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Abstract: In recent years, Automated Guided Vehicles (AGVs) have been playing an increasingly
important role in producing industry and infrastructure and will soon arrive to other areas of human
life such as the transportation of goods and people. However, several challenges still aggravate
the operation of AGVs, which limit the amount of implementation. One major challenge is the
realization of reliable sensors that can capture the different aspects of the state of an AGV as well
as its surroundings. One promising approach towards more reliable sensors is the supplementary
application of virtual sensors, which are able to generate virtual measurements by using other
sources of information such as actuator states and already existing sensors together with appropriate
mathematical models. The focus of the research described in this paper is the design of virtual sensors
determining forces and torques acting on an AGV. The proposed novel approach is using a quadratic
boundedness approach, which makes it possible to include bounded disturbances acting on the
AGV. One major advantage of the presented approach is that the use of complex tire models can be
avoided. Information from acceleration and yaw rate sensors is processed in order to realize reliable
virtual force and torque sensors. The resulting force and torque information can be used for several
diagnostic purposes such as fault detection or fault prevention. The presented approach is explained
and verified on the basis of an innovative design of an AGV. This innovative design addresses another
major challenge for AGVs, which is the limited maneuvering possibilities of many AGV designs.
The innovative design allows nearly unlimited maneuvering possibilities but requires reliable sensor
data. The application of the approach in the AGV resulted in the insight that the generated estimates
are consistent with the longitudinal forces and torques obtained by a proven reference model.

Keywords: fault diagnosis; observers; automated guided vehicles; input estimation; force balance

1. Introduction

Automated guided vehicles can be used in any scenario with prominent material flows.
Applications of Automated Guided Vehicles (AGVs) exist in all fields of industry and trade. Typical
examples are the use in assembly lines, warehouses, order picking systems and production plants [1].
The main motivation of the presented research is the still relatively low application rate of AGVs.
In theory, AGVs dispose of several advantages compared to other kinds of logistics equipment.
They are more flexible, modular and intelligent, use less field area and require little time and cost
for initial installation [2]. However, until today, AGVs have not yet been applied in many potential
applications [3]. Additionally, frequently, even if AGVs are already applied, their possible potential in
terms of flexibility and efficiency is not yet exploited because they are only used for rather mundane
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tasks such as good loading and unloading and only fixed guiding technology such as magnetic
guidance or optical guidance are used [2]. One main problem can be the hardware design [2].
AGVs with conventional steering systems such as classical Ackermann steering exhibit limited
maneuvering capability and can thus not use the movement areas efficiently. Another main problem
is the high cost of sensors in AGVs and the fact that sensor data filtering, sensor data plausibility
assessment and sensor fusion are no trivial tasks. In real AGV operation, some parameters such as slip,
exact wheel diameter and mass are changed during the operation caused by uneven load distribution
or manufacturing imperfection and loading of goods [4]. These conditions aggravate the gathering
of reliable sensor data. Further problems can arise from a less than sufficient flexibility, availability
and reliability of current AGV designs. The main objective of the presented research is to develop
approaches for optimized virtual sensor design and, through this, to more efficient, flexible and reliable
AGVs. The presented research combines two main approaches to address these causes: the innovative
AGV design, which is described in this paper, allows unlimited maneuvering capabilities and the
virtual diagnostic sensor design enhances reliable sensor information without additional expenditures.

2. Research Thesis and Structure

In recent years, a considerable amount of research is centered on Fault-Tolerant Control (FTC)
systems, which can be envisioned to maintain control objectives even if a fault occurs. The application
of such system is frequently hindered by a lack of reliable sensors and the high cost of sensors [5–7].
Therefore, virtual sensors are applied, which make use of mathematical models of the process and
other available measurements to estimate the unmeasured variables [8,9]. Many approaches have
been reported to design virtual diagnostic sensors: for instance, observer-based [10,11], Kalman
filter-based [12,13] and parameter identification-based [14] approaches.

At the center of the research is an innovative approach to virtual sensor design of longitudinal
forces as well as torques acting onto an AGV using a Quadratic Boundedness (QB) approach [15].
This approach allows for including bounded disturbances acting on the AGV and avoids unnecessary
state estimation because the state is fully available via measurements. One main advantage of the
innovative approach is that the application of sophisticated tire models is not necessary. Frequently,
the application of these kinds of models limits the performance of the approaches presented in the
literature [16,17]. Another main advantage of the proposed approach is that the design procedure is
expressed in the form of Linear Matrix inequalities (LMIs), which can be solved using widely available
computational packages.

