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Abstract: In this study, ultraviolet (UV) laser desorption and vacuum UV single-photon (VUV SP)
postionization were performed to ionize and successfully analyze 20 common amino acids. The
analytical merit and efficiency of the ionization was compared with those of conventional UV
matrix-assisted laser desorption ionization (UV-MALDI). A VUV light source (118 nm) was generated
from the ninth harmonic of a Q-switched Nd:YAG laser, and the photon number was determined
to be larger than 1012 for each laser pulse in the ionization region. In general, the detection
sensitivity of VUV-SP-postionization was 10–100 times higher than that of conventional UV-MALDI.
In particular, the ion signal from VUV-SP-postionization was considerably larger than that from
UV-MALDI for analytes with low proton affinity such as glycine. However, some fragmentation
of intact ions was observed in VUV-SP-postionization. Quantitative analysis performed using a
glycine/histidine mixture and tryptophan/phenylalanine mixture revealed that the dynamic range
of VUV-SP-postionization was one order of magnitude larger than that of UV-MALDI, indicating that
VUV-SP-postionization is suitable for the quantitative analysis of amino acids.
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1. Introduction

Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry, introduced in the late
1980s by Hillenkamp et al. [1,2], has been widely used in the characterization of biomolecules. Various
small matrix molecules can be used to desorb and ionize biomolecules, such as peptides, proteins,
saccharides, and DNA, as intact ions. MALDI is one of the most crucial ionization methods for the
mass spectrometry of biomolecules because of its soft ionization and high sensitivity.

The quality of MALDI-MS spectra is strongly dependent on numerous factors, such as the
photophysical and photochemical properties of the matrix and analytes [3–12] and laser irradiation
conditions [13–18]. Moreover, selecting a suitable matrix for the target analyte is crucial. The selection
of matrices for various analytes has been investigated. For example, 2,5-dihydroxybenzoic acid
(2,5-DHB), α-cyano-4-hydroxycinnamic acid (CHCA), and sinapic acid (SA) are suitable for the analysis
of peptides and proteins [19–21]. 2,5-DHB is suitable for the analysis of carbohydrates and lipids [22,23].
The matrix of 2,4,6-trihydroxyacetophenone (THAP) is used for polar lipids [24], carbohydrates [25–28],
and functional peptides [29,30]. For DNA analysis, 3-hydroxypicolinic acid (3-HPA) is suitable [31,32],
and 4-chloro-α-cyanocinnamic acid (Cl-CCA) is appropriate for proteomic analyses [33–35].

Studies have indicated that the amount of desorbed analyte neutrals in a MALDI plume is
2 to 8 orders of magnitude higher than that of desorbed analyte ions [36,37], depending on the
analyte’s properties. Similar orders of magnitudes were found in MALDI and surface-assisted laser
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desorption/ionization-mass spectrometry [38]. This large amount of desorbed neutrals has received
attention and been investigated. Desorbed neutrals can be ionized by postionization and detected
by the same mass spectrometer. The optimal conditions for the postionization of analytes are not as
difficult to achieve as those required for MALDI. If postionization efficiency is high, the number of
ions produced during postionization can be comparable or even higher than the number produced
during conventional UV-MALDI. Postionization provides an alternative approach to obtaining the
mass spectra of analytes.

The infrared (IR) laser desorption of a matrix-free sample followed by UV laser multiphoton
ionization was previously used to examine the composition of different exogenous materials [39].
Kinsel demonstrated the desorption of pure peptides by using a 266-nm laser pulse followed by
255-nm resonance-enhanced multiphoton ionization (REMPI) [40,41]. Reilly et al. observed parent and
fragment ions of tryptophan through postionization using 266-nm REMPI, following the desorption
from a rhodamine B/glycerol matrix by using a 532-nm laser pulse [42]. Leisner et al. employed an IR
laser for desorption and another IR laser with a different wavelength for REMPI [43].

