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Abstract: The search of a given area is one of the most studied tasks in swarm robotics. Different
heuristic methods have been studied in the past taking into account the peculiarities of these systems
(number of robots, limited communications and sensing and computational capacities). In this
work, we introduce a behavioral network made up of different well-known behaviors that act
together to achieve a good performance, while adapting to different scenarios. The algorithm is
compared with six strategies based on movement patterns in terms of three performance models.
For the comparison, four scenario types are considered: plain, with obstacles, with the target location
probability distribution and a combination of obstacles and the target location probability distribution.
For each scenario type, different variations are considered, such as the number of agents and area
size. Results show that although simplistic solutions may be convenient for the simplest scenario
type, for the more complex ones, the proposed algorithm achieves better results.

Keywords: swarm robotics; search; surveillance; behaviors; patterns; comparison

1. Introduction

1.1. Multi-Agent and Swarm Robotics

In nature, as well as in our societies, it is easy to find individuals that act together to achieve a
specific goal. In some cases, a good performance cannot be achieved without a coordinated action of
various agents. In some other cases, it may be even mandatory to use more than one agent. With the
development of robotics, it has been possible to cover increasingly complex tasks by using groups
of intelligent agents that coordinately act as a team. In many circumstances, subdividing those tasks
not only speeds up their fulfillment, but also allows specialization by allocating specific tasks to
agents designed for those purposes. On the other hand, multi-agent systems present important
complexities that must be correctly addressed, among which we can highlight the coordination of
the agents, the communications between them and how to make the team learn in order to improve
the performance.

There are several cases in which the use of multi-agent systems may be desirable. In [1],
three types of tasks are considered: tasks that require multiple agents (for example, a task that
needs the simultaneous presence of an agent in two places separated by a great distance); tasks that are
traditionally multi-agent (e.g., because they can be naturally divided); and tasks that might benefit from
the use of multiple agents. Search, surveillance and exploration belong to this last group. Some other
tasks might not benefit from the use of more than one robot, either because they are simple or because
the development of the coordination and the communication between the members is a barrier not
worth overcoming.
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Some examples in nature show that individually, simple animals have been capable of surviving
during millions of years all over the Earth. Consider for example the most well known of these
animals, ants. Ants have a very simple nervous system made up by 250,000 neurons and very limited
sensing and communication capabilities. Communications are achieved mostly by pheromones [2],
chemicals spread in the environment used to mark trails, warn other members of the nest and confuse
enemies. It is obvious how difficult it would be for them if they had to survive individually. However,
acting as a coordinated group, they have survived for 130 million years and form around 15-25%
of the terrestrial animal biomass. The reason why such a simple creature has been so successful is
because of their collective behavior. Every ant acts in a very simple way that turns out to be very
inefficient individually. However, collectively, because of the high number of members, an efficient
behavior emerges. Similar social structures and interactions may be found in other species, such as
bees, termites, fishes (forming schools), ungulates and birds (flocks).

Swarm behaviors are a particular case of collective behavior, in which a large number of members
is involved, requiring very limited communications between them and being individually simple.
Some researches started bringing the ideas of swarms in nature to the robotics field. Goals are
achieved using a high number of homogeneous robots, which behave following simple and mostly
reactive rules. The pioneers of swarm robotics appeared in the late 1980s and the beginning of
the 1990s [3-5]. Swarm robotic systems present some well-known advantages such as robustness,
simplicity, scalability and flexibility, while it is difficult to achieve a good global performance [6].
More recently, many researchers have used the term swarm robotics to name or classify these works.
Hardware miniaturization and cost reduction have made possible new research lines in this direction,
and hundreds of papers developing all sorts of algorithms have been published.

1.2. Search with Swarms

From the very beginning of the development of swarm robotics, researches have focused on
implementing behaviors in robots to solve simple tasks [7]. Those behaviors are mainly inspired by
how natural swarms act, and the missions may be used as test beds for more complex and useful tasks.
Typical examples of them are aggregation (gathering in a common place), flocking, foraging (collecting
items scattered in the space), path formation (establishing a path of robots between two points) and
deployment (expanding and occupying the available space). Note that all of these behaviors are very
common in animal swarms such as fish schools, bird flocks, ants and bees.

Besides those basic tasks, more complex missions have been also studied in the past. Exploration
of unknown areas, search, surveillance, patrolling, collaborative manipulation and self-assembly
are only some examples of missions that have been carried out with robotic swarms. In this work,
the focus is on the search task, where multiple and different solutions have been proposed over the
years. Most of these methods may be assigned to one of the following categories:

e  Virtual pheromones: Inspired by the chemicals dropped by some insects, the search is led using
them in their virtual version [8,9]. They are conveniently created and eliminated, and in many
cases, their transportation in the area of interest is calculated by means of the diffusion equation.

e Potential fields: The agents are subjected to virtual potential fields created by them or by other
objects (such as obstacles) and react to them [10].

e  Flocking techniques: Mimicking flocks of birds and schools of fishes, the agents move coordinately,
keeping appropriate distances between them [11].

e  Probabilistic maps: Making use of prior knowledge of the locations of the targets, the robots
search according to it [12]. Adapting the decisions depending on the data acquired during the
process is also possible [13].

e  Patterns: These comprise a wide range of methods and techniques that try to organize the search
to achieve high efficiencies [14-16].
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As can be seen, all the previous solutions are heuristic methods, since they do not guarantee
optimal solutions. There have been approaches trying to optimally solve the search, although they
require high computational loads, and the calculations only reach reduced time horizons. Note that the
number of solutions increase exponentially with the number of agents, making the finding of optimal
solutions almost intractable. Some of these methods will be briefly reviewed in Section 1.4.

In this paper, we propose an algorithm based on a behavioral network, made up by different
behaviors that act together to obtain a common decision in order to lead each agent. On the one hand,
this type of control responds quickly to changes in the environment (which is a typical property of
reactive systems). On the other hand, the behaviors are capable of constructing representations of
the world (they have memory, a typical property of the deliberative controls). Decisions are taken as
a result of the interactions between the behaviors and the environment and between the behaviors.
All this results in a good trade-off between reactive and mid-term decisions [17]. Behavior-based
architectures turn out to be adequate for changing and stochastic environments, and therefore, they are
also very suitable for multi-agent systems. Note that if each agent makes its own decisions (there is no
central planning), the state of the task changes rapidly, and planning at the individual level becomes
likely unfeasible.

The search task is an interesting challenge not only because of its direct application in real-world
situations, but also because it may be extended to similar, but more complex tasks such as surveillance,
exploration, patrolling, area coverage and the so-called traveling salesman problem:

e  Exploration: This differs from search in that there does not exist a previous map of the area.

e  Surveillance: This is basically persistently searching a given area. Each zone must be re-visited
frequently enough to ensure up-to-date information.

e  Patrolling: Similar to surveillance, the area of interest is restricted to singular points or lines
(for instance, corridors inside a building).

e  Probabilistic maps and obstacles: Another extension of the search task in its simplest form is the
inclusion of probabilistic maps, which consider prior knowledge about where it is more likely
that a target is located in the area. Moreover, obstacles may be included, it being impossible for
the agents to go through them.

Authors frequently define area coverage as deploying the agents until they reach certain fixed
positions so that the covered area (by either the sensor or the communication footprint) is maximized.
However, some other authors use the word coverage to define a task similar to search. For instance,
in [18], the search area is covered by subdividing it into k regions, which are individually assigned to
k robots. Each robot searches then in its assigned area following regular patterns. Another example
can be found in [19], where the coverage task is addressed using the spanning tree coverage method.
In any case, the strategies proposed in these works do not differ from the strategies listed above.

1.3. Search Patterns

In order to organize the search, most of the past works based on patterns have made use of
dividing the area into cells, taking into account if they have been visited or not. The sensed area
is frequently restricted to those cells, and therefore, the search implies visiting all the existing cells.
The agent’s movement is restricted, and they are only allowed to travel between the centers of adjacent
cells. With these assumptions, the search is simplified since it becomes a discrete problem. In the
following, the main works addressing this kind of mission by implementing movement patterns
are analyzed.