Consequently, the central research thesis can be stated as follows: is it possible to design reliable
virtual sensors for longitudinal forces and torques of automated guided vehicles based on a quadratic
boundedness approach?

An innovative design of an AGV, which allows unlimited maneuvering capabilities but requires
reliable sensor information is used both for the sake of explanation and validation of the approach.

It should also be pointed out that such kind of problems can be potentially tackled with the
so-called direct virtual sensors, which instead of exploiting the identified system dynamics are based
strictly on the existing data [18–22]. This is, however, beyond the scope of the developments presented
in this paper, which are strictly based on an analytical model of the AGV.

The paper is organized as follows. Section 3 introduces essential preliminaries, which are
necessary to undertake the problem being investigated. Section 4 describes the AGV, which will be used
in this work for the sake of explanation and validation. Section 5 presents the mathematical foundation.
Section 6 proposes a strategy for the design of the virtual diagnostic sensor. Section 7 presents the
results of the application of the proposed strategy to the AGV. Section 8 shows experimental results,
which clearly exhibit the performance of the proposed approach. Finally, the last section concludes
the paper.
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3. Description of Discrete Time Systems

Let us consider the following time-varying discrete-time system

xk+1 = Akxk + Bkuk + Ekdk + Wwk, (1)

where xk ∈ X ⊂ Rn is the state vector, uk ∈ U ⊂ Rr stands for the input, dk ∈ D ⊂ Rnd is an unknown
input, and wk ∈ E ⊂ Rnw is an exogenous disturbance vector with

wk ∈ E , E = {w : wTQw w ≤ 1}, Qw � 0. (2)

Let Vk = xT
k Pxk denote a Lyaponov candidate function. For an unforced uk = 0 and unknown

input-free dk = 0 system (1), the following definitions are recalled [15,23]:

Definition 1. The system (1) is strictly quadratically bounded for all allowable wk ∈ E, k ≥ 0, if

Vk > 1⇒ Vk+1 −Vk < 0, (3)

for any wk ∈ E.

Definition 2. A set Ex is a robust invariant set for the system (1) for all allowable wk ∈ E if

xk ∈ Ex ⇒ xk+1 ∈ Ex , (4)

for any wk ∈ E.

It should be pointed out that the strict quadratic boundedness enables decreasing the value of
Lyapunov function Vk, i.e., it means that Vk+1 < Vk for any wk ∈ E when Vk > 1. If Equation (1) is
quadratically bounded and there exists at least one vector Wwk 6= 0, then such quadratic boundedness
is always strict [15]. Moreover, the notation of the quadratic boundedness can be expressed using the
theory of invariant sets [15]. The set Ex = {x : xTPx ≤ 1} is an invariant set for any wk ∈ E if xk ∈ Ex

implies xk+1 ∈ Ex . Thus, if Vk > 1, then xk is outside an invariant set, and, hence, by Definition 1
Vk+1 < Vk. This means that Vk decreases until xk is outside Ex .

4. Design and Realization of an Automated Guided Vehicle

The main objective of the innovative AGV, which was developed at the University of Applied
Sciences Ravensburg-Weingarten, was the realization of nearly unlimited maneuvering possibilities
with a rather simple mechanical design (Figure 1).

