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Abstract: In this study, a set of Föppl–von Kármán equations for a bimodular functionally graded thin
plate subjected to a uniformly distributed load is established, and its general perturbation solution
in axisymmetric case is also obtained under different boundary conditions. First, the equation
of equilibrium of the plate is established on the existence of the neutral layer when considering
different properties in tension and compression. During the derivation of the consistency equation,
the tensile effect in the thin plate with bimodular effect is fully taken into account. The perturbation
method is used to solve the set of governing equations under different edge constraints, in which
the central deflection and the load of the plate are taken as a perturbation parameter, respectively.
The results indicate that the two selections for perturbation parameters are valid and consistent,
and the two solutions are convenient for engineering application. This study also shows that the
bimodular effect will modify the relation of load versus central deflection of the plate to some extent,
and under the same edge constraint, the capacities resisting deformation in different cases of moduli
depend on the relative magnitudes among the tensile modulus, the neutral layer modulus, and the
compressive modulus.

Keywords: different moduli in tension and compression; functionally graded thin plates; Föppl–von
Kármán equations; perturbation method

1. Introduction

The concept of functionally graded materials (FGMs) was first suggested by a group of Japanese
scientists as thermal barrier materials for aerospace structural applications and fusion reactors.
The properties of functionally graded materials vary gradually with the thickness direction within
the structure, which eliminates interface problems, and thus, the stress distributions are smooth.
Thin plate structures made of functionally graded materials have been found many applications in
aerospace, automotive, and biomedical fields. Therefore, there are many studies on FGM plates during
the past decades, for example, Refs. [1–10], to list but only a few. Studies on FGM plates involve
many interesting topics, including static and dynamic analyses, stability analysis, buckling analysis,
and so on. The methods used include some innovative analytical, numerical, and experimental
techniques, in which analytical methods are established based on two-dimensional plate theory or
three-dimensional elasticity theory, and numerical methods are based mainly on finite element method
and meshless method. Swaminathan et al. [11] presented a comprehensive review of the various
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methods employed to study the static, dynamic, and stability behavior of FGM plates. Thai and
Kim [12] also presented a comprehensive review of various theories for the modeling and analysis
of functionally graded plates and shells. This review mainly focuses on the equivalent single layer
theories, including the classical plate theory, first-order shear deformation theory, higher-order shear
deformation theories, simplified theories, and mixed theories, since they were widely used in the
modeling of functionally graded plates and shells. Besides, Brischetto [13–15] presented an interesting
3D exact model for FGM plates and shells, and also made the static analysis [14,15] and the free
vibration analysis [13]. More recently, Tang and Yang [16] analyzed the post-buckling behavior and
nonlinear vibration of a fluid-conveying pipe composed of functionally graded materials. Given that
there are many references in this field, we do not review them in detail.

With the deepening of the study, the analysis of functionally graded thin plates tends more
and more refined, especially on geometrically nonlinear problems from large deformations of
structures, as well as on the excavation of potential advantages of functionally graded materials
used. One requirement may come from large deformation analysis of flexible thin-plate-like structures,
since only after the large deformation problem is made clear, one can say, under what conditions
small deformation theory is reasonable. The large deformation analysis needs to resort to the classical
Föppl–von Kármán equations, which is a set of high-order partial differential equations and the
mathematical solving is relatively difficult, particularly in the use of analytical methods. Based on
a layerwise theory, Tahani and Mirzababaee [17] analyzed, analytically, displacement and stress
in functionally graded composites plates in cylindrical bending under thermomechanical loadings,
in which the geometrical nonlinearity was considered by strain–displacement relation in the von
Kármán sense, and a perturbation technique was used. Recently, Zhang et al. [18] studied the large
deformation problem of arbitrarily straight-sided quadrilateral FGM plates. The analysis is carried out
using the IMLS–Ritz method. Based on the IMLS–Ritz approximation, the discrete nonlinear governing
equation for the large deformation is derived. Due to the complexity of analysis, however, the nonlinear
solution to the quadrilateral FGM plates is obtained numerically, i.e., through the hybrid arc length
iterative procedure with the modified Newton–Raphson method. Shen and Wang [19] studied the
nonlinear bending problem of a simply supported, functionally graded cylindrical panel resting on
an elastic foundation in thermal environments, in which the formulations are based on a higher order
shear deformation shell theory with a von Kármán-type of kinematic nonlinearity, and a two-step
perturbation technique is employed to determine the load-deflection and load-bending moment curves.

Another requirement for the refined analysis of FGM plates may be from the sufficient
consideration of possible mechanical properties of materials, for example, the so-called bimodular
effect existed in most engineering materials, which is firstly proposed and systematized by
Ambartsumyan [20]. In the bimodular material model proposed by Ambartsumyan, the tension or
compression was judged on the criterion of positive–negative signs of principal stresses. As everyone
knows, the principal stresses are generally obtained as a final result, thus, the tensile or compressive
modulus are determined only for very simple problems, for example, pure bending of beams. For this
purpose, existing studies are based generally on a simplified mechanical model of subareas in
tension and compression, thus, many works concerning beams and plates were generated [21–25].
For a more complicated analysis, however, iterative programs must be resorted to, see Refs. [26–30].
Besides Ambartsumyan model, there is another bimodular model proposed by Bert [31]. Bert model
is established on the criterion of positive–negative signs in the longitudinal strain of fibers. Most
bimodular problems concerning laminated structures were based on Bert model, see Refs. [32–35].