In [20], the task is addressed with an algorithm made up by four behaviors that act together:

e  Contour following: This leads the agent along boundaries, i.e., cells that have at least one
non-visited cell surrounding them. This is the behavior with the highest priority.
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e Avoidance: When two agents are within a given range, this behavior is triggered. The velocity
command is perpendicular to their mutual collision course, and it is added to the contour
following the behavior output.

e  Gradient descend: Having defined a distance field, computed at each cell as the distance to the
closest non-visited cell, when this behavior is active, it leads the agent along the gradient. It is
activated when an agent is completely surrounded by visited cells.

e Random movement: The agent decides randomly which cell to visit next. It is activated when
none of the other behaviors are active.

The distance matrix is treated here as a pheromone field. The members of the swarm share
information with the agents within a communication range, updating the distance matrix (i.e., which
cells have been visited). Assuming a constant velocity and considering that traveling diagonally
requires the same time as traveling in the other directions, the minimum needed time is then O (#),
where m - n is the number of cells and [ is the number of agents. The algorithm is tested for different
numbers of agents, as well as for different avoidance and communication ranges. The needed time
to accomplish the mission is used as the performance measurement. The influence of implementing
a central communication point, which distributes the state of the search grid among the agents,
is analyzed. Having distributed the agents randomly, the results show that the time needed to finish
the mission is higher than the theoretical lower bound, even with the centralization of the information.
However, even with short communication ranges, the overtime to complete the search is less than 50%,
with a standard deviation of 6% on average due to the variability in the initial conditions. With only
one agent, the time needed is close to the minimum bound. Furthermore, another performance
measurement criterion is proposed:

1

1+

)

where N, are the number of cells visited more than once and N is the total number of cells. Again,
for only one member, this ratio is close to one, whereas for the higher number of agents, this figure
decreases. If the communication range increases, the solution converges to the centralized map,
as expected.

In another work [21], three search strategies are compared in a mission in which the agents
are deployed in an area that contains targets to be localized and destroyed, forming coalitions.
The three studied strategies are:

e Random search: Each agent follows its current heading until one boundary is reached. At that
moment, it changes its direction to re-enter the search area.

e  Search lanes: The area is organized into lanes, and each agent is assigned to a unique one. Once a
lane has been traveled, a new one is assigned.

e  Grid-based search: The agents go to the closest non-visited cell.

Since in this work, targets to be destroyed are considered, the search task stops to pursue and
destroy them. Therefore, no absolute search performance metric is provided, and these behaviors are
compared by only considering the time needed to complete the mission. Monte Carlo simulations are
run varying the number of agents and targets.

There have been many works in which the task is solved by partitioning the area and assigning
individually those partitions to the agents. For instance, in [22], each partition is filled with zig-zag
lanes, computed to be energetically efficient. However, the algorithm requires that the area is a polygon
on whose boundaries the UAVs must be initially placed, restricting the initial positions.

Making use of the probability that a target is located in a specific cell in [23], scores are assigned to
each one, taking also into account forbidden flying zones and areas that should be avoided if possible.
The scores are updated either externally or because of the findings of the agents. The agents select
the cell to visit depending on that score. In this work, the area is partitioned using a Voronoi diagram,
and the results are compared with other algorithms:
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e Lawn mower: Each agent moves in a straight line, and when it encounters an obstacle, it turns to
head in a clear direction.

° Raster scan: The agents move in parallel lanes north/south or east/west.
e  Gradient climb: This is a greedy algorithm based on the surrounding cell scores.

e Randomized Voronoi: The area is partitioned with the Voronoi diagram using the agent’s position
as the generators.

e  Full algorithm: This is the same algorithm, developed in previous works, but without the
Voronoi partitioning.

The algorithms are compared using as a performance measurement the mean cell scores, computed
along 20 runs, the most efficient algorithm being the one proposed in the work. This result seems
reasonable, since the performance is measured using the same score on which the algorithm is based.

1.4. Optimal Methods in Discrete Search Tasks

Although the discrete search task using teams of agents has been shown to be a hard problem to
solve optimally, there have been some works addressing the problem by looking for optimal solutions.
For instance, in [24], an exact mixed-integer linear programing formulation to solve in an optimal
way the search of a discretized area is proposed. Given a mission state defined by the position of
the agents and the cells already visited, the best sequence of movements is calculated for a specific
time horizon. While the found path is being followed, a new sequence is generated over a receding
horizon. Eight possible movements are considered at each decision instant, as well as a prior belief
about where the targets are possibly located. The authors remark that the number of possible solutions
for n agents and a time horizon of T movements is 8”7, which reaches prohibitive values quickly.
Using a six-core processor, for a grid of 10 x 10 cells and considering two and five agents, with time
horizons of 10 and 20 steps, optimal solutions are found within one minute (except for one of the cases
studied, which needed 142 s). Bigger scenarios and/or more agents are unfeasible to solve.

In [25], a receding time horizon is also used to optimize on-line the trajectories of a group of
UAUVs in a discrete bi-dimensional search area. Based on the current state of the agents, the optimizer
tries to maximize the reward of finding a target and of exploring the area, while it keeps the energy
consumption low. The optimization problem is broken down into local ones assuming communications
between the agents, so that it can be solved in a decentralized way. For this procedure, Nash optimality
is considered and a particle swarm optimization used as the optimizer tool. Simulations are carried
out in a search area of 50 km x 50 km (a grid of 500 x 500 units), and the results show that although
the decentralized optimization does not reach the performance of the centralized one, it requires half
of the computational time.

1.5. Organization of This Paper

This paper is organized as follows: In Section 2, the problem is presented, defining the search
area and its grid, the agent’s dynamics and the measurement of the algorithms’ performance.
Furthermore, the four different types of scenarios used to compare the algorithms are shown;
in Section 3, the proposed algorithm based on a set of behaviors is explained in detail, as well
as how it is configured for any scenario. In Section 5, the algorithms are compared measuring their
performance for the four scenarios types; also, the communications needed by each algorithm and their
adaptation to surveillance missions are analyzed. Finally, in Section 6, the conclusions of this work are
depicted, as well as the proposed future developments.

The main contributions of this papers are: (i) the proposal of a behavioral network made up by
six behaviors; (ii) systematical comparison with six search patterns in four different scenario types,
considering the wide variations of the parameters that define each scenario; (iii) a performance model
for this type of mission.
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2. Problem Formulation

2.1. Scenario

The task proposed consists of observing a given two-dimensional search space, which is a
rectangular area subdivided into cells of fixed size. The movement of the agents is restricted to those
cells, so that each agent is allowed to move from the center of each cell to the center of any of the
eight adjacent cells. As already mentioned, this assumption is convenient, since it converts the search
into a discrete problem, simplifying it.

We consider that the search is carried out by flying robots, more specifically, multicopters.
The agents are capable of flying at a constant altitude and at given commanded velocity v, and are
equipped with a camera capable of detecting targets within a circular area of radius Ry. This area
is called the sensor footprint. The team of robots is made up by N, of equal multicopters, initially
deployed randomly in non-coincident positions in the search area. Each agent will be configured
equally, i.e., the control parameters will be the same for each one.

Having divided the search space into a grid, with a total area of A; (m?), we allow the robots
to move to any adjacent cell. In order to ensure that the cells are completely observed by the sensor
footprint, they must be inscribed in it. Therefore, the number of cells in each direction is:

Ly
Ny = —_— 2a
=l @)
L Y
ny =[ ] (2b)
V2R
where [ | indicates the ceil function, and the dimensions of each search cell are:
ALy = % (3a)
X
Ly
AL, = —= (3b)
y

When flying in any direction, part of the adjacent cells is observed; see Figure 1. Those cells,
which we will denominate from now on search cells, should be then subdivided into thinner cells to
take into account whether those portions of space have been observed or not. We will refer to these
other cells as discretization cells. Therefore, the movement will be restricted to the search cells, but not
the search task itself, since a search cell can be completely observed without visiting it. We consider for
the rest of the work a size of the discretization cells of 2 x 2m, i.e., Aly = Aly = Al =2 m.