Single-photon (SP) ionization using vacuum ultraviolet (VUV) irradiation provides an alternative
soft ionization method for mass spectrometry [44–47]. SP ionization induces little or no fragmentation,
unlike REMPI. Resonance excitation through an intermediate state, which is essential in REMPI
and strongly dependent on the target molecule, is not required in SP ionization. Therefore, VUV
SP ionization is a universal ionization method. A molecular fluorine excimer laser that emits
approximately pulses of 10-ns pulse width at 157 nm (7.87 eV) is an intensive, convenient VUV
source. SP postionization with VUV radiation from a molecular fluorine laser was used to detect
antibiotics within intact bacterial colony biofilms [46]. However, most molecules with ionization
energy (IE) in the range of 8–10 eV cannot be ionized by photons from a molecular fluorine laser.
Chemical derivatization with low-IE tags, such as anthracene, fluorescein, and tryptophan, is required
to detect peptides using a 7.87-eV photon source [44,48,49]. Alternatively, a VUV light source with
a short wavelength can be used. VUV photon energy tunable from 8.0 to 12.5 eV generated from
synchrotron radiation was employed in the SP ionization of antibiotics and extracellular neutrals that
were laser desorbed from bacterial biofilms [44]. The VUV light source from synchrotron radiation is a
semi-continuous wave source, which is unsuitable for use in pulsed laser desorption and time-of-flight
mass spectrometry (TOF-MS).

A VUV source with a short wavelength (118 nm, 10.5 eV) can be obtained using the ninth harmonic
generation by focusing the third harmonic (355 nm) of Nd:YAG into a xenon cell [50,51]. This source
is used extensively because of its suitable photon energy and short pulse duration (~5 ns), which is
appropriate for TOF-MS. Compared with other nonlinear optical generation schemes, which have
complicated experimental configurations, ninth harmonic generation from a Nd:YAG laser provides
a convenient, low-cost, and compact VUV source for SP ionization in a mass spectrometer. Several
SP ionization methods using the ninth harmonic of a Nd:YAG laser coupled with TOF-MS have been
demonstrated [52–56].

In this study, the ion signals of 20 common amino acids obtained using UV-MALDI and
VUV-SP-postionization were compared. The detection sensitivity of VUV-SP-postionization is
generally 100 times higher than that of conventional UV-MALDI. In particular, the ion signal from
VUV-SP-postionization is considerably larger than that from UV-MALDI for analytes with low proton
affinity, such as glycine [57]. Quantitative measurement was performed using glycine/histidine
and tryptophan/phenylalanine mixtures. The measurement indicated that the dynamic range of
VUV-SP-postionization is larger than that of UV-MALDI by one order of magnitude. This technique
provides a powerful ionization platform for further applications.

2. Experiment

In this study, homemade VUV light source and MALDI/VUV-SP-postionization time-of-flight
mass spectrometer (TOF-MS) instruments were used. Figure 1 illustrates part of the experimental setup.
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Similar homemade instruments have been reported in previous studies [58–61]. Desorbed ions and
neutrals were generated by irradiating a UV-pulsed laser beam from the third harmonic of a Nd:YAG
laser (355 nm, 5-ns pulse duration, Minlite II, Continuum, San Jose, CA, USA) on a solid sample
surface. The laser beam was focused onto an elliptical spot with an area of 350 µm × 200 µm on the
sample surface. Ions generated through MALDI were analyzed using TOF-MS. Desorbed neutrals
from the same UV laser pulse were ionized using a VUV (118-nm) laser pulse, and the ions produced
through VUV photoionization were analyzed using the same TOF-MS system. The VUV beam was
parallel to the sample surface and overlapped with the plume of desorbed neutrals at a distance of
1–2 mm above the sample surface, where photoionization occurred. The delay between the UV and
VUV laser pulses was controlled by a digital delay generator (DG 535, Stanford Research Systems, Inc.,
Sunnyvale, CA, USA.). The delay was adjusted to 3 µs to achieve optimal temporal overlap between
the MALDI plume and VUV photons. The spectra presented herein were obtained by averaging five
spectra (20 laser shots for each spectrum). The mass calibration and resolution of UV-MALDI TOF-MS
were performed using CsI clusters. The mass calibration and resolution of a VUV-SP-postionization
mass spectrometer were performed using 2,5-DHB, THAP, CHCA, SA, and FA matrices. The mass
resolution of UV-MALDI and VUV SP was 523 at m/z 393 (m/FWHMm, where FWHM stands for the
full width at half maximum) and 200 at m/z 168, respectively. The mass resolution was optimized for
UV-MALDI; therefore, the resolution of VUV SP was not as good as that of UV-MALDI.
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Figure 1. Schematic of experimental setup. The relative dimensions of each component are not drawn
in scale. A UV-MALDI laser (355 nm) struck on the sample surface to generate MALDI ions and
desorbed neutrals. Ions were accelerated by an electronic field, focused using an Einzel lens, and
analyzed using TOF-MS. Desorbed neutrals were postionized by a VUV pulse (118 nm). Ions generated
through VUV-SP-postionization were accelerated and focused by the same ion optics and analyzed
using the same TOF-MS system.