From the review above, it may be found that the bimodular effect of materials and large
deformation problem of structures, in combination with functionally graded characteristic of materials,
makes the analysis of thin plates more complicated, not only for the establishment of the governing
equations, but also for the effective solving method, especially for the analytical technique. Up to now,
the problem has not been extensively studied. Another important problem we face in this study is the
concrete location of coordinates system, i.e., is the origin of the coordinate located on the geometrical
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middle surface or on the physical neutral layer? It seems to be unclear. Morimoto et al. [36] and
Abrate [37] noticed that there will be no stretching–bending coupling effect in constitutive equations if
the reference surface is properly selected. Thereafter, based on physical neutral surface, Zhang and
Zhou [38] and Zhang [39] carried out theoretical analyses to FGM plates and beams, respectively.
They found that physical neutral surface theory has many merits in the engineering application due
to its easiness and simplicity. Later, Latifi et al. [40] applied classical plate theory (CPT) based on
the physical neutral plane to derive the stability equations, and thus further studied the buckling of
thin rectangular FGM plates with arbitrary edge supports. In fact, the idea itself of physical neutral
surface is not new in the analysis of bimodular problems. From the very beginning of the analyses to
bimodular components in bending, the mechanical model focuses on the establishment of so-called
subarea in tension and compression, thus, the coordinate origin is naturally placed on the physical
neutral surface which is yet unknown; see our previous studies [23–25].

In this study, the non-linear bending problem of a bimodular functionally graded thin plate
subjected to a uniformly distributed load is analyzed based on a simplified theory reported in our
previous study [41]. Comparing to the existing works, this study uses the perturbation method, for the
first time, to solve the large deflection equations of FGM thin plates with different properties in tension
and compression. First, we will establish the bimodular Föppl–von Kármán equations based on
the idea of physical neutral surface in Section 2. In Section 3, an effective perturbation technique
is adopted to solve the Föppl–von Kármán equations of bimodular FGM thin circular plates under
different edge constraints, in which the central deflection and the load of the plate are taken as the
perturbation parameter, respectively. The two selections for perturbation parameters are compared
and the bimodular effect on structural stiffness and deformation are also discussed in Section 4.
Some meaningful conclusions are given in Section 5.

2. Föppl–von Kármán Equations of Bimodular FGM Thin Plates

This section first considers a rectangular plate in large deformation, where the plate is subjected
to a uniformly distributed load. Based on the simplified theory, the equation of equilibrium and the
consistency equation of the bimodular FGM thin plate are established, and the axisymmetric form of
the equations are thus obtained via corresponding coordinates transform.

2.1. Equation of Equilibrium

A bimodular FGM rectangular thin plate with thickness t is subjected to a normal uniformly
distributed load q, as shown in Figure 1. According to deformation law of thin plates, this causes
a concave deformation of the plate, thus generating a so-called tensile zone and compressive zone.
We therefore place the xoy plane at the unknown neutral layer, first, and the z axis is still set along the
thickness direction of the plate, as shown in Figure 1, where the tensile and compressive section height
of the plate are t1 and t2, the modulus of elasticity of the materials in tensile and compressive zone be
E+(z) and E−(z), and the Poisson’s ratio are two different constants, µ+ and µ−, respectively.
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In order to obtain an explicit solution of the problem, we need to define the functionally graded
expressions in the case of bimodulus. For this purpose, an exponential function is used to express the
function grade of the material, therefore, E+(z) and E−(z) may be written as

E+(z) = E0eα1z/t, E−(z) = E0eα2z/t, (1)

where α1 and α2 are two graded indexes, E+(z) = E−(z) = E0 when z = 0 (the neutral layer),
as shown in Figure 2. We also note that E+(z) = E−(z) = E0 when α1 → 0, α2 → 0 , this indicates
that the adoption of α1 and α2 represents the bimodular effect and the functionally graded feature of
the materials. In addition, for the convenience of the next description, we define and compute the
following integrals 

A+
1 =

∫ t1
0 zeα1z/tdz =

(
tt1
α1
− t2

α2
1

)
eα1t1/t + t2

α2
1

A−1 =
∫ 0
−t2

zeα2z/tdz =

(
tt2
α2

+ t2

α2
2

)
e−α2t2/t − t2

α2
2

(2a)

and 
A+

2 =
∫ t1

0 z2eα1z/tdz =

(
tt2

1
α1
− 2 t2t1

α2
1
+ 2 t3

α3
1

)
eα1t1/t − 2 t3

α3
1

A−2 =
∫ 0
−t2

z2eα2z/tdz = −
(

tt2
2

α2
+ 2 t2t2

α2
2
+ 2 t3

α3
2

)
e−α2t2/t + 2 t3

α3
2

(2b)

where these integrals satisfy the following limit conditions

lim
α1→0

A+
1 =

t2
1
2

, lim
α2→0

A−1 = −
t2
2
2

(3a)

and

lim
α1→0

A+
2 =

t3
1
3

, lim
α2→0

A−2 =
t3
2
3

. (3b)
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Figure 2. Materials model for a bimodular FGM plate.

Let the deflection of the plate be w(x, y), the axial force and the shear force per unit width along
the directions of x and y be Nx, Ny and Nxy, respectively, and the bending moment and torsion moment
per unit length be Mx, My and Mxy, respectively. According to the classical Föppl–von Kármán plate
theory, differential equations of equilibrium can be expressed as

∂Nx
∂x +

∂Nxy
∂y = 0

∂Ny
∂y +

∂Nxy
∂x = 0

(4)

and
∂2Mx

∂x2 + 2
∂2Mxy

∂x∂y
+

∂2My

∂y2 + Nx
∂2w
∂x2 + 2Nxy

∂2w
∂x∂y

+ Ny
∂2w
∂y2 + q = 0, (5)
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where Mx, My and Mxy has been determined as, according to our previous study [41],
Mx = − E0 A+

2
1−(µ+)2

(
∂2w
∂x2 + µ+ ∂2w

∂y2

)
− E0 A−2

1−(µ−)2

(
∂2w
∂x2 + µ− ∂2w

∂y2

)
My = − E0 A+

2
1−(µ+)2

(
∂2w
∂y2 + µ+ ∂2w

∂x2

)
− E0 A−2

1−(µ−)2

(
∂2w
∂y2 + µ− ∂2w

∂x2

)
Mxy = − E0 A+

2
1+µ+

∂2w
∂x∂y −

E0 A−2
1+µ−

∂2w
∂x∂y

. (6)

Substituting Equation (6) into Equation (5) yields

D∗∇4w = q + Nx
∂2w
∂x2 + 2Nxy

∂2w
∂x∂y

+ Ny
∂2w
∂y2 , (7)

where∇4 is the dual Laplace operator and D∗ is the bending stiffness of the bimodular FGM thin plate
which has been reported in our previous study [41]:

D∗ =
E0 A+

2

1− (µ+)2 +
E0 A−2

1− (µ−)2 . (8)

Thus Equations (4) and (7) are differential equations of equilibrium expressed in terms of w, Nx,
Ny, and Nxy. Combining with the consistency relation, the final solutions of the equations can be
obtained under boundary conditions.