In Figure 1, both types of cells have been represented. We define observing a cell as placing an agent
so that at least half of that discretization cell is inside the sensor footprint. We also define visiting a cell as
placing an agent in the center of that search cell. Since the search cells are inscribed in the sensor footprint,
visiting a search cell implies observing the discretization cells inside it.

In Table 1, the parameters that define the scenarios with their considered range of values have
been presented. Note that instead of limiting the total search area A, it is more sensible to limit the
search area per agent, As;/N;. On the other hand, we define the aspect ratio f4 of the search space as:

Ly
fa= L, 4)
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Figure 1. Search area example. A search and a discretization cell have been highlighted. The agent,
represented as a triangle, has moved in the diagonal and in the horizontal directions. The three visited
search cells by the agent have been highlighted. The observed discretization cells have been marked in
dark green. Note that the footprint area circumscribes the search cells.

Table 1. List of parameters that define the scenario.

Parameter Description Range of Values
As/ N, Search area per agent [2,15] x 103 m2
N, Number of agents [2, 30]
Uy Nominal velocity of the agents [2,20] m/s
Ry Radius of the sensor footprint [5,20] m
fa Aspect ratio of the search area [0.25,1]

2.2. Plain, Obstacles and Probability Scenarios

Given the scenario above described, four different types of scenarios are considered:

e  Plain scenario: In the simplest scenario type, every cell is flyable, and all the discretization cells
must be observed at least once to finish the mission (see Figure 2a).

e  Probability distribution scenario: We assume prior knowledge about the possible location of
targets to be found. According to this distribution, Ny = 205% . 1‘3—; targets are generated. The search
is finished when all the targets have been observed. The probability distribution is generated
using the midpoint displacement method, normally used as a terrain generator method. The initial
distribution is generated randomly with a roughness r € [0, 0.5] and its derivative r, € [0, 0.1].
Seven iterations are applied. In Figure 2b, an example of this scenario type is shown.

e  Obstacles scenario: Some of the search cells are occupied, and the agents cannot fly through
them. The search is completed when all the discrete cells that are not inside the obstacles have
been observed at least once. The map is generated using the Schelling segregation model, fixing
the tolerance limit to 0.3 and the percentage of the population that look for new houses to 0.7.
The percentage of non-flyable search cells is drawn from a normal distribution A" (0.75, 0.1%),
while the percentage of empty cells (cells that may be occupied by obstacles) is drawn from
N (025, 0.12). Once the equilibrium has been reached, the empty cells are transformed into
flyable cells. It is checked that every flyable cell can be reached (i.e., there are no cells completely
surrounded by obstacles). An example of the result of this procedure has been shown in Figure 2c.

e  Probability distribution and obstacles scenario: Both the probability distribution of target locations
and obstacles are considered; see Figure 2d.
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Figure 2. (a) Plain scenario; (b) probability distribution scenario; (c) obstacles scenario; (d) probability
distribution and obstacles scenario. Examples of scenarios with the four types considered. The color bar
represents the concentration of pheromones (see Section 3), proportional to the probability distribution
of the targets” location. The colored circles represent the initial position of the agents. The black dots
are the targets to be detected. Obstacles have been colored in dark blue.

2.3. Model of the Agent

2.3.1. Dynamics

The agent considered here is a multicopter, i.e., a holonomic UAV capable of flying in any direction
and keeping a fixed position. The high level control generates a commanded velocity in the {x,y}
plane, defined by two variables, a reference velocity v, and its heading .. The actual velocity vector
is modeled as:

v(t) = o(t) (sin(ye(t)), cos(ye(t))) ®)

where v(t) is assumed to be dependent on the change of the flying direction:

@:{ 1—%(1—@5;(271%)) it —t; <t
0

. (6)
1 ift—ty >t

n

where ¢ is the time instant at which the agent changes its direction and ¢, is the characteristic time for
the velocity reduction due to the change in the flying direction (Ay).
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2.3.2. Energy Consumption

The agents are considered to have an energy consumption proportionally to the flown distance:
Ed = KE dd (7)

where E; is the dimensionless energy needed to fly a distance d (m) and ag, is a coefficient. Furthermore,
if a quadcopter changes its flying direction, an extra energy consumption is considered:

Enp = apy T (8)

where Epy is the dimensionless energy needed to change the flying direction in Ay radians and a, is
a coefficient. The remaining energy in each quadcopter will be then calculated as:

Eq = Epax — Ed - EAI/} (9)

being E;;;x the maximum energy in the quadcopter’s batteries. In Table 2, the chosen values for the
parameters that define the model have been presented.

Table 2. List of parameters that define the model of the agent.

Parameter Description Equation  Value
ty Velocity reduction time due to Ay (6) 5s
aE, Energy-distance coefficient (7) 01m™!
XAy Energy-change-of-heading coefficient ®) 2
Eax Max available energy ) 180

2.4. Measuring the Performance

As already seen, in past works, several different ways of measuring the performance of a search
task have been proposed. Some of them are not absolute metrics, i.e., they have been created ad hoc
for specific missions or situations and cannot be translated in a general way to other search missions.
The best way to measure the efficiency would be comparing the performance with a solution whose
optimality is ensured. However, as we have seen, only partial optimal solutions (with limited time
horizons) have been achieved. Therefore, we will make use of three different models or methods to
measure the efficiency.

2.4.1. Model 1

The first model we consider is the one presented in [23]. The efficiency is measured with a
coefficient between the total number of search cells and the number of search cells that have been

visited more than once: ,

=— (10)
NWL
1+ 5

E
where N, is the number of search cells visited more than once and N is the total number of search cells.
Note that if every cell is visited only once, the efficiency reaches the maximum value, equal to one.

2.4.2. Model 2

In the first model of the efficiency, the search cells have been considered to measure it, counting
whether they have been visited more than once or not. However, when traveling diagonally, parts of
the surrounding cells are observed, as well. In order to take this into account, in this second model,
Equation (10) is used, but considering the discretization cells:
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(11)
n

being n,, the discretization cells that have been observed more than once and 7 the total number of

discretization cells. With this approach, a result closer to the reality is expected.

2.4.3. Model 3

A final third model of the efficiency is proposed, and it is based on the time the team of agents
need to complete the search. The ideal performance would be reached if the search area was completely
observed without observing any of the discretization cells more than once and if during the search
process, no part of the agent’s footprint is outside the search area. If this were the case, the time needed
to observe a specific area would be:

Ap — A

b= 12
7 2R;ouN, 12)

where A; is the observed area at t = 0 and A, is the actual observed area at the end of the mission.
Note that in some missions, depending on the search area per agent, the footprint sensor radius and
the configuration of the algorithm, it may be A, < A; if the available energy is limited. If this is the
case, we consider that the search is not completed. If a group of N, agents needs a time ¢, to completely
observe that area, we can define the efficiency as:

£

Tk

E3 (13)
where E3 € (0, 1). Note that reaching an efficiency equal to one, i.e., t, = t;, is not possible since the
footprint invades part of the adjacent cells, and therefore, when flying over the cells at the boundaries,
part of the sensor footprint would be outside the search area, implying a loss of efficiency. It is also
very likely that some of the discretization cells are observed more than once. Probably if we chose
the search cells so that the footprint is inscribed inside them, the efficiency would increase. However,
the corners of the search area would never be observed.

2.4.4. Fitness Function

In Section 2.3.2, we have assumed that each agent accounts for a specific amount of available
energy; once it is consumed, it stops flying, and therefore, it stops observing the scenario. Depending
on how efficient the configuration of the algorithm is and on the scenario characteristics, it may happen
that the search area is not completely observed. In those cases, the efficiency will be penalized by only
considering 25% of the efficiency. Note that it may happen that for the same scenario, with the same
configuration of the algorithm, the task may be completed or not depending on the initial conditions.
In those cases, the efficiency penalization will be only applied for the trials in which the search has not
been completed.