Figure 2 presents a schematic of the VUV laser generation. The 118-nm VUV laser beam was
generated through frequency tripling of the UV (355-nm) laser beam in xenon gas. The UV laser beam
from the third harmonic of the Nd:YAG laser (355 nm, 5-ns pulse duration, 680 mW, 10 Hz, LS-2137U,
LOTIS Tii, Minsk, Belarus) was focused into a Xe cell to generate VUV radiation at the focal point in
the Xe cell. Coaxial and expanding UV and VUV laser beams were directed off-axis into a LiF-VUV
lens (biconvex, f = 103 mm, diameter = 38.1 mm, Crystran Ltd. Poole, Dorset, UK). The VUV and
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UV laser beams were separated by the lens because of their different refractive indices. The UV laser
beam was blocked by a graphite-coated stainless-steel baffle, whereas the VUV laser beam passed
through the stainless-steel baffle and was refocused on the ionization region. The VUV beam size was
estimated to be less than 1 mm in diameter at the ionization region.
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Figure 2. Schematic of VUV light source and part of the TOF-MS system. A UV laser (355 nm) was
focused into a Xe cell by using UV lens (f = 25 cm). After VUV radiation was generated, the coaxial
and expanding UV and VUV laser beams were separated and focused using an off-axis LiF-VUV
lens. The UV laser beam was blocked by graphite-coated stainless-steel baffles, whereas the VUV
laser beam passed through stainless steel baffles and refocused on the ionization region. Ions from
UV-MALDI and VUV photoionization were analyzed and detected using TOF-MS, in which the flight
axis is perpendicular to the paper.

The VUV photon number of each laser pulse was detected using a homemade Pd detector. There
are many materials suitable for detecting VUV; however, to measure the absolute number of VUV
photon, the quantum efficiency at the given VUV wavelength has to be known. It just happens that we
have a piece of Pd, and Pd is one of the materials suitable for detecting VUV, and the quantum efficiency
at 118 nm is known [62]. A metal mesh (transmission efficiency, 88.6%; BM-0117-01; Industrial Netting,
Minneapolis, MN, USA), which was floated to 700 V, was placed at a distance of 5 mm in front
of the Pd plate. The VUV laser beam passed through the metal mesh and reached the Pd plate.
Photoelectrons generated through irradiation by VUV photons on the Pd plate were accelerated by
the electric field toward the metal mesh, and the positive pulsed voltage generated in the Pd plate
was directly measured using a fast oscilloscope (Infiniium DSO8104A, Agilent, Santa Clara, CA, USA).
The Xe pressure was optimized to obtain the maximum number of VUV photons, as measured using
the detector.

All amino acids (≥98%) were purchased from Aldrich (St. Louis, MO, USA), whereas 2,5-DHB
(98%) and THAP (99%) were purchased from Acros (Waltham, MA, USA). All chemicals were
directly used without additional purification. A matrix solution (100 µmol/mL) was prepared in 75%
acetonitrile and 25% deionized water, whereas an amino acid stock solution was prepared by dissolving
10 µmol of dried analyte in 1 mL of deionized water. In an experiment detecting amino acids, the matrix
and analyte solution were premixed in a 20:1 ratio in a vortex for several minutes to facilitate mixing. In
quantitative analysis experiments, glycine/histidine or tryptophan/phenylalanine were premixed with
different molar ratios, which were then mixed with matrix solution in a matrix-to-total-analyte ratio of
100:1. Each sample was dried in vacuum after pipetting 4 µL of a mixture onto a stainless-steel plate,
which was then analyzed using the homemade MALDI/VUV postionization and TOF-MS system.