2.2. Consistency Equation

Since the xoy plane is placed on the neutral surface, the displacement components in the plate
along x, y and z direction, u, v and w will take the following pattern, according to the classical
Föppl–von Kármán plate theory, 

u = u0 − z ∂w
∂x

v = v0 − z ∂w
∂y

w = w(x, y)
, (9)

where u0 and v0 are the displacement of the neutral surface. The strain components in the plate come
from two different aspects, one is the tensile strain on the neutral surface and another is from the
bending strain in the small defection theory, that is

{ε} = {ε0}+ z{ε1} (10)

where
{ε} =

{
εx, εy, γxy

}T , {ε0} =
{

εx0, εy0, γxy0
}T , {ε1} =

{
εx1, εy1, γxy1

}T (11)

and

{ε0} =
{

∂u0

∂x
+

1
2

(
∂w
∂x

)2
,

∂v0

∂y
+

1
2

(
∂w
∂y

)2
,

∂v0

∂x
+

∂u0

∂y
+

∂w
∂y

∂w
∂x

}T

(12)

{ε1} =
{
−∂2w

∂x2 ,−∂2w
∂y2 ,−2

∂2w
∂x∂y

}T

. (13)

From Equation (12), the consistency equation expressed in terms of strain components gives

∂2εx0

∂y2 +
∂2εy0

∂x2 −
∂2γxy0

∂x∂y
=

(
∂2w
∂x∂y

)2

− ∂2w
∂x2

∂2w
∂y2 . (14)

Next, we need to derive the consistency equation expressed in terms of of w, Nx, Ny and Nxy.
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Note that corresponding to the strain components, the stress components σx, σy, and τxy are also
from two different aspects, one is the tensile stress or membrane stress and another is from the bending
stress in the small deflection theory. Thus, for the tensile zone 0 ≤ z ≤ t1, we have

σ+
x = E+(z)

1−(µ+)2

[
εx0 + µ+εy0 − z

(
∂2w
∂x2 + µ+ ∂2w

∂y2

)]
σ+

y = E+(z)
1−(µ+)2

[
εy0 + µ+εx0 − z

(
∂2w
∂y2 + µ+ ∂2w

∂x2

)]
τ+

xy = E+(z)
2(1+µ+)

(
γxy0 − 2z ∂2w

∂x∂y

) (15a)

and for the compressive zone −t2 ≤ z ≤ 0,
σ−x = E−(z)

1−(µ−)2

[
εx0 + µ−εy0 − z

(
∂2w
∂x2 + µ− ∂2w

∂y2

)]
σ−y = E−(z)

1−(µ−)2

[
εy0 + µ−εx0 − z

(
∂2w
∂y2 + µ− ∂2w

∂x2

)]
τ−xy = E−(z)

2(1+µ−)

(
γxy0 − 2z ∂2w

∂x∂y

) . (15b)

Theoretically speaking, the axial forces Nx and Ny should be the sum of integrals in tensile and
compressive zones, such that {

Nx =
∫ t1

0 σ+
x dz +

∫ 0
−t2

σ−x dz

Ny =
∫ t1

0 σ+
y dz +

∫ 0
−t2

σ−y dz
. (16)

However, we should note that from Equation (15), the integral of the items of z has been
determined as zero, which is exactly the conditions used for the determination of the unknown
neutral surface, as reported in our previous study [41]. Thus, we have

Nx = A11εx0 + A12εy0

Ny = A12εx0 + A11εy0

Nxy = A33γxy0

, (17)

where the coefficients A11, A12 and A33 are the integrals relative to the properties of the materials, and
may be computed as

A11 =
∫ t1
−t2

E+(z)
1−(µ+)2 dz =

∫ t1
−t2

E0eα1z/t

1−(µ+)2 dz = E0t
1−(µ+)2

eα1−1
α1eα1t2/t

A12 =
∫ t1
−t2

µ+E+(z)
1−(µ+)2 dz = µ+A11

A33 =
∫ t1
−t2

E+(z)
2(1+µ+)

dz = 1−µ+

2 A11

. (18)

Due to the fact that what we considered here is the membrane stress or the tensile stress, all
integrals along the whole height should be carried out only to the corresponding tensile quantities.
This mathematical treatment agrees with the physical phenomenon and has been adopted in the
study of previous bimodular problems [21–23]. Solving the strain components from Equation (17) and
substituting into Equation (14), we have

A11

A2
11 − A2

12

(
∂2 Nx

∂y2 +
∂2 Ny

∂x2

)
− A12

A2
11 − A2

12

(
∂2 Nx

∂x2 +
∂2 Ny

∂y2

)
− 1

A33

∂2 Nxy

∂x∂y
=

(
∂2w
∂x∂y

)2

− ∂2w
∂x2

∂2w
∂y2 (19)

Noting the relation among the coefficients A11, A12 and A33, we have

∂2 Nx

∂y2 +
∂2 Ny

∂x2 − µ+

(
∂2 Nx

∂x2 +
∂2 Ny

∂y2

)
− 2(1 + µ+)

∂2 Nxy

∂x∂y
= A11[1− (µ+)

2
]

[(
∂2w
∂x∂y

)2

− ∂2w
∂x2

∂2w
∂y2

]
(20)
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Now, Equations (4), (7), and (20) constitute the basic equations of the problem expressed in terms
of w, Nx, Ny and Nxy. We further introduce the following stress function

Nx =
∂2 ϕ

∂y2 , Ny =
∂2 ϕ

∂x2 , Nxy = − ∂2 ϕ

∂x∂y
. (21)