We assume that the efficiency depends on the initial conditions, for a given configuration (2 and
scenario Y. We consider that a configuration is robust if for different initial conditions, it achieves
efficiencies with a small standard deviation, since it is capable of carrying out the task within similar
periods of time, independently of the initial positions. Therefore, instead of evaluating the goodness of
the configuration with the efficiency, we define a fitness function that accounts for this:

f=E-Bs-Be (14a)
1 tanh (50(0; — o)) + 1
Fr=3 (2+ tanh (500¢) + 1 ) (146)

(14¢)

Be = 1 if search completed
7] 025 ifsearch not completed
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where B¢ € [2/3, 1] is a correction factor that penalizes high standard deviations, being B¢(c = 0) = 1;
Be is the penalization in the case that the search is not completed. Based on experience, it has
been chosen 0. = E/10, considering this value as reachable if the algorithm is properly configured.
In Figure 3, the correction factor has been represented for . = 0.03 as a function of the
standard deviation.

0.95 r

0.9

0.85 r

B

0.65 !
0 0.02 0.04 0.06 0.08 0.1

Figure 3. Correction factor B of the efficiency as a function of its standard deviation. For the dashed
line, the value of ¢, = 0.03.

For each of the models of the efficiency already presented, Equations (10), (11) and (13), the fitness
value will be calculated as well in order to estimate the variance of the algorithm, taking also into
account whether the search has been completed or not.

3. Proposed Search Algorithm, a Set of Behaviors: Al

3.1. Search Behavior

This first behavior is the main one and leads the multicopter to search unexplored areas. It is
based on the presence of virtual pheromones, whose dynamics and different classes are explained
in the next subsections. The virtual pheromones are created on the search space and are absorbed
by the robots as the area is observed. The robots are then attracted to unobserved zones, where the
concentration of the pheromones is higher.

3.1.1. Pheromone Dynamics

The dynamics of the virtual pheromones have been implemented following the bi-dimensional
heat flow (or gas diffusion) equation:

a"’g’ D _ _GFis (15a)

F=—D(r,t)V¢(r,t) (15b)

where ¢ is the concentration of the virtual pheromones, V is the divergence operator, F is the
pheromone flux and D is the diffusion coefficient and represents how well the pheromones are
transported. S is the source of pheromones, i.e., the creation of pheromones at each discretization cell.
Using the divergence theorem in Equation (15) and considering as volumes of control the
discretization cells, we can solve the obtained integral equation with an explicit scheme, forward in
time and centered in space (FTCS). We consider therefore mean values of ¢ and S inside those cells
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and mean values of F and D along their boundaries. The problem is then properly posed by finally
defining the initial and the boundary conditions:

¢(x,y,t =0) = do(x,y) (16a)
¢x(0,y,t) = ¢px(Lx, y,t) =0 (16b)
¢y(x,0,t) = ¢py(x, Ly, t) =0 (16¢)

The first equation represents the initial concentration of pheromones over the search space,
whereas the next four are von Neumann conditions, which state that the pheromone’s flux through the
boundaries must always be zero. Obstacles inside the scenario are impermeable to the pheromones
flux, similarly to the boundaries of the area.

3.1.2. Cell Types and Properties

The properties of each discretization cell, i.e., the concentration, creation and diffusion of

pheromones, variables ¢>ff i Df-‘ j and SII‘,’_]_ associated with the cell (7, j) at moment k, depend on three

types of cells:

o  Non-observed cells: cells that have not been observed yet:

s{ij = Suo (17a)
Dfi]‘ = Dpyo (17b)

o  Observed cells: cells already observed by any agent:

55,‘,], =S5, (18a)
Df; = D, (18b)

o  Recently-observed cells: if a cell has just been observed, there is n instantaneous drop of its
pheromone concentration of:

Aro(l);{,;rl = 51’0 . (Pf{,] (19)

where A,, indicates variation due to the fact that the cell has recently been observed and
dro € [—1, 0]. This drop is accounted only once, so that at the next time step, a recently-visited
cell becomes a regularly-visited cell.

e Isolated cells: Each non-observed cell has associated a so-called isolation index, 65-‘ ., which is the
number of observed cells surrounding it. If the cell has already been observed, its i,solating index
is forced to be equal to zero. Every time step the isolation index changes, there is an increment in
the pheromone concentration of:

Do = pno - A0S - (20)
where AQ;‘;A > (0 is the variation of the isolation index from time k to k + 1:
k+1 _ pk+1 k
AO =0 —0;; (21)

The parameter ppp > 0 makes the concentration increase when its isolation index changes.
Moreover, there is an extra pheromone creation proportional to the isolation index in these cells:

NoSE; = po - 05 (22)
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In Figure 4, the above-mentioned cells have been represented. The white discretization cells
have not been observed yet. At each time step, the cells that have just been observed become
recently-observed cells, in dark green. In the next step, those cells become regular observed cells,
in light green. Note that even though there may be a variation in the isolation index at position (w, h),
the variation of the isolation index is forced to be zero, since the cell becomes observed. In the example
shown in the figure, the pheromone concentration in those four cells will suffer a variation, exclusively
due to the type of the cell (Ay), of:

Aretyf ' =S At
Atc¢£{j—11,j+1 = Spo - At + A9¢fj_11,j+1 = (Sno + AQS?’}H)At = (Sno + Po * er}kl)At (23)
At@f;hl = So- At+6,- K,

k+1 _ ) Akt ok
Atc4’w+1,h+1—5n0 At +pae A9w+1,h+l 4’zu+1,h+1

k —
9W+ Lh+1 — 0

K+l
Owiiner =1

gl'k—l,j+1=3 [ - I\\m Aek _1
. L\‘U\U i}* w+1,h+1 —
k+1 — |
07141 =3 W 4 \ .
— Hwh =0
A, =0 ; '
i=1j+1 = ¥ | L L okt
ﬂ / ijh = 5
~ T _ Kk
> | T ; AQW’h = O
gk =0
L=
1 Non-observed cells
gkl — o : -
LJ 1 Recently observed cells [l
Agk+L = ¢ Observed cells B
iLj - .
Sensor footprint (@)

Figure 4. Types of cells in the search behavior. The white cells have not been already observed. The light
green cells are the already observed cells, whereas the darker green are the cells just observed.

Besides these changes in the concentration of pheromones, the natural diffusion, Equation (15),
will also apply during each time step.

If there is a prior probability distribution of the possible location of the targets, it can be easily
implemented in the algorithm. Given a probability distribution g;(x, y), each discretization cell (i, j) is
assigned a probability value py, :

= qi(xi,y;) (24a)

= (24b)

being therefore:
ny My
Z Z Pt = 1 (25)
i=1j=1

and this probability distribution is finally normalized with the maximum value:

_ Pt;;

= — 2
P, max;, pr, (26)
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and therefore, 0 < Pt < 1. The sources of pheromones, as well as the initial value of the pheromones
(see Equations (15a) and (16a)) are then multiplied by the associated normalized probability py, ;. In this
way, the regions where it is more probable to find a target generate more pheromones, and the agents
are more attracted to them.

3.1.3. Layers of Pheromones

The actual usefulness of pheromones is to transmit information about observed and non-observed
cells along the search area, so that the agents are aimed at zones with more unobserved cells. This way,
it is expected that the observed cells generate and transmit less pheromone levels than the unobserved
ones. However, if there exist unobserved cells, surrounded by observed cells, it is possible that these
last ones act like a barrier, avoiding an effective transmission of the information by the pheromones.
On the other hand, it is our experience that it is useful to try to organize the search by prioritizing the
observation of isolated (i.e., with high 6 values) cells surrounding each agent. In order to address these
issues, we propose a multi-layer pheromone system made up by three independent layers:

o Standard layer (L1): There is no impact of the isolation index on this layer, and it has different
diffusion coefficients for observed and unobserved cells.

o Long-range layer (L2): Intended to transmit information from unobserved cells along the entire
search area. The diffusion coefficients of observed and unobserved cells are equal, and the
observed cells do not produce pheromones.

o Isolation layer (L3): This mainly considers pheromone creation due to the isolation index. Once
the cells are observed, they lose their pheromone concentration at this layer.