In earlier work, a production platform with a patented steering principle was developed [24].
This production platform exhibited very good maneuvering possibilities [25], but required eight
dedicated drive motors and was restricted to flat floors. The innovative design allows driving in
uneven environments and only requires four drive motors. The AGV’s main frame consists of four
sprung arms that each dispose of one drive motor. The arms can freely rotate, but the front arms and
the back arms are connected by belts. Each drive motor disposes of an angle encoder. This allows for
determining the angle, the angular velocity and the angular acceleration of each wheel. Another set of
two angular encoders measures the steering angle of the front wheels and the back wheels, respectively.
The use of four individual motor controllers (electronic position control EPOS—communicating via the
CANopen protocol) enables independent use of each drive motor. The ability to use four independent
motors leads to a steering system that is already registered as a patent and is based on the concept to
use the torque differences between wheels to steer the axles of a vehicle. The AGV can drive directly in
any direction without time- and space-consuming turning maneuvers and is able to turn around its
own center. Especially in narrow spaces that are common in production settings, this characteristic is
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very desirable. Still, the mechanical construction is rather simple, because no dedicated steering motors
are necessary. This leads to a high robustness. Apart from the six angular sensors mentioned above,
the robot is equipped with global acceleration, velocity and yaw rate sensors, whose measurements
are available via the Bluetooth protocol. Figure 2 shows the main parameters of the steering system of
the AGV with all the considered forces and the parameters are additionally listed in Table 1.

Figure 1. Automated guided vehicle (AGV).
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Figure 2. Steering system. COG: center of gravity.
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Table 1. Automated Guided Vehicles (AGVs) parameters.

Variable Unit Value

m kg 50
L f m 0.25
Lr m 0.25
Iz kg/m2 89.18
Cr kg/◦ 1.86
C f kg/◦ 1.86
La m 0.16
Re m 0.09
Ixw kg/m3 0.00209089

Each arm that holds a drive wheel disposes of a spring suspension intended to absorb impacts
from uneven terrain and to balance possible different heights of the terrain (Figure 3).

Figure 3. Suspension system.

For controlling the AGV different modes can be chosen: manual driving and an autonomous
driving mode. A central control unit (PC ALIX) determines the required steering angles for the front
and the back wheels and sends (different) angular velocity commands to the four drive motors in
order to achieve the desired steering angle, the desired driving direction, the desired instantaneous
center of rotation ICR (which is often infinitely far away) and the desired vehicle speed.

5. Mathematical Model of the Automated Guided Vehicle

Before proceeding with the development, let us provide the names of the crucial variables shaping
the AGV dynamics, which are given in Table 2.
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Table 2. Notation.

COG Center of Gravity

i = f ront, rear axle location
j = le f t, right wheel location

L f distance between front axle and COG
Lr distance between rear axle and COG
La rear/front half gauge
r yaw rate

vx longitudinal velocity
ax longitudinal acceleration
ay lateral acceleration
m mass
δ f steering angle of the front wheels
δr steering angle of the rear wheels
Fx sum of forces causing longitudinal motion
Fy sum of forces causing lateral motion

Fx,ij longitudinal force on i, j wheel
Fy, f total lateral force on the front wheels
Fy,r total lateral force on the rear wheels
ωi,j angular velocity of i, j wheel
T total torque acting on all wheels

pi,j torque distribution coefficient
Ixw wheel moment of inertia
Iz robot moment of inertia around z-axis
Re wheel effective radius
C f front wheel cornering stiffness
Cr rear wheel cornering stiffness

From Figure 2, it can be derived that the force causing longitudinal motion is given by

Fx = cos(δ f )(Fx, f l + Fx, f r) + cos(δr)(Fx,rl + Fx,rr)+

− sin(δ f )Fy, f − sin(δr)Fy,r.
(5)

Analogously, the lateral forces can be analyzed:

Fy = sin(δ f )(Fx, f l + Fx, f r) + sin(δr)(Fx,rl + Fx,rr)+

+ cos(δ f )Fy, f + cos(δr)Fy,r, (6)

where the longitudinal wheel forces obey:

Ixwω̇ f l = p f ,lT − Fx, f l Re, (7)

Ixwω̇ f r = p f ,rT − Fx, f rRe, (8)

Ixwω̇rl = pr,lT − Fx,rl Re, (9)

Ixwω̇rr = pr,rT − Fx,rrRe, (10)

with the torque distribution coefficients pi,j ≥ 0 satisfying:

p f ,l + p f ,r + pr,l + pr,r = 1. (11)
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It should also be noticed that pi,j are assumed to be known parameters. Finally, the yaw rate
dynamics is given by

Iz ṙ = L f (sin(δ f )(Fx, f l + Fx, f r) + cos(δ f )Fy, f )+

+ La cos(δ f )(Fx, f r − Fx, f l) + Lr(sin(δr)(Fx,rl + Fx,rr)

− cos(δr)Fy,r) + La cos(δr)(Fx,rr − Fx,rl).