Obviously, Equation (4) is naturally satisfied and Equations (7) and (20) become

D∗∇4w = q +
∂2w
∂x2

∂2 ϕ

∂y2 − 2
∂2w
∂x∂y

∂2 ϕ

∂x∂y
+

∂2w
∂y2

∂2 ϕ

∂x2 (22)

and

∇4 ϕ = E0t
eα1 − 1

α1eα1t2/t

[(
∂2w
∂x∂y

)2

− ∂2w
∂x2

∂2w
∂y2

]
, (23)

where A11 is replaced as the definite expression from Equation (18). Thus, we obtain Föppl–von
Kármán equations of bimodular FGM thin plates expressed in terms of w and ϕ. Here we note that

lim
α1→0

eα1 − 1
α1eα1t2/t = lim

α1→0

eα1

eα1t2/t + α1(t2/t)eα1t2/t = 1 (24)

which indicates that the regression is satisfied. Similarly, noting Equations (3b) and (8), D∗ in
Equation (22) may compute as follows

lim
α1,α2→0

D∗ =
E0

1− (µ+)2 lim
α1→0

A+
2 +

E0

1− (µ−)2 lim
α2→0

A−2 =
E0t3

1

3[1− (µ+)2]
+

E0t3
2

3[1− (µ−)2]
(25)

Considering t1 = t2 = t/2 and µ+ = µ− = µ when α1 → 0, α2 → 0, the limit formulas of D∗ becomes lastly

lim
α1,α2→0

D∗ =
E0t3

12(1− µ2)
(26)

Obviously, the bimodular FGM plate problem will be regressed into the classical problem,
this verifies the correctness of the derivation from the side.

2.3. Axisymmetric Case

Let the polar radius and the polar rotation in a polar coordinates system be r and θ, we have the
polar coordinates form of Equations (22) and (23) as follows

D∗
(

∂2

∂r2 +
1
r

∂
∂r +

1
r2

∂2

∂θ2

)2
w

= q + ∂2w
∂r2

(
1
r

∂ϕ
∂r + 1

r2
∂2 ϕ

∂θ2

)
− 2 ∂

∂r

(
1
r

∂w
∂θ

)
∂
∂r

(
1
r

∂ϕ
∂θ

)
+
(

1
r

∂w
∂r + 1

r2
∂2w
∂θ2

)
∂2 ϕ

∂r2

(27)

and (
∂2

∂r2 +
1
r

∂

∂r
+

1
r2

∂2

∂θ2

)2

ϕ = E0t
eα1 − 1

α1eα1t2/t

{[
∂

∂r

(
1
r

∂w
∂θ

)]2
− ∂2w

∂r2

(
1
r

∂w
∂r

+
1
r2

∂2w
∂θ2

)}
(28)

Specially, in an axisymmetric problem, w = w(r) and ϕ = ϕ(r). Let the axial force per unit width
along the directions of r and θ be Nr and Nθ , respectively, the relation of the stress function and the
axial force is simplified as

Nr =
1
r

dϕ

dr
, Nθ =

d2 ϕ

dr2 =
d
dr

(rNr) (29)
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At the same time, we have the axisymmetric conditions at the center,

dw
dr

= 0( 6= ∞) and Nr 6= ∞, at r = 0 (30)

which may be used for the simplification of the equations. Thus, the axisymmetric form of Föppl–von
Kármán equations of bimodular FGM thin plates becomes

D∗
(

d3w
dr3 +

1
r

d2w
dr2 −

1
r2

dw
dr

)
− Nr

dw
dr

=
q
2

r (31)

and

r2 d2Nr

dr2 + 3r
dNr

dr
+

E0t
2

eα1 − 1
α1eα1t2/t

(
dw
dr

)2
= 0 (32)

which is used for the solution of two unknown functions, w(r) and Nr. The boundary conditions of
a thin circular plate with radius a are considered to be rigidly clamped, movably clamped, simply
hinged, and simply supported, respectively. For rigidly clamped,

w = 0,
dw
dr

= 0, ur = 0 at r = a (33a)

for movably clamped,

w = 0,
dw
dr

= 0, Nr = 0 at r = a (33b)

for simply hinged,
w = 0, Mr = 0, ur = 0 at r = a (33c)

and for simply supported,
w = 0, Mr = 0, Nr = 0 at r = a, (33d)

where ur is the radial displacement and Mr is the radial bending moment, and they need to be further
changed as the boundary conditions expressed in terms of Nr and w. For this purpose, we first use the
geometric equation in the case of axisymmetric problem

εr =
dur

dr
+

1
2

(
dw
dr

)2
, εθ =

ur

r
(34)

where εr and εθ are the radial strain and circumferential strain, respectively. At the same time, the
axisymmetric form of Equation (17) yields{

Nr = A11εr + A12εθ

Nθ = A12εr + A11εθ
. (35)

Combining Equations (34) and (35) and also considering Equation (29), ur = 0 may be changed as

r
dNr

dr
+

(
1− A12

A11

)
Nr = 0 at r = a. (36)

Besides, the radial bending moment Mr may be expressed as, according to the first one of Equation (6)

Mr = − E0 A+
2

1−(µ+)2

(
d2w
dr2 + µ+

r
dw
dr

)
− E0 A−2

1−(µ−)2

(
d2w
dr2 + µ−

r
dw
dr

)
= −D+

(
d2w
dr2 + µ+

r
dw
dr

)
− D−

(
d2w
dr2 + µ−

r
dw
dr

)
= 0 at r = a

. (37)
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Thus, the boundary conditions (33) are all expressed in terms of Nr and w. Finally, the Föppl–von
Kármán equations of bimodular FGM thin plates in the axisymmetric case, Equations (31) and (32),
may be solved under the boundary conditions (33), (36), and (37).

3. Application of Perturbation Method

In the application of the perturbation method, the choice for perturbation parameter is a key
problem because the correct choice will lead directly to the asymptotic solution with better convergence.
In general, there are two basic choices for perturbation parameter: load and displacement.