In Table 3, the parameters for the three layers are summarized. Each parameter has been named
with a super-index to indicate the layer to which they belong, except for pag and py, which only apply
to Layer 3.

Table 3. Parameters related to the search behavior for each of the three layers.

$o Sno So Dyo D, Sro PAO PO

L ogf' siosi DE DE ol 0o
L2 ¢f* sk 0o DF D2 52 0 0
L3 ¢ Sp 0 0 0 -1 pao po

3.1.4. Evaluating Modes

Each time an agent reaches the center of a search cell, it makes the decision of which search cell
to visit next, and the search behavior will be taken into account, depending on the concentration of
pheromones on the surrounding cells at each layer.

At each time step, each discretization cell Gp, has associated a concentration of pheromones
¢. = ¢'(Gp,) at each layer I. The total quantity of the pheromones concentration is then:

¢ = ¢(Gp,) = Y ¢'(Gp,) 27)

gl

1

1

Each search cell ng has associated a set of discretization cells, so that their centers lie inside it.
Furthermore, if the final search cell g is in a diagonal position (with respect to the agent), half of the
contiguous cells will be observed (see Figure 1), and therefore, the discretization cells inside these
halves will be accounted for.

We propose two methods for accounting for the pheromone level at each search cell, for candidates
to be visited next:
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o Mean values: The mean values of the pheromone concentration of the cells inside each search
cell are considered. The income for each surrounding cell is then calculated:

¢(Gp,)
VC|GDC€G5g
Primg = v (28)

VC|GDCEG5‘g

o Maximum values: The maximum value of the concentration inside each search cell is considered.

max ¢ (Gp,) (29)

I =
P10 |G G

To consider both solutions, the total income of each surrounding cell ¢ will be calculated as a
weighted sum of both:

Lpe = Bolpumg + (1= Bp) Ipon, (30)

where By € [0, 1] is the weighting parameter, to be set.

3.2. Energy Saving Behavior

As already mentioned in Section 2.3.2, there is a need for extra energy to change the direction
of flight, besides the energy needed to continue flying. This increment in the consumption depends
on how much the direction of flight changes. Moreover, there is a reduction of velocity when the
agent changes its flight direction (see Equation (6)), which will have an impact on the performance.
In Figure 5a, the energy costs Cg, for each cell g considered has been shown. As we will see, since
those values will be multiplied by a coefficient, their absolute values are not relevant, but only the
relationship between them.

3.3. Diagonal Movement Behavior

Moving in the diagonal might improve the performance of the search since there is potentially less
overlap between the sensor footprints. Therefore, a behavior is proposed to encourage the movement
in these directions, equal to the pheromone concentration in those cells:

Ipm, = 0(8 — 8a) Iy, (31)

where §(g — g,) is the Dirac delta centered in each diagonal cell g; = [2,4,6,8] and Iy, is the input due
to the pheromone concentration; see Equation (30).

3.4. Collision Avoidance Behavior

To avoid collisions between the agents, this behavior is considered. Every time an agent makes
the decision about which cell to visit next, it advises the other agents.

It is important to remark that this behavior does not prevent the collision itself, since two agents
may head to two different cells and collide anyway. However, this is an assumed simplification,
considering that there will be also a collision avoidance system to take over the control in those
situations. The cost of C¢c, = —10° is considered; see Figure 5b.
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Figure 5. In (a), energy costs considered in the energy saving behavior. The arrow indicates the
current flight direction. In the upper left corner of each search cell, the cell number has been indicated.
In (b) collision avoidance costs. Agent 2 is already heading to a cell, so that traveling to that one would
imply a cost of —10” for the agent. In Figure (c), an example of the keep distance behavior has been
represented; Agents 2 and 3 apply a total force F% =1, being ¢r = /4, over the agent. The incomes
I D, have been calculated using Equation (42). In (d), an example of income due to the keep velocity
behavior is; see Equation (47). In this example, V% =1m/s.

3.5. Keep Distance Behavior

Imitating several animal species in nature, such as bird flocks, fish schools and ungulate herds,
this behavior is proposed. Each agent tries to keep a stable distance with the surrounding agents, by
means of the result of attractive and repulsive forces. These are normally implemented similarly to the
attractive-repulsive forces presented in the molecules’ interactions. The total force over an agent i due
to the presence of an agent j is made up of two forces:

A, A, ) d:

jdfre  Jai ) Jar

Ft;‘ = Fa;‘ + Fr;‘ = ( (32)

where Fa§ is the attractive force, Fr;- is the repulsive force and d;'- is the vector from the position of agent

i to the position of agent j, d;'. =1j—Ij. Aqs >0, Ay > 0and m, > m, > 0 are parameters to be set.

Since the configuration is expected to be valid no matter how many agents are carrying out
the task or the size of the search area, it is convenient to adimensionalize the distance d; There are
two candidates for this purpose, the footprint radius:

de, = Ry (33)

1

and a distance representing the size of the search area:

de, = \/L2+ 12 (34)
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If one takes the first option, the keep distance behavior will be related to the covered area at each
moment, and it will lead the agents to behave more as a flock. On the other hand, if the second option
is chosen, the agents will tend to cover bigger zones, spreading out themselves across the search area.
In order to let the optimization choose any combination of these characteristic distances, a weighted
distance is considered:

de = Bade, + (1= Ba)de, (35)

where B is a coefficient to be chosen. The adimensionalized distance &; is then obtained by:

=

i
=

Making Ft;: = 0 in Equation (32), we get the equilibrium distance, whereas differentiating that
equation and equaling it to zero, we get the distance at which the attractive force is maximum:

1
i A\ mr—ma
do = ( Aﬂ) (37a)

1
- _ Armr my—nig
dmux - ( Aumu > (37b)

where tfmax > 1770. To reduce the number of parameters, we consider, as well:

my =mg;+1 (38)
so that Equation (37a) becomes:
- A
do = i (39)

With this assumption, we finally get the relationship:

", = — dmax{do (40&1)
dmax /dO -1
Fi,. (do)™

Ay = ———tmo (do) (40Db)

(5)" - ()"
my My

Again, since this behavior will be multiplied by a coefficient, the actual value of the total force is
irrelevant, and therefore, we can take F;,,, = 1. The behavior so posed depends only on three variables,
the adimensionalized distance at which the forces are at equilibrium, EO, the adimensionalized distance
at which the attractive force is maximum, d,,4y, and the characteristic distance, d.. Once these distances
are set, m, and m, are calculated with Equations (40a) and (38), respectively. A, is calculated with
Equation (40b), and finally, with Equation (39), we get A,. In Figure 6a, the resultant forces have been
represented for do = 1/3 and dyar = 0.5. Having N, the number of agents, the total force on agent
i will be:

. Nu .
f= Y E (41)
j=1

Vi
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Figure 6. In (a) attractive, repulsive and total forces with cio =1/3 and dyax = 0.5. In (b) function f
of the keep velocity behavior (see Equation (45)) depending on the dimensionless distance d and for
different values of ay.

