figure 10, the communication signal has no major impact on the
convergence speed but causes big steady-state error, which affects the noise cancellation performance.

Figure 11 shows the time delay estimation variance of MCC-ETDE algorithm at different mixed
SNR levels. The time delay estimation variance of MCC-ETDE algorithm increases when the mixed
SNR increases. Therefore, in the communication process, the MCC-ETDE algorithm may not converge
to the steady state because of the communication signal. We should obtain the time delay and
relationship between the primary input and reference input among communication gap.
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Figure 10. Time delay estimation performance when mixed SNR (Signal-to-Noise Ratio) in the primary
input is −23 dB.
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Figure 11. Time delay estimation variance at different mixed SNR levels.

4.2.2. Noise Cancellation Performance

In this paper, the noises in the primary input and the reference input are in the same amplitude
and the time delay is set to be 2 Ts. The length of filter coefficient vector is set to be 4. In the MCC
algorithm, the Gaussian kernel size σ is 2 and the positive scalar µ is 0.5. In the LMS algorithm, the
positive scalar µ is 0.0002. Figure 12 shows the square error of the filter coefficient vector of LMS
algorithm and MCC algorithm when mixed SNR in the primary input is −23 dB. The MCC algorithm
has faster convergence speed and smaller square error than the LMS algorithm in the impulsive noise.
Figure 13 shows the square error of signal of LMS algorithm and MCC algorithm when mixed SNR in
the primary input is −23 dB. In the steady state, the LMS algorithm has much bigger square error than
the MCC algorithm when the pulses occur.

To compare the noise cancellation performance between LMS algorithm and MCC algorithm
at different mixed SNR levels, the noise is kept at the same magnitude and the magnitude of
communication signal is changed. During this process, the parameters of LMS algorithm and MCC
algorithm are not changed. Figure 14 shows the MSE (Mean Squared Error) of filter output at different
mixed SNR levels. The mixed SNR has different effects on LMS algorithm and MCC algorithm.
As the mixed SNR increases, the MSE of LMS algorithm slightly decreases. However, the MSE of MCC
algorithm increases when the mixed SNR increases, because the increased amplitude of communication
signal has a greater impact on the Gaussian kernel function. To obtain smaller MSE, the Gaussian
kernel size should be changed. Nevertheless, the MSE of MCC algorithm is much smaller than that of
the LMS algorithm.
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Figure 12. Square error of filter coefficient vector when mixed SNR in the primary input is −23 dB.
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Figure 13. Square error of signal when mixed SNR in the primary input is −23 dB.
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Figure 14. MSE of filter output at different mixed SNR levels.

4.2.3. Time Delay Compensation Result

The traditional noise cancellation algorithm can only be applied in some certain circumstances
where the primary input lags behind the reference inputs. In this paper, the simulation is carried
out in the circumstance where the reference input lags behind the primary input. Figure 15 shows
the time delay control performance of proposed algorithm when mixed SNR in the primary input
is −23 dB. In the interval [0, 1500) and [5000, 6500), there is only noise in the primary input. In the
interval [1500, 5000) and [6500, 10000), the communication signal is added to the primary input. In the
interval [1500, 5000), the time delay is set to be 3 Ts. Then, the time delay is set to be 4 Ts. When there
is only the noise in the primary input, the MCC-ETDE algorithm can estimate the time delay without
error. When the communication signal is added to the primary input, the time delay estimation values
will have bigger variance. When the MAE of time delay estimate values is bigger than the threshold,
the time delay control module will select the previous value as the time delay. The threshold is set
based on the actual situation. As shown in Figure 15, the time delay control (TDC) values can converge
to the true time delay values.

Figure 16 shows the adaptive noise cancellation performance of proposed algorithm when mixed
SNR in the primary input is −23 dB. As shown in Figure 16b, before the time delay estimation module
obtains the time delay, the adaptive noise cancellation module cannot improve the SNR in the primary
input. After obtaining the true time delay, the adaptive noise cancellation module achieves very good
noise cancellation performance with the time delay compensated in the primary input. In addition, the
proposed algorithm can track the changes of time delay with a fast convergence speed. When the time
delay changes, the proposed algorithm still obtains good noise cancellation performance with a period
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of time to compensate the varied time delay. In Figure 16c, the noise cancellation performance without
time delay compensation after 5000 samples is shown. Without time delay compensation, the adaptive
noise cancellation module cannot remove the noise from the signal.
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Figure 15. Time delay control performance when mixed SNR in the primary input is −23 dB.
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(b) Filter output (TDE)
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(c) Filter output (NTDE)

Figure 16. Adaptive noise cancellation performance when mixed SNR in the primary input is
−23 dB: (a) original signal; (b) filter output with time delay estimation; (c) filter output without
time delay estimation.

4.3. Experimental Results

Figure 17 shows the signals that are received by the TMR sensor. All the three channels receive the
noise that is generated by the power supply. The Y channel has the maximum-amplitude transmitted
signal, and Z channel has the minimum-amplitude transmitted signal. Therefore, the Y channel is
selected as the primary input, and the Z channel is selected as the noise reference. Figure 18 shows the
adaptive noise cancellation performance of the proposed algorithm. After processed by the FPGA, the
impulsive noise in the received signal is cancelled and the proposed algorithm can increase the SNR
about 6 dB in this experiment.
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Figure 17. The signals received by TMR (Tunneling MagnetoResistance) sensor.
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Figure 18. Adaptive noise cancellation performance.

5. Conclusions

In order to improve the SNR for low frequency electromagnetic TTE communication, the
ANC-TDE algorithm based on MCC is proposed and implemented on FPGA in this paper. As shown in
the simulation and experiment results, the proposed algorithm can adaptively compensate the varied
time delay between the primary input and the reference input. With the time delay compensated, the
proposed algorithm can reduce the complexity of the ANC filter and improve the noise cancellation
performance in the impulsive noise environment.

In the future work, we plan to conduct noise cancellation experiments in the real TTE
environments and optimize parameters of proposed algorithm according to noise characteristics
in different applications.
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