3.1. Nondimensionalization

The following dimensionless quantities are introduced

P =
qa4

E0t4 , η = 1− r2

a2 , W =
w
t

, S =
Nra2

E0t3 . (38)

Equations (31) and (32) are transformed into their dimensionless forms, i.e.,

d2

dη2

[
(1− η)

dW
dη

]
=

S
4K

dW
dη
− P

16K
(39)

and
d2

dη2 [(1− η)S] +
V
2

(
dW
dη

)2
= 0 (40)

where

K = K+ + K− =
D∗

E0t3 =
D+

E0t3 +
D−

E0t3 , V =
eα1 − 1
α1eα1T2

, T1 =
t1

t
, T2 =

t2

t
. (41)

The boundary condition (33c) becomes

W = 0, λ1
d2W
dη2 −

dW
dη

= 0 and λ2
dS
dη
− S = 0, at η = 0 (42)

where
λ1 =

2K
K+(1 + µ+) + K−(1 + µ−)

, λ2 =
2A11

A11 − A12
=

2
1− µ+

. (43)

Especially, using the introduced parameters λ1 and λ2, the other three types of boundary
conditions may be described as, for rigidly clamped, λ1 = 0; for movably clamped, λ1 = λ2 = 0,
and for simply supported, λ2 = 0. The introduction of λ1 and λ2 also indicates that the solution
obtained under boundary condition (33c) may serve as a general solution to describe other three edge
constraints. In addition, the axisymmetric conditions at the center, i.e., Equation (30), becomes

dW
dη

= 0( 6= ∞) and S 6= ∞, at η = 1 (44)

3.2. Perturbation Solution on Wm

Now, we introduce the following perturbation parameter

Wm = (W)η=1 =
(w

t

)
r=0

=
w0

t
(45)
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where w0 is the center deflection of the plate, that is, the maximum deflection. If Wm is selected as the
perturbation parameter, P, W, and S in the governing equations may be expanded as

P/16 = P1Wm + P3W3
m + P5W5

m + · · ·
W = W1(η)Wm + W3(η)W3

m + W5(η)W5
m + · · ·

S = S2(η)W2
m + S4(η)W4

m + S6(η)W6
m + · · ·

(46)

where Wi(i = 1, 3, 5, . . .) and Si(i = 2, 4, 6, . . .) are unknown functions of η, and Pi(i = 1, 3, 5, . . .)
is unknown constants, i.e., P = P(Wm), W = W(Wm, η) and S = S(Wm, η). By substituting the
expressions into the governing Equations (39) and (40), as well as into the boundary conditions
(42) and (44), we may obtain a series of decomposed differential equations and the corresponding
boundary conditions used for the solution of P, W, and S. In this case, the even exponential terms with
respect to Wm in the expansion of P and W, and the odd terms in S are not considered because they
will be eliminated during the perturbation.

By comparing the coefficients of W1
m in Equation (39), we obtain the differential equation for

W1 and P1
d2

dη2

[
(1− η)

dW1

dη

]
= −P1

K
(47)

which may be solved under the boundary conditions W1 = 0, λ1
d2W1
dη2 − dW1

dη = 0, at η = 0

W1 = 1, dW1
dη 6= ∞, at η = 1

. (48)

Thus, we obtain

W1 =
η2 + 2λ1η

2λ1 + 1
, P1 =

4K
2λ1 + 1

(49)

By comparing the coefficients of W2
m in Equation (40), we obtain the differential equation used for S2

d2

dη2 [(1− η)S2] +
V
2

(
dW1

dη

)2
= 0 (50)

which may be solved under the boundary conditions{
λ2

dS2
dη − S2 = 0, at η = 0

S2 6= ∞, at η = 1
. (51)

Using the determined W1, we obtain

S2 =
V

6(2λ1 + 1)2 [η
3 + (4λ1 + 1)η2 + (6λ1

2 + 4λ1 + 1)η + λ2(6λ1
2 + 4λ1 + 1)] (52)

Similarly, by comparing the coefficients of W3
m in Equation (39), we have the differential equation

for W3 and P3
d2

dη2

[
(1− η)

dW3

dη

]
=

S2

4K
dW1

dη
− P3

K
(53)

which may be solved by the boundary conditions as follows, W3 = 0, λ1
d2W3
dη2 − dW3

dη = 0, at η = 0

W3 = 0, dW3
dη 6= ∞, at η = 1

. (54)
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Using the determined W1 and S2, we obtain

W3 = V
4320K(2λ1+1)4



−2(2λ1 + 1)η6 − 6(6λ1
2 + 5λ1 + 1)η5

−15(10λ1
3 + 13λ1

2 + 6λ1 + 1)η4

−20[12λ1
4 + 24λ1

3 + 19λ1
2 + 7λ1 + 1

+λ2(12λ1
3 + 14λ1

2 + 6λ1 + 1)]η3

−[120λ1
3 + 255λ1

2 + 178λ1 + 43
+20λ2(6λ1

2 + 4λ1 + 1)](η2 + 2λ1η)


P3 = V

1080(2λ1+1)4

[
73 + 388λ1 + 825λ1

2 + 840λ1
3 + 360λ1

4

+λ2(50 + 350λ1 + 1080λ1
2 + 1620λ1

3 + 1080λ1
4)

]
. (55)

Similarly, by comparing the coefficients of W4
m in Equation (40), we have the differential equation

for S4
d2

dη2 [(1− η)S4] + V
dW1

dη

dW3

dη
= 0 (56)

which may be solved following the boundary conditions, as follows{
λ2

dS4
dη − S4 = 0, at η = 0

S4 6= ∞, at η = 1
. (57)

Using the determined W1 and W3, we obtain

S4 =
V2

90720K(2λ1 + 1)5



−9(2λ1 + 1)η7 − 3(68λ1
2 + 60λ1 + 13)η6

−3(364λ1
3 + 502λ1

2 + 242λ1 + 41)η5

−3[924λ1
4 + 1918λ1

3 + 1552λ1
2 + 578λ1 + 83

+42λ2(12λ1
3 + 14λ1

2 + 6λ1 + 1)]η4

−[2520λ1
5 + 7812λ1

4 + 8904λ1
3 + 4341λ1

2 + 698λ1 − 52
+14λ2(180λ1

4 + 318λ1
3 + 156λ1

2 + 29λ1 − 1)]η3

−[2520λ1
5 + 4452λ1

4 + 1764λ1
3 − 643λ1

2 − 506λ1 − 52
+14λ2(180λ1

4 + 78λ1
3 − 4λ1

2 − 11λ1 − 1)]η2

+[2520λ1
5 + 6258λ1

4 + 5712λ1
3 + 2449λ1

2 + 506λ1 + 52
+14λ2(180λ1

4 + 162λ1
3 + 64λ1

2 + 11λ1 + 1)](η + λ2)


(58)

Thus, the remaining functions may be solved in a similar manner. It is assumed that the
computation ends at this point, depending on the precision required. Substituting the determined
P1 and P3, W1 and W3, as well as S2 and S4 into Equation (46), we may obtain the perturbation solutions
based on Wm.