(12)

Having a mathematical description of AGV, the objective of the subsequent part of this paper
is to develop a set of virtual sensors enabling estimation of Fx, f r, Fx, f l , Fx,rr, Fx,rl and T based on the
available measurement vector:

y = [r, ω f l , ω f r, ωrl , ωrr]
T , (13)

as well as lateral and longitudinal accelerations ax and ay and known steering angles δ f and δr being
available control variables.

6. Virtual Sensor Design

The proposed virtual sensor design strategy starts with extracting the lateral forces Fy, f and Fy,r

from Equations (6) and (12), which yields

Fy, f =
1

cos(δ f )(L f + Lr)

(
Iz ṙ + p f , f l Fx, f l+

+p f , f rFx, f r + p f ,rl Fx,rl + p f ,rrFx,rr+

+mLray
)

,

(14)

Fy,r =
1

cos(δ f )(L f + Lr)

(
−Iz ṙ + pr, f l Fx, f l+

+pr, f rFx, f r + pr,rl Fx,rl + pr,rrFx,rr

+mLray
)

,

(15)

where

p f , f l = − sin(δ f )L f − sin(δ f )Lr + La cos(δ f ), (16)

p f , f r = − sin(δ f )L f − sin(δ f )Lr − La cos(δ f ), (17)

p f ,rl = −2 sin(δr)Lr + La cos(δr), (18)

p f ,rr = −2 sin(δr)Lr − La cos(δr), (19)

pr, f l = La cos(δ f ), (20)

pr, f r = La cos(δ f ), (21)

pr,rl = sin(δr)L f − sin(δr)Lr + La cos(δr), (22)

pr,rr = sin(δr)L f − sin(δr)Lr − La cos(δr). (23)

Bearing in mind the fact that Fx = max and then substituting Equations (14) and (15) into
Equation (5) yield:

pr ṙ = Fx, f l px, f l + Fx, f r px, f r+

+ Fx,rl px,rl + Fx,rr px,rr + ax px + ay py,
(24)
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where

pr = Iz sin(δ f − δr), (25)

px, f l = −
1
2

La sin(−δr + 2δ f ) +
1
2

sin(δr)La+

+ cos(δr)(L f + Lr),
(26)

px, f r =
1
2

La sin(−δr + 2δ f )−
1
2

sin(δr)La+

+ cos(δr)(L f + Lr),
(27)

px,rl = −
1
2

La sin(δ f − 2δr)−
1
2

sin(δ f )La+

Lr cos(δ f − 2δr) + cos(δ f )L f ,
(28)

px,rr =
1
2

La sin(δ f − 2δr) +
1
2

sin(δ f )La+

+ Lr cos(δ f − 2δr) + cos(δ f )L f ,
(29)

px = −(L f + Lr) cos(δ f ) cos(δr)m, (30)

py = −m(sin(δ f ) cos(δr)Lr + cos(δ f ) sin(δr)L f ). (31)

The state space model of AGV is given by Equations (7)–(10), (14) and (15)

G(δ f , δr)ẋ = B(δ f , δr)u + E(δ f , δr)d, (32)

where

x = [r, ω f l , ω f r, ωrl , ωrr]
T , (33)

with

u = [ax, ay]
T . (34)

The unknown input, which has to be estimated by the virtual sensor is given by:

d = [Fx, f l , Fx, f r, Fx,rl , Fx,rr, T]T . (35)

Additionally, the system matrices are:

B(δ f , δr) =


px py

0 0
0 0
0 0
0 0

 , (36)

E(δ f , δr) =


0 −px, f l −px, f r −px,rl −px,rr

−p f ,l Re 0 0 0
−p f ,r 0 Re 0 0
−pr,l 0 0 Re 0
−pr,r 0 0 0 Re

 , (37)
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G(δ f , δr) = diag(pr, 1, 1, 1, 1). (38)

Finally, while all state variables [r, ω f l , ω f r, ωrl , ωrr]T are measured, the output equation is
given by

y = Cx, (39)

with C = I. To facilitate the implementation on an on-board device, the system (32) was discretized
with the sampling time Ts = 0.01 [s] using the Euler methods, which leads to:

Gkxk+1 = Gkxk + Bkuk + Ekdk + Wwk, (40)

with

Gk = G(δ f ,k, δr,k), Bk = TsB(δ f ,k, δr,k), (41)

Ek = TsE(δ f ,k, δr,k), (42)

where wk stands for an exogenous disturbance vector (which includes the discretization error)
with a known distribution matrix W , while G(δ f ,k, δr,k), B(δ f ,k, δr,k) and E(δ f ,k, δr,k) are obtained
by substituting δ f ,k and δr,k into Equations (36)–(38), respectively. It should be pointed out that the
proposed approach was tested with the Runge–Kutta discretization framework of various orders.
However, the results were almost identical as those provided by the Euler method. As a consequence,
it was used as the dedicated approach. The reason behind such a situation can be associated with the
fact that the discretized system described in Equation (32) is a linear-time varying one composed of a
set of first order differential equations.

For the purpose of further deliberations, it is necessary to underline the fact that all state variables
of the system descibed in Equation (40) are measured. Thus, contrarily to the approaches present
in the literature (see, e.g., [26] and the references therein), the attention is focused on estimating dk
only. Indeed, as the estimation of the state vector is unnecessary, it will simplify the proposed design
procedure. Moreover, as can be deduced from Equation (38), depending on the steering angles δ f ,k
and δr,k, the matrix Gk can be either nonsingular or singular. This means that the system described in
Equation (40) can be either a linear time-varying system or a descriptor time-varying linear system (see,
e.g., [27] and the references therein). Contrarily to the Kalman-filter-based approaches to descriptor
systems, the system (40) has an unknown input dk, which has to be estimated. Another class of
approaches is dedicated to descriptor linear time-varying systems with unknown inputs described
within linear-parameter-varying framework (see, e.g., [28]). Unfortunately, all these approaches inherit
one common drawback, which is related to Gk being a constant matrix Gk = G, which is of course a
singular one. This is however not the case in system (40). Thus, to the authors’ knowledge, there is
no approach present in the literature, which can be used to settle the problem of estimating dk in
system (40). In the light of the above discussion, there is a need for developing a new estimator
structure capable of:

• estimation of dk without unnecessary estimation of the system state xk,
• handling the issue of time-varying matrix Gk of system (40).

Finally, to tackle the virtual sensor design problem, the following novel adaptive estimator
structure is proposed:

d̂k+1 = d̂k + L(Gkxk+1 −Gkxk − Bkuk − Ekd̂k), (43)

where d̂k stands for an estimate of dk and L is the estimator gain matrix. Substituting system (40)
into Equation (43) yields:

d̂k+1 = d̂k + L(Eked,k −Wwk), (44)
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where ed,k = dk − d̂k is an unknown input estimation error. While its dynamics is governed by:

ed,k+1 = dk+1 − dk + dk − d̂k − LEked,k − LWwk

= (I − LEk) ed,k +
[

I −LW
]

w̄k,
(45)

where εk = dk+1 − dk and w̄k =

[
εk
wk

]
. Finally, Equation (45) is transformed into a compact form:

ed,k+1 = Xked,k + Zw̄k, (46)

with Xk = I − LEk and Z =
[

I − LW
]
. To make further deliberations tractable, it is assumed that w̄k

is bounded within an ellipsoid

w̄k ∈ Ew, Ew = {w̄ : w̄TQww̄ ≤ 1}. (47)

This allows formulating the following theorem, which constitutes the main result of this section.

Theorem 1. The system (46) is strictly quadratically bounded for all Ek and all allowable w̄k ∈ Ew if there
exist N, P � 0 and 0 < α < 1, such the following conditions are satisfied−P + αP 0 P− ET

k NT

0 −αQw RT

P− NEk R −P

 ≺ 0, k = 0, 1, . . . (48)

with R =
[
P− NW

]
.

Proof. Using Definition 1 and the fact that w̄T
k Qw̄k ≤ 1 (cf. (47)), it can be concluded that

w̄T
k Qw̄k < eT

d,kPed,k ⇒ eT
d,k+1Ped,k+1 − eT

d,kPed,k < 0, (49)

where Vk = eT
d,kPed,k is the Lyapunov candidate function.