3. Results

(a) VUV photon number

The VUV photon number of each laser pulse was determined using the homemade VUV detector.
The VUV photon number increased with an increase in laser energy from 43 to 60 mJ/pulse. However,
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the photon number did not considerably increase when the laser energy was increased from 70 to
100 mJ/pulse. The VUV photon number of each laser pulse was calculated from the measurement
using Ohm’s law:

photon number = 16V
50Ω × 7× 10−9s× 1

1.6×10−19C ×
1

0.01 ×
1

0.886
= 1.58× 1012 photons/pulse

where 16 V was the measured pulse height from the VUV detector with an oscilloscope impedance set
at 50 Ω, and 7 ns was the measured pulse width (full width at a half maximum). The transmission
efficiency of the metal mesh and photoelectron quantum efficiency of Pd at 118 nm are 0.886 and
approximately 0.01, respectively [62].

(b) Mass spectra obtained using UV-MALDI and VUV-SP-postionization

Figure 3a,b shows the UV-MALDI mass spectra of 5% glycine in a THAP matrix. At a low laser
fluence (70 J/m2), only a small amount of protonated and sodiated THAP was observed. When the
UV laser fluence was increased to 110 J/m2, signals of the protonated and sodiated THAP matrix
significantly increased; however, no glycine ions or protonated glycine were found. Only sodiated
glycine with a very small intensity was observed, as shown in Figure 3b. Glycine ions and protonated
glycine were not observed even at higher laser fluence. Figure 3c shows the UV-MALDI mass spectra
of 5% tryptophan in THAP matrix. A protonated tryptophan signal was clearly observed.
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When both UV and VUV lasers were employed, the ions generated from VUV-SP-postionization
were recorded in the same spectrum along with the ions directly generated through UV-MALDI.
Because of different ion formation times and positions, the flight times of the ions produced
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through these two ionization methods were substantially different. The ions produced through
VUV-SP-postionization were formed after those produced by UV-MALDI because of the delay between
the UV and VUV laser pulses. Moreover, the ions produced through VUV SP were generated at
a position 1–2 mm above the sample surface, where the electric potential was less than that of
the ions produced through UV-MALDI. Therefore, the flight time of the ions generated through
VUV-SP-postionization was longer than that of the ions generated through UV-MALDI. The ions
produced using these two ionization methods are easily distinguished.

Figure 4 displays the mass spectra of UV-MALDI and VUV-SP-postionization for a pure THAP
matrix sample and when 5% analyte was placed in the THAP sample. For the pure THAP matrix
sample at low laser fluence (70 J/m2), only a few THAP ions generated through UV-MALDI were
observed (red line in Figure 4a). When both UV and VUV lasers were employed, numerous ions were
observed (purple line in Figure 4a). The signals at m/z = 168 and 153 represent the parent and fragment
ions of the desorbed neutral THAP molecules (m = 168) ionized by VUV photons. The high ion
intensity obtained from VUV-SP-postionization indicates the high sensitivity of VUV-SP-postionization
compared with that of UV-MALDI. For 5% glycine in THAP, almost no ions related to glycine were
observed in UV-MALDI (green line in Figure 4a). However, high ion intensities were discovered
at m/z = 75 and 30, corresponding to the glycine parent ion Gly+ and fragment ion [Gly-COOH]+,
respectively, when VUV-SP-postionization was employed (blue line in Figure 4a). These signals
represent desorbed neutral glycine molecules generated through UV laser desorption and ionized
through VUV-SP-postionization. Ion signals from VUV-SP-postionization increased with an increase
in the UV laser fluence (to 110 J/m2) because numerous neutrals were desorbed by the UV laser
(Figure 4b).

The mass spectra obtained when tryptophan was used as an analyte in THAP are
presented in Figure 4c. Similar to Figure 4a,b, large THAP ion signals were generated through
VUV-SP-postionization. Numerous THAP ions were generated, which could suppress the detection
efficiency of a microchannel plate (MCP) detector for the ions arriving subsequently. Because
tryptophan ions have a large molecular weight and arrive at the detector after THAP ions, a gated
MCP was used to overcome suppression effects. The voltage applied to the MCP detector was lowered
during the time period in which THAP ions were arriving. The voltage was then increased to its initial
setting rapidly after this period to detect the ions that arrived after the THAP ions. Figure 4c shows
the VUV-SP-postionization spectrum of tryptophan when the gated MCP was employed. The major
signals related to tryptophan ions are those at m/z = 204 and 130, corresponding to the tryptophan
parent ion, Trp+, and fragment ion, [Trp-NH2CHCOOH]+, respectively.