3.3. Perturbation Solution on Pm

Next, the load is selected as the perturbation parameter but not the central deflection, such that

Pm =
P
16

=
1

16
qa4

E0t4 . (59)

Thus Equation (39) is changed as

d2

dη2

[
(1− η)

dW
dη

]
=

S
4K

dW
dη
− Pm

K
(60)
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while Equation (40) and boundary conditions keep unchanged. W and S may be expanded with
respect to Pm {

W = W1(η)Pm + W3(η)P3
m + W5(η)P5

m + · · ·
S = S2(η)P2

m + S4(η)P4
m + S6(η)P6

m + · · · , (61)

where Wi(i = 1, 3, 5, . . .) and Si(i = 2, 4, 6, . . .) are unknown functions of η, i.e., W = W(Pm, η) and
S = S(Pm, η). Similarly, the even exponential terms with respect to Pm in the expansion of W, and the
odd terms in S are not considered because they will be eliminated during the perturbation.

By comparing the coefficients of P1
m in Equation (60), we obtain the differential equation for W1

d2

dη2

[
(1− η)

dW1

dη

]
= − 1

K
(62)

which may be solved under the boundary conditions W1 = 0, λ1
d2W1
dη2 − dW1

dη = 0, at η = 0
dW1
dη 6= ∞, at η = 1

. (63)

Thus, we obtain

W1 =
η2 + 2λ1η

4K
. (64)

By comparing the coefficients of P2
m in Equation (40), we obtain the differential equation used for S2

d2

dη2

[
(1− η)S2

]
+

V
2

(
dW1

dη

)2

= 0 (65)

which may be solved under the boundary conditions{
λ2

dS2
dη − S2 = 0, at η = 0

S2 6= ∞, at η = 1
. (66)

Using the determined W1, we obtain

S2 =
V

96K2 [η
3 + (4λ1 + 1)η2 + (6λ1

2 + 4λ1 + 1)η + λ2(6λ1
2 + 4λ1 + 1)]. (67)

Similarly, by comparing the coefficients of P3
m in Equation (60), we have the differential equation

for W3

d2

dη2

[
(1− η)

dW3

dη

]
=

S2

4K
dW1

dη
(68)

which may be solved by the boundary conditions as follows, W3 = 0, λ1
d2W3
dη2 − dW3

dη = 0, at η = 0
dW3
dη 6= ∞, at η = 1

. (69)

Using the determined W1 and S2, we obtain

W3 = − V
276480K4


2η6 + 6(3λ1 + 1)η5 + 15(5λ1

2 + 4λ1 + 1)η4

+20[6λ1
3 + 9λ1

2 + 5λ1 + 1 + λ2(6λ1
2 + 4λ1 + 1)]η3

+30[6λ1
3 + 9λ1

2 + 5λ1 + 1
+λ2(18λ1

3 + 18λ1
2 + 7λ1 + 1)](η2 + 2λ1η)

. (70)
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Similarly, by comparing the coefficients of P4
m in Equation (40), we have the differential equation

for S4
d2

dη2

[
(1− η)S4

]
+ V

dW1

dη

dW3

dη
= 0 (71)

which may be solved following the boundary conditions, as follows,{
λ2

dS4
dη − S4 = 0, at η = 0

S4 6= ∞, at η = 1
. (72)

Using the determined W1 and W3, we obtain

S4 = − V2

7741440K5



3η7 + (34λ1 + 13)η6 + (182λ1
2 + 160λ1 + 41)η5

+[462λ1
3 + 728λ1

2 + 412λ1 + 83 + 42λ2(6λ1
2 + 4λ1 + 1)]η4

+[420λ1
4 + 1512λ1

3 + 1708λ1
2 + 832λ1 + 153

+56λ2(30λ1
3 + 32λ1

2 + 13λ1 + 2)]η3

+[2100λ1
4 + 4032λ1

3 + 3108λ1
2 + 1112λ1 + 153

+56λ2(90λ1
4 + 120λ1

3 + 67λ1
2 + 18λ1 + 2)]η2

+[2520λ1
5 + 5880λ1

4 + 6132λ1
3 + 3528λ1

2 + 1112λ1 + 153
+28λ2(270λ1

5 + 450λ1
4 + 345λ1

3 + 149λ1
2 + 36λ1 + 4)]η


(73)

It is assumed that the computation ends at this point, depending on the precision required.
Substituting the determined W1 and W3, as well as S2 and S4 into Equation (61), we may obtain the
perturbation solutions based on Pm.