Consequently, using Equation (46) and defining vk =

[
ed,k
w̄k

]
, it can be shown that

vT
k

[
XTPX XTPX
ZTPX ZTPX

]
vk < 0. (50)

From (49), it is evident that, for any α > 0,

αvT
k

[
−P 0

0 Qw

]
vk < 0. (51)

Thus, applying the S-procedure to (50) and (51) gives

vT
k

[
XT

k PXk − P + αP XT
k PZ

ZTPXk ZTPZ− αQw

]
vk < 0, (52)

which by implementing the Schur complement yields−P + αP 0 XT
k P

0 −αQw ZTP
PXk PZ −P

 ≺ 0. (53)
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Finally, substituting

PXk = P (I − LEk) = P− PLEk = P− NEk, (54)

PZ = P [I − LW ] =
[
P− PLB

]
=
[
P− NW

]
, (55)

into (53) gives (48), which completes the proof.

In spite of the incontestable appeal of the approach summarized by Theorem 1, it is impossible to
use in order to obtain a solution of (48), which will be feasible for all k = 0, 1, . . .. To settle the design
problem, the system (46) is transformed into a Linear Parameter-Varying (LPV) form:

ed,k+1 = ∑
i={ f ,r},j={l,r}

px,i,jX i,jed,k + Zw̄k, (56)

where

X i,j = I − LEi,j (57)

with

E f ,l = Ts


0 −1 0 0 0
−p f ,l Re 0 0 0
−p f ,r 0 Re 0 0
−pr,l 0 0 Re 0
−pr,r 0 0 0 Re

 , E f ,r = Ts


0 0 −1 0 0
−p f ,l Re 0 0 0
−p f ,r 0 Re 0 0
−pr,l 0 0 Re 0
−pr,r 0 0 0 Re

 ,

Er,l = Ts


0 0 0 −1 0
−p f ,l Re 0 0 0
−p f ,r 0 Re 0 0
−pr,l 0 0 Re 0
−pr,r 0 0 0 Re

 , Er,r = Ts


0 0 0 0 −1
−p f ,l Re 0 0 0
−p f ,r 0 Re 0 0
−pr,l 0 0 Re 0
−pr,r 0 0 0 Re

 .

Thus, Theorem 1, can be reformulated in the following fashion:

Theorem 2. The system (56) is strictly quadratically bounded for all Ek and all allowable w̄k ∈ Ew if there
exist N, P � 0 and 0 < α < 1, the following conditions are satisfied:−P + αP 0 P− (Ei,j)T NT

0 −αQw RT

P− NEi,j R −P

 ≺ 0,

i = { f , r}, j = {l, r}, (58)

with R =
[
P −NW

]
.

Finally, the design procedure of virtual sensors boils down to:
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Offline:

1. Select Qw in (47).
2. Select 0 < α < 1 and obtain the gain matrix L of (43) by solving (58) and then substituting

L = P−1N.
Online:

1. Set d̂0 and k = 0.
2. Obtain d̂k+1 with (43).
3. Set k = k + 1 and go to Step 1.

6.1. Uncertainty Intervals

The main objective of this point is to extend the virtual sensor algorithm proposed in the preceding
section by an uncertainty interval quantifying the quality of the achieved estimates. This means that
the resulting uncertainty interval will provide the knowledge about dk in the following form:

dk ≤ dk ≤ d̄k. (59)

Thus, the objective of the subsequent part of this point is to provide a computational framework
capable of calculating d̄k and dk. To tackle this problem, the following lemma [15] can be used:

Lemma 1. If the system (45) is strictly quadratically bounded for all w̄k ∈ Ew, then α ∈ (0, 1) exists such that

Vk ≤ ζk(α), k = 0, 1, . . . , (60)

where the sequence ζk(α) is defined

ζk(α) = (1− α)kV0 + 1− (1− α)k, k = 0, 1, . . . . (61)

Finally, bearing in mind that the estimation error ed,k lies within an ellipsoid (60), its bounds are
shaped by:

−
(

ζk (α) cT
i P−1ci

) 1
2 ≤ ed,i,k ≤

(
ζk (α) cT

i P−1ci

) 1
2 , i = 1, . . . , nd. (62)

This result leads to the final form of the uncertainty intervals:

di,k = d̂i,k −
(

ζk (α) cT
i P−1ci

) 1
2 , (63)