Once the total force vector Fr over an agent has been calculated, an income value must be assigned
to each surrounding cell. Given the direction ¢r of Fr and its modulus Fr, a normal distribution is
used along the different headings of the surrounding cells:

o ()

_ o2
pg = \/2m726 ’ 42)

where Ip, is the income corresponding to the surrounding cell g, ¢ is the variance of the normal
distribution, and it has been chosen as 02 = 0.5; A1p§ is the difference of the heading of Fr and the
heading of each surrounding cell g. In Figure 5¢, an example of the keep distance behavior has been
represented. Agents 2 and 3 apply two repulsive forces F}Z and F}S on Agent 1. The total force in this
example is Fj. = 1. The incomes Ip, for each surrounding cell have been calculated with Equation (42).
In this case, since the heading of the total force is 77/4, we have:

3 37

/T/ T[’_T’_E} (43)

E s 7T
Alpl.T..S = [—Z,O, 1’

N[N

3.6. Keep Velocity Behavior

Similar to the keep distance behavior, and mimicking flocks and schools, a behavior aimed at
keeping the velocity of the other agents is also implemented. Most of these sorts of behaviors are
proportional to a certain function of the distance between the agents; see, for instance, [26]. Here,
a similar law is proposed. The total velocity effect over an agent i is calculated as:

N, ,
j=1
Vjti
where v; is the velocity vector of agent j, different from agent i, and f]?' is a function of the distance
between both agents:

f} = sign (&) - min {e“v'/d?‘ - 1,1} (45)

where d' is the adimensional distance between agents i and j and «; is the coefficient to be configured.
In this case, the characteristic distance is taken equal to the sensor footprint:
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i
R

- % (46)

~. Nl.

In Figure 6b, the function fji, Equation (45), has been represented depending on the adimensional

distance d for three values of a,. Once the total velocity V1 over agent i has been calculated, the incomes
of each surrounding cell are calculated similarly to Equation (42):

(a4)°
VT 47)
2

where Vr = | V7| and ¢? = 0.5. An example of incomes for each cell has been presented in Figure 6b,
where it has been assumed V% =1m/s.

3.7. Final Decision

Once every income for each behavior has been calculated, a final decision process takes place.
For each surrounding cell g, a final decision income is calculated as follows:

Ifg = I(Pg + ‘XECEX + “DMIDMg + ch + D‘DIDg + Dévag (48)

where I, is the total income of cell g, Iy, is the income due to the pheromone concentration, Cg, is the
energy cost, Ipy, is the income due to the diagonal movement behavior, Cc, is the collision cost, Ip, is
the income due to the keep distance behavior and Iy, is finally the income due to the keep velocity
behavior. Note that the above Equation (48) is a weighted linear sum of all costs and incomes, where
&g, app, «p and ay are the weights to be set. The next cell to visit is then chosen so that the total
income is maximum.

3.8. Configuration of the Algorithm

As we have shown, the algorithm consists of six different behaviors with a total of 23 parameters
to be selected. Moreover, the optimum values of these parameters presumably depend on the scenario,
i.e., on the values of the variables shown in Table 1. To solve this optimization problem, the following
procedure was carried out.

Given any plain scenario i (the scenario shown in Figure 2a) defined by the tuple Y; =
{As/Na, No,vn, Rg, fa }i, the algorithm parameters must be configured accordantly to achieve an
appropriate performance. If we have a big-enough dataset of i = 1, ..., N scenarios with N suboptimal
configurations Q)f, i.e., with N suboptimal values for each of the 23 parameters of the algorithm,
we can model them individually as a function of the scenario, using Y as predictors. As a result, for any
scenario Y}, a suboptimal estimation O j is obtained, and the algorithm can then configured. The model
selected to predict the suboptimal values is a Gaussian process (see [27]). To generate the dataset of
suboptimal configurations, a genetic algorithm is used, whose main characteristics are:

e  Chain of genes: a vector made up by the 23 parameters of the algorithm. Each of the genes is
normalized with a range of possible values.

e  Population: 100 members.

e Initial population: Half of the initial population is taken from the two closest scenarios already
optimized, 25 from each one. To select those members, a trade-off between fitness and genetic
diversity is considered. The other half is taken as a prediction of the model. Since the model is
probabilistic, these 50 member are drawn from the normal distribution of the Gaussian process.

e  Fitness function: To evaluate each member, Equation (14) is used. In order to measure the noise
due to the variability of the initial conditions, each member is tested 100 times.
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e  Crossover: The members will be combined using the roulette-wheel technique, with a probability
proportional to the fitness value. Two pairs made up by the same two members is forbidden.
Two members being selected for the crossover, a new member will be created by applying a
weighted sum of each gene individually. The weighting coefficient is a random number between
zero and one. The offspring is made up of 50 new individuals.

e  Next generation selection: After evaluating the new individuals, elitism is used to select the 100
best members for the next generation from the 150 available members.

e  Stopping criteria: The optimization is stopped when one of these criteria is met:

- Maximum number of generations (30) has been reached.

- Maximum time for each optimization (24 h) has been reached.

- Maximum number of generations (10) without an improvement higher than 10% of the best
member has been reached.

- Maximum number of generations (3) without an improvement higher than 10% of the mean
fitness of the population has been reached.

Having obtained k < N suboptimal configurations for k scenarios, the next scenario k + 1 is
obtained so that the mean uncertainty of the GPs of the 23 parameters is most reduced, i.e., the scenario
with the highest uncertainty is selected. A total of N = 100 scenarios is optimized and used as the
dataset. In Figure 7, the complete modeling process has been schematically depicted.

Y Y; Y

Figure 7. Schematic representation of the modeling process. Y represents the scenario parameter
space, while () is the configuration space of the algorithm (the value of the 23 parameters). The black
points represent the dataset, i.e., the suboptimal configurations ()* found with the genetic algorithm
for each of the scenarios Y;, with i = 1, ..., 100. The blue line represents the model of the suboptimal
configurations based on GPs. Each parameter has been modeled independently (one GP for each
parameter). For any new scenario j, the suboptimal configuration Y]* is predicted (red circle).

4. Search Patterns

In this section, six search patterns are proposed, which will be compared with the above explained
set of behaviors.

4.1. Random Walk: A2

The simplest solution to explore the area is to walk randomly. Every time an agent reaches the
center of a search cell, it randomly decides which surrounding cell to visit next. Given a present
heading ¢;, the next course will be then ;1 = ¢; + Ay;, being:

Ap; ~ N (o, (ffw) (49)
where N indicates normal distribution and o, is its standard deviation, which has been chosen as

orw = 71/2. Since the movement is restricted to the surrounding eight cells, ;1 is rounded to the
closest possible heading pointing to any of those cells. In addition to this behavior, the collision
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avoidance is also implemented as explained in Section 3.4. In Figure 8, an example of a random walk
has been represented for two agents.

0,15 10,22 | 0,25

008 | o |022

0,03 0,08 | 015

Figure 8. Example of random walk with two agents. The agents deviate from their current heading as
per Equation (49). Surrounding the blue agent, the probability distribution of selecting each cell has
been written.

4.2. Go to the Closest Non-Visited Cell: A3

The next pattern to be compared is heading to the closest cell that has not been already visited.
The distance is computed as the Euclidean norm, and once the target cell is selected, the needed heading
is obtained. Depending on that course, utility values are assigned to the surrounding cells as per:

L ()’

e 202 (50)

Iec, = —
where it has been chosen o = 7/10. Note that this utility assignment is similar to the one used in the
keep distance and keep velocity behaviors; see Equations (42) and (48). If there is more than one cell at
the same distance, the utilities for each surrounding cell are calculated and summed up. In addition to
this behavior, the energy saving and the collision behaviors are implemented; see Sections 3.2 and 3.4.
This implies that if more than one cell is situated at a similar Euclidean distance, the agent will head
to the one that implies lower energy consumption. The utility of each surrounding cell g is therefore
calculated as:

I, =10- Iccg + ch (51)

where Cc, is the energy cost. In Figure 9, an example of this algorithm has been represented.

6,52

374

=

2,37

D

Figure 9. Example of going to the closest non-visited cell behavior. For the cell candidates, the utility
values have been written. The yellow agent has two choices at the same distance, but due to the energy
saving behavior, one of them is preferred (see energy cost in Figure 5a).
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4.3. Boundary Following: A4

As proposed in [20], an effective way of traveling along the search area is selecting the next cell
to visit depending on if they are surrounded by already-visited cells or not. This way, the task is
organized in a compact way.