4. Results and Discussions

4.1. Comparisons between Two Solutions

4.1.1. Load vs Central Deflection

First, let us compare the relation of loads vs central deflection. Note that we may directly obtain the
relation of loads vs central deflection from the perturbation solution based on Wm. After substituting
the known P1 and P3 into the first formulas of Equation (49), we easily have

P
16

=
4K

2λ1 + 1
Wm +

V

1080(2λ1 + 1)4

[
360λ1

4 + 840λ1
3 + 825λ1

2 + 388λ1 + 73
+10λ2(108λ1

4 + 162λ1
3 + 108λ1

2 + 35λ1 + 5)

]
W3

m. (74)

For the perturbation solution based on Pm, the relation is obtained indirectly. For this purpose,
we substitute the known W1 and W3 into the first formulas of Equation (61),

W =
η2 + 2λ1η

4K
Pm −

V
276480K4


2η6 + 6(3λ1 + 1)η5 + 15(5λ1

2 + 4λ1 + 1)η4

+20[6λ1
3 + 9λ1

2 + 5λ1 + 1 + λ2(6λ1
2 + 4λ1 + 1)]η3

+30[6λ1
3 + 9λ1

2 + 5λ1 + 1
+λ2(18λ1

3 + 18λ1
2 + 7λ1 + 1)](η2 + 2λ1η)

P3
m. (75)

Letting η = 1, we may have the relation of central deflection vs loads as follows

Wη=1 = Wm = Wm1Pm + Wm3P3
m (76)

where
Wm1 = 2λ1+1

4K

Wm3 = − V
276480K4

[
360λ1

4 + 840λ1
3 + 825λ1

2 + 388λ1 + 73
+10λ2(108λ1

4 + 162λ1
3 + 108λ1

2 + 35λ1 + 5)

]
. (77)
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The inverse transform of above formulas will give

Pm =
P
16

=
4K

2λ1 + 1
Wm +

V

1080(2λ1 + 1)4

[
360λ1

4 + 840λ1
3 + 825λ1

2 + 388λ1 + 73

+10λ2(108λ1
4 + 162λ1

3 + 108λ1
2 + 35λ1 + 5)

]
W3

m (78)

which is the same as Equation (74), and also demonstrates the relation of loads vs central deflection
based on Wm or on Pm is equivalent.

4.1.2. Deflection and Radial stress

Due to the fact that the relation of loads vs central deflection based on Wm or on Pm is quite
equivalent, we may use this equivalence to check the consistency of deflection and radial stress. For the
convenience of equivalence proof, we list the derivation of correlation of these perturbation solutions,
as shown in Table 1.

Table 1. Equivalence proof of perturbation solutions on Wm and Pm.

Perturbation Solution on Wm Perturbation Solution on Pm
Pm = P1Wm + P3W3

m (a)
W = W1Wm + W3W3

m (b)
S = S2W2

m + S4W4
m (c)


Wm = Wm1Pm + Wm3P3

m (d)
W = W1Pm + W3P3

m (e)
S = S2P2

m + S4P4
m (f)

(a) and (d) are equivalent, which has been demonstrated from (74) to (78).

Substitute (a) into (e): Substitute (d) into (b):

W = P1W1Wm + (P3W1 + P3
1 W3)W3

m W = W1Wm1Pm + (W1Wm3 + W3W3
m1)P3

m
Satisfy: Satisfy:

W1 = P1W1, W3 = P3W1 + P3
1 W3 W1 = W1Wm1, W3 = W1Wm3 + W3W3

m1

Result: (b) and (e) are equivalent.

Substitute (a) into (f): Substitute (d) into (c):

S = P2
1 S2W2

m + (2P1P3S2 + P4
1 S4)W4

m S = S2W2
m1P2

m + (2S2Wm1Wm3 + S4W4
m1)P4

m
Satisfy: Satisfy:

S2 = P2
1 S2, S4 = 2P1P3S2 + P4

1 S4 S2 = S2W2
m1, S4 = 2S2Wm1Wm3 + S4W4

m1

Result: (c) and (f) are equivalent.

Conclusion: Two perturbation solutions are equivalent.

We note that Equation (74) is the relation of load vs central deflection for simply hinged, or is
called as a general relation, as indicated above. For rigidly clamped edge, we have the relation, only by
letting λ1 = 0,

Pm = 4KWm +
V(73 + 50λ2)

1080
W3

m (79)

for movably clamped, we have, by letting λ1 = λ2 = 0,

Pm = 4KWm +
73V
1080

W3
m + · · · (80)

and for simply supported, we have, by letting λ2 = 0,

Pm =
4K

2λ1 + 1
Wm +

V

1080(2λ1 + 1)4 (360λ1
4 + 840λ1

3 + 825λ1
2 + 388λ1 + 73)W3

m (81)

4.2. Bimodular Effects of FGMs on Deformation

Due to the fact that the functionally graded materials with bimodular effect in this study are
defined as in tensile zone, E+(z) = E0eα1z/t for 0 ≤ z ≤ t1, and in compressive zone, E−(z) = E0eα2z/t
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for −t2 ≤ z ≤ 0, if the positive or negative signs of grade parameters α1 and α2 are properly selected, it
is easily found that the relation among the tensile modulus E+(z), the compressive modulus E−(z) and
the modulus at the neutral layer E0 is definite. Basically, there are four cases, and they are (a) α1 > 0,
α2 > 0, (b) α1 < 0, α2 < 0, (c) α1 > 0, α2 < 0 and (d) α1 < 0, α2 > 0, respectively, as shown in Figure 3.Appl. Sci. 2018, 8, x FOR PEER REVIEW  18 of 23 
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Here, we focus our discussions on the relations of load vs central deflection which is very
important in the analysis and design of the bimodular FGM thin plates. For this purpose, the unknown
neutral surface needs to be determined first. According to our previous study [41], the tensile
thickness of the plate may be computed using a simplified formula expressed in terms of µ+ and
µ−, thus, we begin with the given values of µ+ and µ−, as well as the given values of α1 and α2,
for example, µ+ = 0.4 and µ− = 0.2, and α1 = ±1 and α2 = ±0.5 are also given for four different
cases of elastic moduli. Thus, T1, T2, λ1, λ2, K, V may be computed via those previous expressions [41],
such that,

T1 =
−1 + µ+ ±

√
(1− µ+)(1− µ−)

µ+ − µ−
= 0.4641, T2 = 1− T1 = 0.5359 (82)

K = K+ + K− =
1

1− (µ+)2

[(
T2

1
α1
− 2T1

α2
1

+
2
α3

1

)
eα1T1 − 2

α3
1

]
+

1

1− (µ−)2

[
−
(

T2
2

α2
+

2T2

α2
2

+
2
α3

2

)
e−α2T2 +

2
α3

2

]
(83)

and
λ1 =

2K
K+(1 + µ+) + K−(1 + µ−)

, λ2 =
2

1− µ+
=

10
3

, V =
eα1 − 1
α1eα1T2

. (84)

With the help of the known λ1, λ2, K, V, the final relations of load vs central deflection under four
different edge constraints are obtained in four cases of elastic moduli, as shown in Table 2.
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Table 2. Pm −Wm relations in four cases of elastic moduli.