¯di,k = d̂i,k +
(

ζk (α) cT
i P−1ci

) 1
2 , i = 1, . . . , nd. (64)

From (61), it is evident that ζk(α) converges to one while its convergence rate depends solely on α,
i.e., the closer it is to one, the better is the convergence rate, while, from (63) and (64), it can be deduced
that the steady-state length of the uncertainty interval depends on P, i.e., on its diagonal elements.
Thus, a natural measure to be optimized should be trace(P), which leads to the following strategy:

(α, P, L) = arg max
α∈(0,1), P�0, L

trace(P), (65)

under constraints (58). Finally, to obtain d̂k with possibly small uncertainty intervals, Step 2 of
Offline phase of the algorithm proposed in the preceding section should incorporate the above
optimization task. This can be accomplished with widely available computational packages like,
e.g., MATLAB (MathWorks, Natick, MA, USA).

From the above discussion, it is evident that α ∈ (0, 1) should be selected in such a way as to
achieve a good balance between convergence rate expressed by ζk(α) and the steady-state size of the
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confidence interval (63) and (64), which solely depends on the trace(P). The only way to achieve this
goal is to solve (65) by iteratively changing α ∈ (0, 1). Finally, the achieved list of pairs [α, trace(P)]
can be used to find a desired solution. The last component of the proposed strategy that deserves
additional explanation is the selection of the matrix Qw in (47) shaping the size of the domain of

w̄k =

[
εk
wk

]
. This can be achieved by assuming that

−w̃i,k ≤ w̄i,k ≤ w̃i,k, i = 1, 2 . . . , (66)

where w̃i,k (i = 1, . . . , 4) shape the maximum force rate of change of Fx,ij,k+1 − Fx,ij,k while w̃5,k
corresponds to the maximum torque rate of change. The remaining bounds w̃i,k correspond to the
maximum possible values of external exogenous disturbances wk. Using the above strategy, matrix Qw
can be selected as:

Qw = diag

(
1

w̃2
1,k

, . . . ,
1

w̃2
10,k

)
. (67)

6.2. Diagnostic Principles

As it was already mentioned in the introductory part of this paper, the main objective was to
develop virtual sensors providing:

d̂k = [F̂x, f l,k, F̂x, f r, F̂x,rl , F̂x,rr, T̂]T . (68)

Having the above estimates, the primary residual signal is formed:

zT,k = Tk − T̂k, (69)

which is used as a source of knowledge concerning the desired torque distribution within AGV.
The remaining set of residuals concerns longitudinal forces. The general idea starts with defining the
longitudinal slip ratio, which for all wheels is given by [17]:

σi,j =
ωi,jRe

vx
− 1. (70)

As can be observed in Figure 1, apart from the fact that the wheels are identical, they consist of
a metal rim that is sealed with a thin rubber strip. Moreover, it is assumed that the AGV is operating on
a level stiff surface. Thus, without loss of generality, it is possible to assume that σi,j,k = 0. This leads
to the following relation:

ωi,j =
vx

Re
. (71)

Since the actual vx of AGV is available, it is possible to use (71) to calculate desired ωi,j.
Subsequently, the desired ωi,j along with T are employed to calculate the reference longitudinal
forces Fx,i,j,k using (7)–(10). Note that both ωi,j and Fx,i,j,k are perceived as fault-free as they are
generated solely with the AGV model, while the real AGV is exposed to various faults of mechanical
nature as well as unexpected working conditions like sliding surfaces, which are also perceived as
faults. As a result, the following set of residuals is formed:

zF,x,i,j,k = Fx,i,j,k − F̂x,i,j,k. (72)
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7. Experimental Verification

The developed virtual sensor was verified in a driving scenario. The driving scenario consists of
a typical maneuver in a production logistics scenario. The following list characterizes the scenario by
showing the main parameters and their range of values:

Longitudinal velocity vx: it evolves from 0.556 (m/s) to 1.39 (m/s).
Front steering angle δf :

δ f =


−7/36π[rad], k = 2000, . . . , 4000,
7/36π[rad], k = 6000, . . . , 8000,
0, otherwise.

(73)

Rear steering angle δr : it is constant and equal to zero.