In order to implement such a behavior, we make use of the isolation index 95" - as defined in
Section 3.1.2, but instead of applying it on the discretization cells, it will be referred to as the search
cells. Each surrounding cell will have a utility equal to its isolation index. Moreover, the energy
saving behavior is also implemented, so that for equally-isolated cells, the one that needs less energy is
preferred. The utility of each surrounding cell g is therefore calculated as:

Iy = 106 + Cc, (52)

Finally, if there is not any surrounding unvisited cell, the behavior go to closest non-visited cell
takes over the control. In Figure 10, an example of this behavior has been shown.

39,0 | 18,1

‘_>48,0

58,1

57,1

(a) (b)

Figure 10. Example of the boundary following behavior with the associated utilities for each cell.
In (a), instant a; for cells with equal isolation index, the one that requires less energy is selected.
In (b), instant b; the yellow agent activates the go to closest non-visited cell behavior.

4.4. Energy Saving: A5

The energy saving behavior, depicted in Section 3.2, can be implemented separately so that each
agent keeps its current course unless a collision may take place, or in case the agent is going to fly
outside the search area. In those cases, the safe heading that requires less energy is chosen. In Figure 11,
an example of this behavior is represented.

>

Figure 11. Example of energy saving behavior. The agents keep their headings unless they run into the
borders or if a collision may occur.
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4.5. Billiard Random Movement: A6

Similarly to the lawn mower behavior proposed in [23], the billiard random movement behavior
directs the agents to go straight until they encounter any border. Then, they select randomly any other
free direction. This behavior differs from the energy saving in the way the next course is selected
(randomly here, the most energy convenient in the other). The collision avoidance behavior is also active
in this algorithm. In Figure 12, an example of this behavior is shown.

Figure 12. Example of billiard random movement behavior. When an agent encounters a boundary,
it redirects its heading randomly. Otherwise, the course is kept constant (unless a collision may occur).

4.6. Lanes Following: A7

Finally, the lanes following algorithm is considered. Similar to the raster scan behavior depicted
in [23], a lane is assigned for each agent. The direction of the lanes (north-south or east-west) is selected
so that the minimum number of lanes is created; if that number is lower than the number of agents,
the other direction is selected. When a lane is assigned to an agent, it goes first to the closest extreme
cell of the lane, and after, it starts traveling along it. When the lane is completely observed, the closest
non-observed lane is assigned. If there are no available lanes, the go to closest unvisited cell behavior
is activated. In Figure 13, an example of this behavior is shown.

Figure 13. Example of the lanes following behavior. In the first lane assigned to the yellow agent, it
travels first to the closest extreme cell. When each lane is completely observed, a new one is assigned.

5. Comparison of the Algorithms

In order to compare all the search algorithms considered in this work, random scenarios are
generated considering the parameters (and their valid ranges) shown in Table 1 for each of the four
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scenario types. Recall that each scenario is defined by the area per agent, A;/N,, the number of
agents, N, the nominal velocity of the robots, v;, the sensor footprint radius, R fr and the aspect ratio
of the area, f;. For each scenario, 100 different initial conditions are generated, and each algorithm
is tested having considered them. The mean values of the efficiencies as per Models 1, 2 and 3
(see Equations (10), (11) and (13)) are calculated and considering the standard deviations among the
100 trials, the fitness value is obtained according to Equation (14). For this last figure, whether the
search has been completed or not is also taken into account.

First, we carry out a quantitative comparison based on the measurement of the efficiency and
fitness values for each scenario type. Secondly, we present a qualitative analysis discussing the
complexity of the communications needed and how appropriate each algorithm could be for a
surveillance mission.

5.1. Quantitative Comparison

5.1.1. Plain Scenarios

In Table 4, the results of the simulations have been presented for the plain scenario. For each
of the three models, the mean efficiency among 200 scenarios and the mean fitness value are shown.
Notice that in turn for each of the scenarios, the efficiency and the fitness is the result of the mean of
100 trials.

For Model 1, the best algorithms turn out to be A4, A3, A7 and Al, with an efficiency between
70 and 78%. In any case, the efficiencies of all algorithms lie above 78% of the maximum efficiency
(0.61/0.78 = 0.78), which may indicate a bad representation of the real performance of the algorithm.
Note that even a random movement, which a priori is considered as very inefficient, achieves mean
absolute efficiency values of 61%. The fitness values based on this model indicate that the algorithms
A3, A7, A4 and Al combine good efficiencies with low noises due to the initial conditions. We should
underline the important drop in the fitness values compared with the efficiency for algorithms A2, A5
and A6, which indicates a high variance in the efficiency depending on the initial conditions.

The case of Model 2 is similar, although the values are in general lower. The best algorithms based
on it are A3 and A7. However, in this case, the differences between the algorithms are lower, all the
efficiencies lying between 0.57 and 0.61. Again, there are remarkable drops in the fitness for algorithms
A2, A5 and Aé6.

Table 4. Efficiencies and fitness values for each algorithm, based on the three models depicted in
Section 2.4.

Model 1 Model 2 Model 3
Eff Fit Eff Fit Eff Fit

Al: Behaviorsset 0.70 058 057 049 039 0.29
A2: Random 061 021 057 020 0.09 0.03
A3: Closest 075 0.68 062 057 036 027

A4: Boundary 078 0.67 059 053 031 0.22
Ab: Energy 066 021 059 019 016 0.04
A6: Billiard 061 023 055 022 016 0.05
A7: Lanes 073 0.68 061 057 035 028

In Figure 14, the efficiencies distributions as per Models 1 and 2 for the 200 scenarios have been
represented, in descending order of mean efficiency. Note the high variance in the efficiency of A5 for
both models, which indicates that the algorithm is very sensitive to the scenario.
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Figure 14. (a) Efficiency Model 1; (b) Efficiency Model 2; efficiency based on Models 1 and 2 for
each proposed algorithm. The distribution corresponds to 200 scenarios, tested with 100 random

initial conditions.

In the case of Model 3, the results are different. First, the efficiencies are in general lower, with
their average between 9 and 39%. We can distinguish two groups of algorithms: the first group,
composed by Al, A3, A7 and A4, achieves high efficiencies, higher than 0.31. The second group, made
up of A6, A5 and A2, reaches efficiencies between 0.09 and 0.16. Note that with this model, the worst
algorithm (A2, random movement) is four-times less efficient than any of the first group, which may
be a sensible result. Regarding the fitness, the same drop from the efficiency values shows up again in
A2, A5 and A6. Al reaches the highest fitness value, indicating robustness against the initial conditions.
In Figure 15, the efficiencies based on Model 3 and the associated fitness values have been represented
for each algorithm, for all the scenarios. Note that A3 and A7, although reaching high efficiencies,
present a high variance depending on the scenario. In 75% of the scenarios, both algorithms reach
an efficiency that lies between 0.17 and 0.55, which is a wide interval compared with Al, with the
interval from 0.35 to 0.40 comparatively narrow. A similar situation takes place regarding the fitness,
in Figure 15b. Although A7 may reach up to 0.50 of fitness in some scenarios, it is also possible that it
drops to 0.10 in some other. A similar behavior is present in A3. On the other hand, A1l only reaches
maximum fitness values of 0.4; however, the values among the scenarios are more stable.
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Figure 15. Efficiency (a) and fitness (b) based on Model 3.
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5.1.2. Scenarios with the Probability Distribution

In the second scenario type, a probability distribution of the possible locations of the targets is
considered; see Figure 2b. Note that as the search mission in this case ends when all the targets having
been seen, it is likely that not every discretization cell is finally observed. Therefore, since the task may
end prematurely, the efficiency and the fitness measured as per Equations (13) and (14) are not absolute
metrics anymore. For the comparison, 50 scenarios are generated; for each scenario, five different
probability distributions are analyzed, considering 100 different initial conditions for each one.