The mass spectra of 20 common amino acids were obtained using the same technique. Table 1
presents the fragmentation of each amino acid observed in the VUV-SP-postionization spectra. The
fragmentations of all the amino acids, apart from arginine, were generally similar to those that would
by obtained using electron impact (EI) ionization at 70 eV [63]. The dominant fragmentations of the
amino acids were cleavages of the R–COOH bond and bond between Cα and Cβ. However, the
degree of fragmentation observed from VUV-SP-postionization was considerably less than that after
EI ionization.

The relative ion abundance obtained using UV-MALDI and VUV-SP-postionization was defined
as follows:

Relative ion abundance =
ion intensity of parent or fragment from VUV SPI

ion intensity of AH+ from UV−MALDI

The relative ion abundances are listed in Table 1 for a laser fluence of 110 J/m2. For
example, the ion intensity of the tryptophan fragment corresponding to m/z = 130 obtained through
VUV-SP-postionization was approximately 3600 times larger than that of the protonated tryptophan
ions obtained through UV-MALDI, and the tryptophan parent ion intensity obtained through
VUV-SP-postionization was 27 times larger than the protonated tryptophan intensity obtained through
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UV-MALDI. Protonated glycine was not observed in UV-MALDI. Relative ion abundance is the
ratio of the ion intensity from VUV-SP-postionization to the noise level of UV-MALDI. The parent
and fragment ions of aspartic acid and asparagine were not observed when THAP was used as a
matrix; however, they were detected when the matrix was 2,5-DHB. The relative ion abundances
of these 20 common amino acids indicate that the detection sensitivity of VUV-SP-postionization is
generally 10–1000 times higher than that of conventional UV-MALDI. In particular, the ion intensity
in VUV-SP-postionization is considerably higher than that in UV-MALDI for amino acids with low
proton affinities, such as glycine.
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Figure 4. UV-MALDI full scan mass spectrum of a pure THAP matrix sample (red) and UV-MALDI
full scan along with VUV-SP-postionization (purple), and UV-MALDI full scan of a sample containing
5% analyte in THAP matrix (green) and UV-MALDI full scan with VUV-SP-postionization (blue).
Cyan-colored peaks represent the background signal contributed by the THAP matrix. The analyte
used in (a) and (b) is glycine and that used in (c) is tryptophan. The m/z values of the peaks in the
red and green curves must be read from the X axis for UV-MALDI. If the peaks in the purple and
blue curves coincide with peaks in the red and green curves, they represent ions generated through
UV-MALDI. Therefore, the m/z values of these peaks must be read from the X axis for UV-MALDI. If
the peaks in the purple and blue curves do not appear in the red and green curves, they represent ions
generated through VUV-SP-postionization and the m/z values of these peaks must be read from the
X axis for VUV-SPI.
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Table 1. Relative ion abundance of 20 common amino acids, obtained using VUV-SP-postionization and UV-MALDI data. The parent and dominant fragment ions
are listed.

Amino Acids Parent Ion (Relative Ion
Abundance) a,b

Fragment Ion (Relative Ion
Abundance) a,b Amino Acids Parent Ion (Relative Ion

Abundance)
Fragment Ion (Relative Ion

Abundance)

Glycine 75 (300) 30 (1370) Serine 105 d 43, 60 (4), 74/75 (2)
Alanine 89 (7) 44 (800) Threonine 119 e 57 (445), 74/75 (4200)
Valine 117 (15) 72 (160) Phenylalanine 165 e 74 (1750), 91 (500), 120 (1640)
Proline 115 e 70 (2000) Tryptophan 204 (27) 130 (3600)
Leucine 131 (15) 86 (530) Glutamic acid 147 (5) 102 (25)

Isoleucine 131 (0.4) 75 (13), 86 (10) Aspartic acid c 133 e 88 (3)
Tyrosine 181 e 107 (10) Glutamine 146 (0.7) 84, 101 (30)
Histidine 155 e 82 (10) Asparagine c 132 e 74, 87 (13)
Arginine 174 e 60, 74 (6) Cysteine 121 (23) 74/75/76 (110)