As can be seen, the vehicle is accelerating; consequently, the velocity is increasing. Simultaneously,
the steering angle is changed leading to a curved route. During the whole maneuver, the global
acceleration, velocity and yaw rate are measured by the respective sensors. The results from the
experimental verification are presented in the next section.

8. Experimental Results and Discussion

Let us start with an Offline phase of the proposed algorithm, which involves (65) under
constraints eqrefeq:theoremest2. As a result, the optimal gain matrix of the virtual sensor (43) is:

L =


−2.9501 −27.9812 −28.3581 −28.3751 −28.4762
−16.3261 940.2042 −311.4692 −311.2939 −311.1626
−16.3437 −311.0201 939.9038 −311.4558 −311.1203
−16.3236 −311.0833 −311.4491 939.9822 −311.1366
−16.3238 −310.8944 −311.2802 −311.2160 939.6778

 , (74)

along with α = 0.9.
Thus, the remaining objective of this section is to provide experimental results regarding the

application of the developed AGV virtual sensors and their application to fault diagnosis according to
the principles detailed in Section 6.2.

Following the above defined driving scenario, Figures 4–7 present the longitudinal forces
calculated with the model (nominal case) and their counterparts obtained with a set of measurements
available from the AGV sensors. Note also that the plots show uncertainty intervals calculated
according to (63) and (64). Analogous results are obtained for the torque, which are presented
in Figure 8.

As it was mentioned in Section 6, the proposed estimation strategy can be also realized with
an alternative approach, which employs the descriptor-like form [28] of the system (40). For that
purpose, it is necessary to use the small angle approximation for which parameter pr in (38) is set to
zero. This means that this matrix is constant Gk = G and a singular one. Figure 9 presents a comparison
between the nominal force and the descriptor-based one. Note that the results are presented for Fx, f r;
however, a similar effect can be observed for the remaining forces as well as the torque. Indeed, it can
be observed that the descriptor-based approach does not perform satisfactorily. Taking into account
the results obtained with the proposed approach, it can be concluded that the developed strategy can
be perceived as a very good tool for estimating AGV longitudinal forces as well as the torque.
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Figure 9. Estimate of Fx, f r with the descriptor-LPV (Linear Parameter-Varying) approach (dashed line).

It can be observed that the estimates are consistent with the longitudinal forces and torques
obtained by the model and the forces are equally distributed among the wheels. Indeed, Figure 10
presents the residual zx, f l , which clearly indicates that it is close to zero for the fault-free case except for
some transient phases corresponding to fast changes in the steering angle. As can be seen in Figure 10,
the residual centers nicely close to zero, clearly indicating the fault-free, nominal case. The same
situation occurs for the remaining wheels as well as the torque, which are omitted.
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Figure 10. Residual zx, f l for the fault-free case.

If the virtual sensors operate properly in the fault-free case, then their performance can be
evaluated in the fault case. For that purpose, the AGV was steered to two overlapping surfaces in
a manner that one of the wheels was hanging in the air. In particular, the front right wheel had
no contact with the surface, and, hence, it did not generate the longitudinal force appropriately.
This unappealing phenomenon was immediately indicated by residual zx, f r, which is shown
in Figure 11.
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Figure 11. Residual zx, f r for the faulty case.
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9. Conclusions

The main research question to be answered was whether it is possible to design reliable virtual
sensors for longitudinal forces and torques of automated guided vehicles based on a quadratic
boundedness approach. For this purpose, a novel approach using quadratic boundedness was
proposed. This approach allows to include bounded disturbances and was implemented on a prototype
AGV under development at the University of Applied Sciences Ravensburg-Weingarten. This AGV
disposes of a unique design that allows unlimited maneuvering possibilities and driving on uneven
terrain. However, the steering mechanism requires reliable sensor information. This information can be
enhanced using virtual sensors. In contrast to several approaches from literature, the novel approach
towards virtual sensors does not require the utilization of sophisticated and somewhat unreliable
tire models. The use of these models frequently impairs the estimation performance and changes
the whole estimation problem to a nonlinear one. The application of the approach resulted in the
insight that the generated estimates are consistent with the longitudinal forces and torques obtained
by a proven reference model and that the estimate immediately generates residuals in faulty cases,
thus allowing effective fault detection.
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