In Figure 16a, the distributions of the efficiency have been represented, considering Model 3.
Again, Al turns out to be the best, followed by A3, A7 and A4. However, in this scenario type, Al is
clearly above the others, reaching a mean efficiency of 0.54. The second best algorithm, A3, reaches
a mean efficiency of 0.44. A similar situation occurs when the fitness is compared; see Figure 16b.
Note that also for this scenario type, A7 presents a high variability in both efficiency and fitness among
the scenarios.
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Figure 16. Efficiency (a) and fitness (b) for the scenario with the probability distribution of the location
of the targets.

5.1.3. Scenarios with Obstacles

The next type of scenario to be analyzed is the scenario with non-flyable obstacles. In this
comparison, 50 scenarios have been generated, and for each one, five different obstacle arrangements
are created. Each algorithm is tested 100 times, varying randomly the initial positions of the agents.

The efficiency and fitness distributions are represented in Figure 17a,b, respectively. The Al
performs better than the others, considering both efficiency and fitness, although the difference in this
case is lower. For algorithm A7, which in other cases is a competitive solution, in this scenario type, its
performance lies between the two groups of algorithms.
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Figure 17. Efficiency (a) and fitness (b) for the scenario with obstacles inside the area.

5.1.4. Scenarios with Probability Distribution and Obstacles

Finally, the last scenario type is analyzed. Similarly to the previous ones, 50 scenarios are
generated, and for each one, five different combinations of probability distribution and obstacle
arrangements are created. Again, each algorithm is tested for 100 initial conditions. In Figure 18a,b,
the efficiency and fitness distribution have been represented. For both performance measurements,
A1 clearly outperforms the other algorithms.
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Figure 18. Efficiency (a) and fitness (b) for the scenario with the probability distribution of the location
of the targets and obstacles inside the area.

5.2. Communication Needs and Adaptation to Surveillance

As we have seen in the previous section, the proposed algorithms can be classified attending to
objective measurements depending on the type of scenario. However, some of the algorithms make
use of intensive communications between the agents, whereas others only need sharing information
in specific moments. This may be a drawback when using them in real systems. On the other hand,
these algorithms can be used in similar missions, such as surveillance and patrolling, although some
modifications might need to be done. The algorithms are qualitatively analyzed hereafter regarding
these two issues.
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e Al behaviors set: This algorithm requires a demanding communication system because the
behaviors implemented need up-to-date information in order to update the individual map of
pheromones, calculate the resulting forces, etc. Surveillance and patrolling are easy to implement:
L3 may be eliminated, and visited and non-visited cells may be equally treated; this way, once
a zone is visited and its level of pheromones is reduced, it will gradually create pheromones.
After some time, it will become a tractor for the agents, which will then return periodically to it.

e A2 random: The random movement only needs communication between agents when they
are close and a collision may take place, not needing to share information with other agents.
Surveillance and patrolling missions are already covered, since a random walk will statistically
revisit the areas with some frequency.

e A3, closest: The requires updated information to know which cells have not been visited yet,
besides short-range communication in case a collision may occur. Although the transmitted
information is less than for Al, it is also considered as heavy. For surveillance and patrolling,
the “age” of the cell (measured as time passed since it was last observed) may be used similarly
as the probability map.

e A4, boundary: This algorithm needs the same information as A3, which is considered as
high. The surveillance task can only be carried out if the essence of the behavior is lost; if for
instance, the decision is made as a weighted sum of the isolation index and the age of the cell,
the compaction of the search, which is the main value of the algorithm, will be probably lost.
Note that the algorithm makes heavy use of the distinction between visited and non-visited cells,
which cannot be easily overridden in persistent missions.

e A5, energy: this algorithm is basically similar to the random movement regarding the
communication complexity and its use in surveillance and patrolling.

e A6, billiard: similarly to A2 and A5, the billiard movement only needs the agents to share
information if a collision may take place. The surveillance task is already included in the algorithm,
since it recursively visits the cells.

e A7, lanes: This requires only medium communications because the agents must only share the
lanes they are visiting, which happens with low frequency. The surveillance mission is fulfilled
if the visited lanes are marked with incremental numbers (instead of visited and non-visited).
The proximity of the lanes and their visit index (i.e., the number of times the lane has been
observed) may be then considered together. To do this, a weighted decision may be made.

6. Conclusions and Future Works

In this work, we have first presented an algorithm that is a behavioral network made up by six
different behaviors, whose parameters are optimized by a genetic algorithm and adapt to the scenario.
Furthermore, based on the literature, six additional algorithms have been proposed, some of which
have been combined to improve their efficiency. Additionally, three models to measure the efficiency
are suggested, and a fitness function, which takes into account the robustness of the algorithm against
the variability of the initial conditions. The algorithms have been compared making use of the models
of the efficiency and the fitness for four scenario types. Finally, the communication complexity and the
possibility of adapting the algorithms to surveillance and patrolling tasks have been analyzed, as well.
All the algorithms compared fulfill robustness and scalability.

Taking a look at the results, our opinion is that Models 1 and 2 to measure the efficiency do not
represent correctly the performance of each algorithm. Note that if a cell is visited twice, the efficiency
suffers a drop. However, subsequent visits to the same cell do not have an impact on the efficiency,
although those visits could have been used potentially to visit new unvisited cells. This situation
would affect the efficiency if Model 3 is considered, since the time to finish the search would increase.
As has been already pointed out, the random movement achieves efficiencies of 61% with Model 1 for
the plain scenario (whose performance is expected to be low a priori), whereas the best algorithm
reaches 78%, which also indicates that the model may not be a good indicator of the performance.
Therefore, we consider Model 3 as the one that more faithfully represents the efficiency.
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Comparing the efficiency and fitness values, we have seen that there are four algorithms that
are competitive: behaviors set (A1), go to the closest unvisited cell (A3), travel along lanes (A7) and
boundary following (A4). The other three achieve much lower values. In Table 5, a final comparison
has been shown; for each scenario type, the efficiency and fitness have been divided by the maximum
value achieved. As can be seen, Al’s performance is the highest for all scenario types, although for the
plain scenario and the scenario with the probability distribution, the difference is not high. In those
cases, A3 and A7 could reach a good performance in terms of fitness. However, for scenarios with
obstacles, the difference is higher. The second best algorithms, which are A3 and A4, achieve 87% and
84% of the maximum efficiency and fitness. Finally, if the scenario considered has obstacles and a
probability distribution, Al outperforms the other algorithm more significantly; again, the second best
algorithm is A3, only reaching 76% and 77% of the maximum efficiency and fitness.

Table 5. Relative efficiencies and fitness values for each algorithm and each scenario type.

Plain Probability = Obstacles  Prob. + Obs.
Eff Fit Eff Fit Eff Fit  Eff Fit

Al: Behaviors set 1 1 1 1 1 1 1 1
A2: Random 023 0.09 022 014 024 013 0.21 0.18
A3: Closest 091 093 081 086 087 084 0.76 0.77

A4: Boundary 078 078 0.63 072 086 0.84 0.66 0.71
A5: Energy 041 015 042 028 044 020 043 0.34
Aé6: Billiard 042 017 043 031 045 022 044 0.37
A7: Lanes 090 099 076 090 059 060 052 0.53

If the task at hand is just searching in an area, probably the preferred algorithm would be
separating the search space into lanes (A7) or that each agent heads to the closest non-visited cell
(A3), because they are easy to implement, do not need any optimization process and perform well.
However, if we want to make use of a map of probabilities or there are non-flyable obstacles in the
area, algorithm A1 should be considered. Similarly, if the task is surveillance or patrolling, A1 may be
also convenient, although this is only an intuition, and simulations need to be carried out to ground
this assertion.

In future works, the search patterns should be modified to adapt to all the scenario types, trying to
achieve better results; this way, the comparison with A1l would be more fair. If in these modifications,
parameters have to be included, an optimization process may need to be performed. In a similar
way, the surveillance task may be analyzed with these algorithms (modifications will also need to
be included, with the corresponding tuning). For this mission, objective functions to evaluate the
efficiency are easier to implement (see for instance [28], where the maximum age of the cells is used).
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