Lysine 146 (5) 30, 44 (50), 56, 72 (180), 84, 101 (75) Methionine 149 (18) 75 (155), 83, 88, 101, 104 (90),
116, 131 (100)

a The values in front of parentheses represent m/z values. The values in parentheses show the relative abundance; b Relative ion abundance = ion signal intensity from VUV
ionization/protonated amino acid from MALDI; c THAP was used as the matrix for all amino acids, except aspartic acid and asparagine, for which 2,5-DHB was employed; d The signal of
the parent ion was not observed in the VUV-SP-postionization MS spectrum; therefore, the relative ion abundance was not calculated; e The signal of the parent ion overlaps with the
background signal generated from THAP in the VUV-SP-postionization MS spectrum.
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(c) Applications in relative quantitative measurement of analytes

One drawback of UV-MALDI is the difficulty in the application of quantitative analysis.
Shot-to-shot fluctuation, sweet spot effects, large differences in the ionization efficiency of various
analytes because of different proton affinities, and suppression effects cause difficulties in the
application of UV-MALDI in quantitative analysis. Because the ion signals obtained through
VUV-SP-postionization were larger than those obtained through UV-MALDI and no suppression effects
were expected in postionization, quantitative analysis performed using the VUV-SP-postionization
data was a suitable approach.

Quantitative analysis of UV-MALDI data for glycine is impossible because of the low ion signal
of glycine from conventional UV-MALDI MS. However, quantitative analysis can be straightforwardly
performed using VUV-SP-postionization. Figure 5 shows the relative VUV-SP-postionization signals of
glycine and histidine from glycine/histidine mixtures with various molar ratios. Glycine parent
(m/z 75), glycine fragment (m/z 30), and histidine fragment (m/z 82) ions were considered for
the quantitative analysis. The relative ion intensities of both m/z 82 to 30 and m/z 82 to 75
were linearly related to the molar ratio of glycine and histidine, as illustrated in Figure 5a,b,
respectively. The result indicated that VUV-SP-postionization can be used for the quantitative analysis
of glycine/histidine mixtures.
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Figure 5. Relative VUV SPI ion signals of glycine and histidine from the glycine/histidine mixtures
with various molar ratios. The glycine parent ion at m/z 75, glycine fragment ion at m/z 30, and histidine
fragment ion at m/z 82 were used for the quantitative analysis.

The quantitative analysis of tryptophan and phenylalanine was also performed. Both tryptophan
and phenylalanine can be detected using conventional UV-MALDI and VUV-SP-postionization.
Figure 6 illustrates the relative ion signals (obtained through UV-MALDI or VUV-SP-postionization)
of tryptophan and phenylalanine mixtures with various molar ratios. Protonated tryptophan and
phenylalanine ion signals were used to analyze the UV-MALDI data. Fragment ions corresponding to
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m/z 74 and 120 were used for identifying phenylalanine, whereas one fragment ion corresponding to
m/z 130 was used for tryptophan. Because the sensitivity of VUV-SP-postionization is higher than that
of UV-MALDI, the dynamic range of VUV-SP-postionization for quantitative analysis is approximately
one order of magnitude larger than that of UV-MALDI (Figure 6).

Appl. Sci. 2018, 8, x FOR PEER REVIEW  10 of 14 

corresponding to m/z 130 was used for tryptophan. Because the sensitivity of VUV-SP-postionization 
is higher than that of UV-MALDI, the dynamic range of VUV-SP-postionization for quantitative 
analysis is approximately one order of magnitude larger than that of UV-MALDI (Figure 6). 

 
Figure 6. Left: Relative UV-MALDI ion signals of protonated tryptophan and phenylalanine as a 
function of molar ratio. Right: Relative VUV-SP-postionization ion signals of tryptophan and 
phenylalanine as a function of molar ratio. The fragment ions at m/z 74 and 120 for phenylalanine and 
fragment ion at m/z 130 for tryptophan were used in analysis of VUV-SP-postionization data. The 
dynamic range of VUV-SP-postionization for quantitative analysis is demonstrated one order of 
magnitude larger than that of UV-MALDI. 