α1 = 1,
α2 = 0.5

E+(z) > E0 > E−(z)

α1 = −1,
α2 = −0.5

E+(z) < E0 < E−(z)

α1 = 1, α2 = −0.5
E+(z) > E0,

E−(z) > E0

α1 = −1, α2 = 0.5
E+(z) < E0,

E−(z) < E0

K = 0.1002
V = 1.0054
λ1 = 1.5237
λ2 = 3.3333

K = 0.0935
V = 1.0803
λ1 = 1.5872
λ2 = 3.3333

K = 0.1218
V = 1.0054
λ1 = 1.5473
λ2 = 3.3333

K = 0.0719
V = 1.0803
λ1 = 1.5647
λ2 = 3.3333

rigidly clamped
edge

Pm = 0.4008Wm
+0.2231W3

m

Pm = 0.3740Wm
+0.2397W3

m

Pm = 0.4872Wm
+0.2231W3

m

Pm = 0.2876Wm
+0.2397W3

m

movably
clamped edge

Pm = 0.4008Wm
+0.0680W3

m

Pm = 0.3740Wm
+0.0730W3

m

Pm = 0.4872Wm
+0.0680W3

m

Pm = 0.2876Wm
+0.0730W3

m

simply hinged
edge

Pm = 0.0990Wm
+0.1953W3

m

Pm = 0.0896Wm
+0.2106W3

m

Pm = 0.1190Wm
+0.1956W3

m

Pm = 0.0696Wm
+0.2104W3

m

simply
supported edge

Pm = 0.0990Wm
+0.0260W3

m

Pm = 0.0896Wm
+0.0277W3

m

Pm = 0.1190Wm
+0.0259W3

m

Pm = 0.0696Wm
+0.0278W3

m

The variation curves of Pm −Wm in four cases of elastic moduli are plotted in Figure 4, in which
four different boundary conditions including rigidly clamped, movably clamped, simply supported
and simply supported, are considered, as shown in Figure 4a–d.
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It is easy to find that, among four different edge constraints, the central deflection of the rigidly
clamped plate is the least one, next the movably clamped plate, and then simply hinged plate;
the central deflection of simply supported plate is the maximum one. This phenomenon agrees
well with the results obtained from classical problems that the stronger edge constraint tends to be,
the smaller the deformation magnitude becomes.
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Figure 4a also shows in the four cases of elastic moduli, the capacity resisting deformation of
bimodular FGM thin plates are, in turn, from the stronger to the weaker, case (c) E+/−(z) > E0,
case (a) E+(z) > E0 > E−(z), case (b) E+(z) < E0 < E−(z) and case (d) E+/−(z) < E0, in which
cases (a) and (b) are close to each other. The same phenomenon may be found in Figure 4b–d.
This phenomenon indicates that the dominant factor influencing the stiffness is still the modulus of
elasticity, but the introduction of the bimodular effect has brought some new features. In case (c),
the tensile modulus and the compressive one, E+(z) and E−(z), are uniformly greater than the neutral
surface modulus E0, hence there is no doubt that it is the strongest in terms of the capacity resisting
deformation. On the contrary, for case (d), E+(z) and E−(z), are uniformly less than E0, it is easily
concluded that this case is the weakest on the capacity resisting deformation. The question worthy
of discussion is case (a) E+(z) > E0 > E−(z), and case (b) E+(z) < E0 < E−(z). From the relative
magnitude among E+(z), E−(z) and E0, it is hard to say which case, in case (a) and case (b), is the
stronger on the capacity resisting deformation. It seems that from Figure 4, case (a) is slightly stronger
than case (b). This phenomenon may be rationally explained by analyzing two different effects which
simultaneously exist in thin plates with large deformation, the bending effect and the tensile effect.
Under large deflection, two effects will resist the external load together, and if the tensile modulus
tends to be larger, or in other words, E+(z) > E0 > E−(z) but not E+(z) < E0 < E−(z), the tensile
effect becomes more obvious, thus, the total capacity resisting deformation becomes stronger.

5. Concluding Remarks

In this study, we established the Föppl−von Kármán equations of bimodular FGM thin plates
in a Cartesian coordinates system, and solved the governing equations in an axisymmetric case by
a perturbation technique, in which central deflection or loads are selected as perturbation parameters,
and four different edge constraints are considered. The following three conclusions can be drawn.

(1) The mechanical model based on the neutral surface enables us to easily establish the governing
equations, especially for the consistency equation. The tensile effect in bimodular FGM thin
plates is fully taken into account, as indicated in Equation (18), the coefficients A11, A12 and
A33 are integrated along the whole thickness, only for the tensile functions.

(2) During the perturbation, the central deflection and the load are selected as perturbation
parameters, respectively. The results indicate that the two selections for perturbation parameters
are equivalent and the two solutions are convenient for engineering application.

(3) The introduction of bimodular grade parameters, α1 and α2, enables us to distinguish, effectively,
the relative magnitude among E+(z), E−(z), and E0, thereby obtaining some meaningful results
of bimodular effect on stiffness and deformation. The dominant factor influencing the stiffness
magnitude is still the modulus of elasticity. Especially, if the modulus of the neutral layer is
used as a reference value, the capacities resisting deformation are in turn, from strong to weak,
E+/−(z) > E0, E+(z) > E0 > E−(z), E+(z) < E0 < E−(z) and E+/−(z) < E0.

Moreover, for common FGM thin plates in large deflection bending, the deflection cannot be very
large; otherwise it does not meet the deformation requirements of the structure. Therefore, although
the perturbation method is only valid for small deformation or weakly nonlinear problem, the method
and results obtained in this study are still valid.
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