4. Discussion 

The degree of success of VUV-SP-postionization is strongly dependent on the properties of the 
VUV photons, including their wavelength, pulse duration, and intensity. The IE of most organic 
molecules is generally less than 10 eV [64], whereas the IE of amino acids and several biomolecules 
is approximately 8–10 eV [65–68]. The ninth harmonic of a Q-switched Nd:YAG laser provides 
suitable photon energy of 10.49 eV, which is higher than the IE of most molecules and is not 
sufficiently large to induce severe fragmentation. The VUV pulse generated from a typical Q-
switched nanosecond-pulse Nd:YAG laser has duration of less than 10 ns. Pulse duration 
appropriately matches the TOF-MS and neutral desorption duration of laser desorption. 

When a suitable VUV wavelength and pulse duration are used, the ion intensity from VUV-SP-
postionization is primarily dependent on the VUV intensity. The ion signal ( ) of cations produced 
by VUV-SP-postionization depends on the ionization cross-section ( ), VUV intensity ( ), and 
density of gaseous molecules ( ). The ion signal can be calculated as  [69,70]. In general, 
the ionization cross-section is approximately 2–20 megabarns (1 Mb = 10  cm2) [71]. Aromatic 

Figure 6. Left: Relative UV-MALDI ion signals of protonated tryptophan and phenylalanine as
a function of molar ratio. Right: Relative VUV-SP-postionization ion signals of tryptophan and
phenylalanine as a function of molar ratio. The fragment ions at m/z 74 and 120 for phenylalanine
and fragment ion at m/z 130 for tryptophan were used in analysis of VUV-SP-postionization data.
The dynamic range of VUV-SP-postionization for quantitative analysis is demonstrated one order of
magnitude larger than that of UV-MALDI.

4. Discussion

The degree of success of VUV-SP-postionization is strongly dependent on the properties of the
VUV photons, including their wavelength, pulse duration, and intensity. The IE of most organic
molecules is generally less than 10 eV [64], whereas the IE of amino acids and several biomolecules is
approximately 8–10 eV [65–68]. The ninth harmonic of a Q-switched Nd:YAG laser provides suitable
photon energy of 10.49 eV, which is higher than the IE of most molecules and is not sufficiently large to
induce severe fragmentation. The VUV pulse generated from a typical Q-switched nanosecond-pulse
Nd:YAG laser has duration of less than 10 ns. Pulse duration appropriately matches the TOF-MS and
neutral desorption duration of laser desorption.

When a suitable VUV wavelength and pulse duration are used, the ion intensity from
VUV-SP-postionization is primarily dependent on the VUV intensity. The ion signal (S) of cations
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produced by VUV-SP-postionization depends on the ionization cross-section (σSPI), VUV intensity
(I), and density of gaseous molecules (N). The ion signal can be calculated as S = σSPI IN [69,70].
In general, the ionization cross-section is approximately 2–20 megabarns (1 Mb = 10−18 cm2) [71].
Aromatic species and alkynes, dienes, and alkenes exhibit ionization cross-sections of approximately
20 Mb, 15 Mb, and 8 Mb, respectively, whereas aldehydes/ketones and alkanes have lower ionization
cross-sections of approximately 3–4 Mb [69–72]. A typical ion-to-neutral ratio of analytes in UV-MALDI
is 10−8–10−3, depending on the properties (e.g., proton affinity) of the analyte. The overlap of the
VUV laser beam with the desorbed neutral plume is estimated to be approximately one tenth. To yield
higher ion intensity from VUV-SP-postionization than that from UV-MALDI, the VUV photon number
in each laser pulse must be large. For analytes with an ion-to-neutral ratio of 10−5 in UV-MALDI,
the VUV photon number of each laser pulse must be larger than 1012, assuming that the ionization
cross-section is 10 Mb. The VUV photon number generated from a midsize commercial Nd:YAG
pulse laser is as high as 1.58 × 1012. The ionization efficiency of VUV-SP-postionization using such a
Nd:YAG pulse laser is comparable with that of conventional MALDI-MS. Compared with the MALDI
technique, in which the ionization efficiency can vary by several orders of magnitude depending
on the proton affinity analyte and selected matrix [67], VUV-SP-postionization enables more readily
quantifiable analysis.
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